Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Epilepsia ; 64(8): 1991-2005, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37212716

RESUMO

Epilepsy is a common neurological disorder, affecting patients of all ages, reducing the quality of life, and associated with several comorbidities. Sleep impairment is a frequent condition in patients with epilepsy (PWE), and the relation between sleep and epilepsy has been considered bidirectional, as one can significantly influence the other, and vice versa. The orexin system was described more than 20 years ago and is implicated in several neurobiological functions other than in controlling the sleep-wake cycle. Considering the relation between epilepsy and sleep, and the significant contribution of the orexin system in regulating the sleep-wake cycle, it is conceivable that the orexin system may be affected in PWE. Preclinical studies investigated the impact of the orexin system on epileptogenesis and the effect of orexin antagonism on seizures in animal models. Conversely, clinical studies are few and propose heterogeneous results also considering the different methodological approaches to orexin levels quantification (cerebrospinal-fluid or blood samples). Because orexin system activity can be modulated by sleep, and considering the sleep impairment documented in PWE, the recently approved dual orexin receptor antagonists (DORAs) have been suggested for treating sleep impairment and insomnia in PWE. Accordingly, sleep improvement can be a therapeutic strategy for reducing seizures and better managing epilepsy. The present review analyzes the preclinical and clinical evidence linking the orexin system to epilepsy, and hypothesizes a model in which the antagonism to the orexin system by DORAs can improve epilepsy by both a direct and a sleep-mediated (indirect) effect.


Assuntos
Epilepsia , Qualidade de Vida , Animais , Orexinas , Receptores de Orexina/fisiologia , Sono/fisiologia , Epilepsia/complicações , Epilepsia/tratamento farmacológico , Antagonistas dos Receptores de Orexina/uso terapêutico , Antagonistas dos Receptores de Orexina/farmacologia , Convulsões/tratamento farmacológico
2.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982627

RESUMO

CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a severe neurodevelopmental disease that mostly affects girls, who are heterozygous for mutations in the X-linked CDKL5 gene. Mutations in the CDKL5 gene lead to a lack of CDKL5 protein expression or function and cause numerous clinical features, including early-onset seizures, marked hypotonia, autistic features, gastrointestinal problems, and severe neurodevelopmental impairment. Mouse models of CDD recapitulate several aspects of CDD symptomology, including cognitive impairments, motor deficits, and autistic-like features, and have been useful to dissect the role of CDKL5 in brain development and function. However, our current knowledge of the function of CDKL5 in other organs/tissues besides the brain is still quite limited, reducing the possibility of broad-spectrum interventions. Here, for the first time, we report the presence of cardiac function/structure alterations in heterozygous Cdkl5 +/- female mice. We found a prolonged QT interval (corrected for the heart rate, QTc) and increased heart rate in Cdkl5 +/- mice. These changes correlate with a marked decrease in parasympathetic activity to the heart and in the expression of the Scn5a and Hcn4 voltage-gated channels. Interestingly, Cdkl5 +/- hearts showed increased fibrosis, altered gap junction organization and connexin-43 expression, mitochondrial dysfunction, and increased ROS production. Together, these findings not only contribute to our understanding of the role of CDKL5 in heart structure/function but also document a novel preclinical phenotype for future therapeutic investigation.


Assuntos
Transtorno Autístico , Síndromes Epilépticas , Espasmos Infantis , Feminino , Animais , Camundongos , Espasmos Infantis/tratamento farmacológico , Síndromes Epilépticas/tratamento farmacológico , Encéfalo/metabolismo , Transtorno Autístico/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
3.
Neurobiol Dis ; 159: 105508, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509609

RESUMO

STUDY OBJECTIVES: The use of mouse models in sleep apnea study is limited by the belief that central (CSA) but not obstructive sleep apneas (OSA) occur in rodents. We aimed to develop a protocol to investigate the presence of OSAs in wild-type mice and, then, to apply it to a validated model of Down syndrome (Ts65Dn), a human pathology characterized by a high incidence of OSAs. METHODS: In a pilot study, nine C57BL/6J wild-type mice were implanted with electrodes for electroencephalography (EEG), neck electromyography (nEMG), and diaphragmatic activity (DIA), and then placed in a whole-body-plethysmographic (WBP) chamber for 8 h during the rest (light) phase to simultaneously record sleep and breathing activity. CSA and OSA were discriminated on the basis of WBP and DIA signals recorded simultaneously. The same protocol was then applied to 12 Ts65Dn mice and 14 euploid controls. RESULTS: OSAs represented about half of the apneic events recorded during rapid-eye-movement-sleep (REMS) in each experimental group, while the majority of CSAs were found during non-rapid eye movement sleep. Compared with euploid controls, Ts65Dn mice had a similar total occurrence rate of apneic events during sleep, but a significantly higher occurrence rate of OSAs during REMS, and a significantly lower occurrence rate of CSAs during NREMS. CONCLUSIONS: Mice physiologically exhibit both CSAs and OSAs. The latter appear almost exclusively during REMS, and are highly prevalent in Ts65Dn. Mice may, thus, represent a useful model to accelerate the understanding of the pathophysiology and genetics of sleep-disordered breathing and to help the development of new therapies.


Assuntos
Síndrome de Down/fisiopatologia , Apneia do Sono Tipo Central/fisiopatologia , Apneia Obstrutiva do Sono/fisiopatologia , Sono REM/fisiologia , Animais , Modelos Animais de Doenças , Eletroencefalografia , Eletromiografia , Camundongos , Projetos Piloto , Pletismografia Total
4.
Eur J Neurosci ; 53(4): 1136-1154, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33290595

RESUMO

Neuropeptides orexin A and B (OX-A/B, also called hypocretin 1 and 2) are released selectively by a population of neurons which projects widely into the entire central nervous system but is localized in a restricted area of the tuberal region of the hypothalamus, caudal to the paraventricular nucleus. The OX system prominently targets brain structures involved in the regulation of wake-sleep state switching, and also orchestrates multiple physiological functions. The degeneration and dysregulation of the OX system promotes narcoleptic phenotypes both in humans and animals. Hence, this review begins with the already proven involvement of OX in narcolepsy, but it mainly discusses the new pre-clinical and clinical insights of the role of OX in three major neurological disorders characterized by sleep impairment which have been recently associated with OX dysfunction, such as Alzheimer's disease, stroke and Prader Willi syndrome, and have been emerged over the past 10 years to be strongly associated with the OX dysfunction and should be more considered in the future. In the light of the impairment of the OX system in these neurological disorders, it is conceivable to speculate that the integrity of the OX system is necessary for a healthy functioning body.


Assuntos
Narcolepsia , Neuropeptídeos , Animais , Humanos , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Neuropeptídeos/metabolismo , Orexinas
5.
J Sleep Res ; 30(4): e13255, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33314463

RESUMO

Antihistamine medications have been suggested to elicit clinical features of restless legs syndrome. The available data are limited, particularly concerning periodic leg movements during sleep, which are common in restless legs syndrome and involve bursts of tibialis anterior electromyogram. Here, we tested whether the occurrence of tibialis anterior electromyogram bursts during non-rapid eye movement sleep is altered in histidine decarboxylase knockout mice with congenital histamine deficiency compared with that in wild-type control mice. We implanted six histidine decarboxylase knockout and nine wild-type mice to record neck muscle electromyogram, bilateral tibialis anterior electromyogram, and electroencephalogram during the rest (light) period. The histidine decarboxylase knockout and wild-type mice did not differ significantly in terms of sleep architecture. In both histidine decarboxylase knockout and wild-type mice, the distribution of intervals between tibialis anterior electromyogram bursts had a single peak for intervals < 10 s. The total occurrence rate of tibialis anterior electromyogram bursts during non-rapid eye movement sleep and the occurrence rate of the tibialis anterior electromyogram bursts separated by intervals < 10 s were significantly lower in histidine decarboxylase knockout than in wild-type mice. These data do not support the hypothesis that preventing brain histamine signalling may promote restless legs syndrome. Rather, the data suggest that limb movements during sleep, including those separated by short intervals, are a manifestation of subcortical arousal requiring the integrity of brain histamine signalling.


Assuntos
Eletromiografia , Extremidades/fisiologia , Histamina/deficiência , Síndrome das Pernas Inquietas/fisiopatologia , Sono/fisiologia , Animais , Nível de Alerta , Feminino , Histamina/metabolismo , Histidina Descarboxilase/deficiência , Histidina Descarboxilase/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
6.
J Exp Biol ; 223(Pt 13)2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32457059

RESUMO

The loss of orexinergic neurons, which release orexins, results in narcolepsy. Orexins participate in the regulation of many physiological functions, and their role as wake-promoting molecules has been widely described. Less is known about the involvement of orexins in body temperature and respiratory regulation. The aim of this study was to investigate if orexin peptides modulate respiratory regulation as a function of ambient temperature (Ta) during different sleep stages. Respiratory phenotype of male orexin knockout (KO-ORX, N=9) and wild-type (WT, N=8) mice was studied at thermoneutrality (Ta=30°C) or during mild cold exposure (Ta=20°C) inside a whole-body plethysmography chamber. The states of wakefulness (W), non-rapid eye movement sleep (NREMS) and rapid eye movement sleep (REMS) were scored non-invasively, using a previously validated technique. In both WT and KO-ORX mice, Ta strongly and significantly affected ventilatory period and minute ventilation values during NREMS and REMS; moreover, the occurrence rate of sleep apneas in NREMS was significantly reduced at Ta=20°C compared with Ta=30°C. Overall, there were no differences in respiratory regulation during sleep between WT and KO-ORX mice, except for sigh occurrence rate, which was significantly increased at Ta=20°C compared with Ta=30°C in WT mice, but not in KO-ORX mice. These results do not support a main role for orexin peptides in the temperature-dependent modulation of respiratory regulation during sleep. However, we showed that the occurrence rate of sleep apneas critically depends on Ta, without any significant effect of orexin peptides.


Assuntos
Neuropeptídeos , Animais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Knockout , Neuropeptídeos/genética , Orexinas , Fenótipo , Sono , Temperatura , Vigília
7.
Clin Exp Pharmacol Physiol ; 47(2): 281-285, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31625617

RESUMO

The Raphe Pallidus (RPa) is a region of the brainstem that was shown to modulate the sympathetic outflow to many tissues and organs involved in thermoregulation and energy expenditure. In rodents, the pharmacological activation of RPa neurons was shown to increase the activity of the brown adipose tissue, heart rate, and expired CO2 , whereas their inhibition was shown to induce cutaneous vasodilation and a state of hypothermia that, when prolonged, leads to a state resembling torpor referred to as synthetic torpor. If translatable to humans, this synthetic torpor-inducing procedure would be advantageous in many clinical settings. A first step to explore such translatability, has been to verify whether the neurons within the RPa play the same role described for rodents in a larger mammal such as the pig. In the present study, we show that the physiological responses inducible by the pharmacological stimulation of RPa neurons are very similar to those observed in rodents. Injection of the GABAA agonist GABAzine in the RPa induced an increase in heart rate (from 99 to 174 bpm), systolic (from 87 to 170 mm Hg) and diastolic (from 51 to 98 mm Hg) arterial pressure, and end-tidal CO2 (from 49 to 62 mm Hg). All these changes were reversed by the injection in the same area of the GABAA agonist muscimol. These results support the possibility for RPa neurons to be a key target in the research for a safe and effective procedure for the induction of synthetic torpor in humans.


Assuntos
Fármacos do Sistema Nervoso Autônomo/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Núcleo Pálido da Rafe/efeitos dos fármacos , Núcleo Pálido da Rafe/fisiologia , Fatores Etários , Animais , Feminino , Antagonistas GABAérgicos/administração & dosagem , Agonistas de Receptores de GABA-A/administração & dosagem , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Microinjeções/métodos , Piridazinas/administração & dosagem , Estremecimento/efeitos dos fármacos , Estremecimento/fisiologia , Suínos
8.
J Sleep Res ; 28(6): e12845, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30920081

RESUMO

Sleep apneas can be categorized as post-sigh (prevailing in non-rapid eye movement sleep) or spontaneous (prevailing in rapid eye movement sleep) according to whether or not they are preceded by an augmented breath (sigh). Notably, the occurrence of these apnea subtypes changes differently in hypoxic/hypercapnic environments and in some genetic diseases, highlighting the importance of an objective discrimination. We aim to: (a) systematically review the literature comparing the criteria used in categorizing mouse sleep apneas; and (b) provide data-driven criteria for this categorization, with the final goal of reducing experimental variability in future studies. Twenty-two wild-type mice, instrumented with electroencephalographic/electromyographic electrodes, were placed inside a whole-body plethysmographic chamber to quantify sleep apneas and sighs. Wake-sleep states were scored on 4-s epochs based on electroencephalographic/electromyographic signals. Literature revision showed that highly different criteria were used for post-sigh apnea definition, the intervals for apnea occurrence after sigh ranging from 1 breath up to 20 s. In our data, the apnea occurrence rate during non-rapid eye movement sleep was significantly higher than that calculated before the sigh only in the 1st and 2nd 4-s epochs following a sigh. These data suggest that, in mice, apneas should be categorized as post-sigh only if they start within 8 s from a sigh; the choice of shorter or longer time windows might underestimate or slightly overestimate their occurrence rate, respectively.


Assuntos
Eletroencefalografia/métodos , Mecânica Respiratória/fisiologia , Síndromes da Apneia do Sono/fisiopatologia , Sono/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sono REM/fisiologia
9.
J Physiol ; 596(4): 591-608, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29266348

RESUMO

KEY POINTS: While values of arterial pressure during sleep are predictive of cardiovascular risk, the autonomic mechanisms underlying the cardiovascular effects of sleep remain poorly understood. Here, we assess the autonomic mechanisms of the cardiovascular effects of sleep in C57Bl/6J mice, taking advantage of a novel technique for continuous intraperitoneal infusion of autonomic blockers. Our results indicate that non-REM sleep decreases arterial pressure by decreasing sympathetic vasoconstriction, decreases heart rate by balancing parasympathetic activation and sympathetic withdrawal, and increases cardiac baroreflex sensitivity mainly by increasing fluctuations in parasympathetic activity. Our results also indicate that REM sleep increases arterial pressure by increasing sympathetic activity to the heart and blood vessels, and increases heart rate, at least in part, by increasing cardiac sympathetic activity. These results provide a framework for generating and testing hypotheses on cardiovascular derangements during sleep in mouse models and human patients. ABSTRACT: The values of arterial pressure (AP) during sleep predict cardiovascular risk. Sleep exerts similar effects on cardiovascular control in human subjects and mice. We aimed to determine the underlying autonomic mechanisms in 12 C57Bl/6J mice with a novel technique of intraperitoneal infusion of autonomic blockers, while monitoring the electroencephalogram, electromyogram, AP and heart period (HP, i.e. 1/heart rate). In different sessions, we administered atropine methyl nitrate, atenolol and prazosin to block muscarinic cholinergic, ß1 -adrenergic and α1 -adrenergic receptors, respectively, and compared each drug infusion with a matched vehicle infusion. The decrease in AP from wakefulness to non-rapid-eye-movement sleep (N) was abolished by prazosin but was not significantly affected by atropine and atenolol, which, however, blunted the accompanying increase in HP to a similar extent. On passing from N to rapid-eye-movement sleep (R), the increase in AP was significantly blunted by prazosin and atenolol, whereas the accompanying decrease in HP was blunted by atropine and abolished by atenolol. Cardiac baroreflex sensitivity (cBRS, sequence technique) was dramatically decreased by atropine and slightly increased by prazosin. These data indicate that in C57Bl/6J mice, N decreases mean AP by decreasing sympathetic vasoconstriction, increases HP by balancing parasympathetic activation and sympathetic withdrawal, and increases cBRS mainly by increasing fluctuations in parasympathetic activity. R increases mean AP by increasing sympathetic vasoconstriction and cardiac sympathetic activity, which also explains, at least in part, the concomitant decrease in HP. These data represent the first comprehensive assessment of the autonomic mechanisms of cardiovascular control during sleep in mice.


Assuntos
Antiarrítmicos/farmacologia , Pressão Arterial , Sistema Cardiovascular/fisiopatologia , Sono , Vasoconstrição , Animais , Sistema Cardiovascular/efeitos dos fármacos , Frequência Cardíaca , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Nervoso Simpático , Vigília
10.
Clin Auton Res ; 28(6): 545-555, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29019051

RESUMO

Narcolepsy is a rare disease that entails excessive daytime sleepiness, often associated with sudden episodes of muscle weakness known as cataplexy. Narcolepsy with cataplexy (NC) is due to the loss of hypothalamic neurons that release the neuropeptides orexin A and B. Orexin neuron projections prominently target brain structures involved in wake-sleep state switching and the central autonomic network. This review provides an updated summary of the links between NC and autonomic cardiovascular dysfunction from a translational perspective. The available evidence suggests that, compared with control subjects, the heart rate in patients and animal models with NC is variable during wakefulness and normal to high during sleep. Responses of the heart rate to internal stimuli (arousal from sleep, leg movements during sleep, defense response) are blunted. These alterations result from orexin deficiency and, at least during wakefulness before sleep, involve decreased parasympathetic modulation of the heart rate. On the other hand, NC in patients and animal models is associated with a blunted fall in arterial blood pressure from wakefulness to sleep, and particularly to the REM state, coupled to a variable decrease in arterial blood pressure during wakefulness. The former effect is caused, at least in part, by deranged control of the heart, whereas the latter may be due to decreased vasoconstrictor sympathetic activity. Systematic studies are warranted to help clarify whether and how the links between NC and autonomic dysfunction impact on the cardiovascular risk of patients with narcolepsy.


Assuntos
Doenças do Sistema Nervoso Autônomo/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Narcolepsia/fisiopatologia , Animais , Humanos , Pesquisa Translacional Biomédica
11.
Acta Paediatr ; 107(4): 638-646, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29224235

RESUMO

AIM: Gather 'proof-of-concept' evidence of the adverse developmental potential of cotinine (a seemingly benign biomarker of recent nicotine/tobacco smoke exposure). METHODS: Pregnant C57 mice drank nicotine- or cotinine-laced water for 6 wks from conception (NPRE = 2% saccharin + 100 µg nicotine/mL; CPRE = 2% saccharin + 10 µg cotinine/mL) or 3 wks after birth (CPOST = 2% saccharin + 30 µg cotinine/mL). Controls drank 2% saccharin (CTRL). At 17 ± 1 weeks (male pups; CTRL n = 6; CPOST n = 6; CPRE n = 8; NPRE n = 9), we assessed (i) cardiovascular control during sleep; (ii) arterial reactivity ex vivo; and (iii) expression of genes involved in arterial constriction/dilation. RESULTS: Blood cotinine levels recapitulated those of passive smoker mothers' infants. Pups exposed to cotinine exhibited (i) mild bradycardia - hypotension at rest (p < 0.001); (ii) attenuated (CPRE , p < 0.0001) or reverse (CPOST ; p < 0.0001) BP stress reactivity; (iii) adrenergic hypocontractility (p < 0.0003), low protein kinase C (p < 0.001) and elevated adrenergic receptor mRNA (p < 0.05; all drug-treated arteries); and (iv) endothelial dysfunction (NPRE only). CONCLUSION: Cotinine has subtle, enduring developmental consequences. Some cardiovascular effects of nicotine can plausibly arise via conversion into cotinine. Low-level exposure to this metabolite may pose unrecognised perinatal risks. Adults must avoid inadvertently exposing a foetus or infant to cotinine as well as nicotine.


Assuntos
Pressão Sanguínea/fisiologia , Cotinina/metabolismo , Endotélio Vascular/fisiopatologia , Frequência Cardíaca/fisiologia , Troca Materno-Fetal/fisiologia , Nicotina/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Gravidez , Poluição por Fumaça de Tabaco/efeitos adversos
12.
J Sleep Res ; 26(4): 495-497, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28230307

RESUMO

A recently discovered neurodevelopmental disorder caused by the mutation of the cyclin-dependent kinase-like 5 gene (CDKL5) entails complex autistic-like behaviours similar to Rett syndrome, but its impact upon physiological functions remains largely unexplored. Sleep-disordered breathing is common and potentially life-threatening in patients with Rett syndrome; however, evidence is limited in children with CDKL5 disorder, and is lacking altogether in adults. The aim of this study was to test whether the breathing pattern during sleep differs between adult Cdkl5 knockout (Cdkl5-KO) and wild-type (WT) mice. Using whole-body plethysmography, sleep and breathing were recorded non-invasively for 8 h during the light period. Sleep apneas occurred more frequently in Cdkl5-KO than in WT mice. A receiver operating characteristic (ROC) analysis discriminated Cdkl5-KO significantly from WT mice based on sleep apnea occurrence. These data demonstrate that sleep apneas are a core feature of CDKL5 disorder and a respiratory biomarker of CDKL5 deficiency in mice, and suggest that sleep-disordered breathing should be evaluated routinely in CDKL5 patients.


Assuntos
Mutação , Proteínas Serina-Treonina Quinases/deficiência , Síndromes da Apneia do Sono/genética , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Curva ROC , Respiração , Síndrome de Rett/complicações , Síndrome de Rett/genética , Síndromes da Apneia do Sono/complicações
13.
J Sleep Res ; 25(5): 591-595, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27230703

RESUMO

Histamine and orexins are wake promoters released by hypothalamic neurons. The activity of histamine neurons is increased by orexin neurons. Recently, it has been shown that orexin deficiency entails high-amplitude theta wave bursts during rapid eye movement sleep and cataplexy in narcoleptic mice. The primary aim of this study was to assess whether histamine system is involved in high-amplitude theta wave burst generation during rapid eye movement sleep. The secondary aim was to assess the effects of combined histamine and orexin deficiency on high-amplitude theta wave bursts during rapid eye movement sleep in mice. Twelve histidine-decarboxylase knockout mice with congenital histamine deficiency, seven double mutant mice with combined deficiency of orexin neurons and histamine, and 11 wild-type control mice were studied with electrodes for sleep recordings and a telemetric blood pressure transducer. High-amplitude theta wave bursts during rapid eye movement sleep were detected in each of the histidine-decarboxylase knockout and double mutant mice, whereas only one burst was found in a wild-type control mouse. High-amplitude theta wave bursts occurred significantly more often and were significantly longer in double mutant than in histidine-decarboxylase knockout mice. In conclusion, it was demonstrated that, similarly to orexin, the chronic impairment of histamine entailed high-amplitude theta wave bursts during rapid eye movement sleep. The current data also suggested a synergistic role of orexin and histamine signalling on high-amplitude theta wave bursts during rapid eye movement sleep in mice.


Assuntos
Cataplexia/fisiopatologia , Histamina/deficiência , Sono REM , Ritmo Teta , Animais , Pressão Sanguínea , Cataplexia/genética , Histamina/metabolismo , Histidina Descarboxilase/deficiência , Histidina Descarboxilase/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação , Neurônios/metabolismo , Orexinas/deficiência , Orexinas/genética , Orexinas/metabolismo
14.
J Sleep Res ; 24(6): 695-701, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26118726

RESUMO

The validation of rodent models for restless legs syndrome (Willis-Ekbom disease) and periodic limb movements during sleep requires knowledge of physiological limb motor activity during sleep in rodents. This study aimed to determine the physiological time structure of tibialis anterior activity during sleep in mice and rats, and compare it with that of healthy humans. Wild-type mice (n = 9) and rats (n = 8) were instrumented with electrodes for recording the electroencephalogram and electromyogram of neck muscles and both tibialis anterior muscles. Healthy human subjects (31 ± 1 years, n = 21) underwent overnight polysomnography. An algorithm for automatic scoring of tibialis anterior electromyogram events of mice and rats during non-rapid eye movement sleep was developed and validated. Visual scoring assisted by this algorithm had inter-rater sensitivity of 92-95% and false-positive rates of 13-19% in mice and rats. The distribution of the time intervals between consecutive tibialis anterior electromyogram events during non-rapid eye movement sleep had a single peak extending up to 10 s in mice, rats and human subjects. The tibialis anterior electromyogram events separated by intervals <10 s mainly occurred in series of two-three events, their occurrence rate in humans being lower than in mice and similar to that in rats. In conclusion, this study proposes reliable rules for scoring tibialis anterior electromyogram events during non-rapid eye movement sleep in mice and rats, demonstrating that their physiological time structure is similar to that of healthy young human subjects. These results strengthen the basis for translational rodent models of periodic limb movements during sleep and restless legs syndrome/Willis-Ekbom disease.


Assuntos
Perna (Membro)/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia , Sono/fisiologia , Adulto , Algoritmos , Animais , Modelos Animais de Doenças , Eletroencefalografia , Eletromiografia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polissonografia , Ratos , Ratos Sprague-Dawley , Síndrome das Pernas Inquietas/fisiopatologia , Fatores de Tempo
15.
Arch Ital Biol ; 153(2-3): 77-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26742662

RESUMO

High amplitude theta wave bursts (HATs) were originally described during REMS and cataplexy in ORX-deficient mice as a novel neurophysiological correlate of narcolepsy (Bastianini et al., 2012). This finding was replicated the following year by Vassalli et al. in both ORX-deficient narcoleptic mice and narcoleptic children during cataplexy episodes (Vassalli et al., 2013). The relationship between HATs and narcolepsy-cataplexy in mice and patients indicates that the lack of ORX peptides is responsible for this abnormal EEG activity, the physiological meaning of which is still unknown. This review aimed to explore different phasic EEG events previously described in the published literature in order to find analogies and differences with HATs observed in narcoleptic mice and patients. We found similarities in terms of morphology, frequency and duration between HATs and several physiological (mu and wicket rhythms, sleep spindles, saw-tooth waves) or pathological (SWDs, HVSs, bursts of polyphasic complexes EEG complexes reported in a mouse model of CJD, and BSEs) EEG events. However, each of these events also shows significant differences from HATs, and thus cannot be equaled to them. The available evidence thus suggests that HATs are a novel neurophysiological phenomenon. Further investigations on HATs are required in order to investigate their physiological meaning, to individuate their brain structure(s) of origin, and to clarify the neural circuits involved in their manifestation.


Assuntos
Cataplexia/fisiopatologia , Sono REM , Ritmo Teta , Animais , Cataplexia/genética , Humanos , Orexinas/genética
16.
Arch Ital Biol ; 153(2-3): 58-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26742660

RESUMO

Sleep research carried out on rat and mouse model led to the publication of more than 5000 papers in the last 15 years, of which more than 500 in 2014. Wake-sleep scoring represents a crucial step of the work performed in pre- clinical sleep laboratories; it is a time consuming task and a potential source of errors affecting research outcomes. Several algorithms have been developed to perform automatic sleep scoring. Automatic scoring can accelerate the work of researchers substantially. Moreover, the use of sleep scoring algorithms facilitates the direct comparison of the results produced in different laboratories, with clear advantages from the viewpoint of the advancement of science and reduction of the number of animals used for research. The intent of this review is to provide the readers with the last developments in scoring in rodent sleep and to stress about the need of a cross-lab and cross-species validated algorithm.


Assuntos
Polissonografia/métodos , Roedores/fisiologia , Sono , Algoritmos , Animais , Especificidade da Espécie
17.
J Sleep Res ; 23(2): 186-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24772478

RESUMO

Hypocretin/orexin peptides are known for their role in the control of the wake­sleep cycle and narcolepsy­cataplexy pathophysiology. Recent studies suggested that hypocretin peptides also have a role in pregnancy. We tested this hypothesis by conducting a retrospective analysis on pregnancy complications in two different mouse models of hypocretin deficiency. We recorded 85 pregnancies of mice lacking either hypocretin peptides (knockout) or hypocretin-releasing neurons (transgenic) and their wild-type controls. Pregnancy was associated with unexplained dam death before delivery in 3/15 pregnancies in knockout mice, and in 3/23 pregnancies in transgenic mice. No casualties occurred in wild-type pregnant dams (P < 0.007 versus hypocretin-deficient mice as a whole). Hypocretin deficiency did not impact either on litter size or the number of weaned pups per litter. These data provide preliminary evidence of a critical role of hypocretin deficiency in pregnancy.


Assuntos
Morte Súbita , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Neurônios/metabolismo , Neuropeptídeos/deficiência , Complicações na Gravidez/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Narcolepsia/metabolismo , Neuropeptídeos/metabolismo , Orexinas , Gravidez , Estudos Retrospectivos , Transdução de Sinais
18.
J Sleep Res ; 23(1): 98-106, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24033681

RESUMO

Narcolepsy with cataplexy (NC) is a lifelong disorder caused by loss of hypothalamic hypocretin/orexin (HCRT) neurones, often starting in childhood. NC patients show altered control of heart rate (HR) and a normotensive non-dipper blood pressure (BP) profile, but the natural history and prognostic significance of these alterations remain unclear. Similar alterations have been observed in HCRT-ataxin-3 transgenic (TG) NC mice lacking HCRT neurones, but studies have been limited to young adult individuals <4 months of age. Here we evaluated long-term effects of NC on derangements in the wake-sleep state and cardiovascular control by studying middle-aged TG. We chronically instrumented TG and wild-type mice aged 10-11 months with electrodes for sleep scoring and a telemetric transducer for BP and HR measurements. We then recorded mice in freely behaving conditions. TG showed a NC phenotype including fragmentation of wakefulness, reduced latency to rapid eye movement sleep (REMS) and cataplexy-like events. TG also showed blunted BP decline on entering non-rapid eye movement sleep (NREMS), enhanced BP increase on passing to REMS, increased HR, and blunted changes in HR upon arousal and awakening from NREMS. Histological and ultrastructural analysis of cardiovascular and renal tissue did not reveal evidence of subclinical hypertensive organ damage. These data indicate that HCRT neurone loss in TG causes alterations in wake-sleep behaviour and cardiovascular control that are not peculiar to the beginning of the disease but are maintained at least up to middle age. These alterations are similar to those in adult NC patients, but do not produce early subclinical damage to the heart and kidneys.


Assuntos
Envelhecimento/fisiologia , Cataplexia/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Neuropeptídeos/deficiência , Sono/fisiologia , Animais , Pressão Sanguínea/fisiologia , Peso Corporal , Cataplexia/metabolismo , Frequência Cardíaca/fisiologia , Masculino , Camundongos , Neurônios/metabolismo , Orexinas , Fenótipo , Sono REM , Vigília/fisiologia
19.
BMC Psychol ; 12(1): 340, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858743

RESUMO

BACKGROUND: Sleep is vital for maintaining individuals' physical and mental health and is particularly challenged during pregnancy. More than 70% of women during the gestational period report insomnia symptoms. Sleep dysfunction in the peripartum increases the risk for a cascade of negative health outcomes during late pregnancy, birth, and postpartum. While psychological interventions are considered the first line treatment for sleep difficulties, they are still scarcely offered during pregnancy and there is a lack of longitudinal research combining psychological and physiological indices. METHODS: The present protocol outlines a randomized controlled trial aimed at testing the long-term effectiveness of an automatized digitalized psychoeducational intervention for insomnia for expectant mothers complaining insomnia symptoms without comorbidity. Outcomes include physiological, hormonal, and subjective indices of maternal psychopathology, stress, and emotional processes, and sleep and wellbeing of the family system. The trial is part of a longitudinal study evaluating expectant mothers from early pregnancy (within the 15th gestational week) to 6-months postpartum through 6 observational phases: baseline (BSL), 6- and 12-weeks from BSL (FU1-FU2), 2-to-4 weeks after delivery (FU3), and 3- and 6-months after delivery (FU4-5). We plan to recruit 38 women without sleep difficulties (Group A) and 76 women with sleep difficulties (Group B). Group B will be randomly assigned to digital psychological control intervention (B1) or experimental psychoeducational intervention targeting insomnia (B2). At 3 time points, an ecological-momentary-assessment (EMA) design will be used to collect data on sleep and emotions (diaries), sleep-wake parameters (actigraphy) and stress reactivity (salivary cortisol). We will also test the DNA methylation of genes involved in the stress response as biomarkers of prenatal poor sleep. Information on partner's insomnia symptoms and new-borns' sleep will be collected at each stage. DISCUSSION: The proposed protocol aims at testing an easily accessible evidence-based psychoeducational intervention for expectant mothers to help them improving sleep, health, and wellbeing in the peripartum. The results could improve the understanding and management of sleep difficulties and peripartum depression. TRIAL REGISTRATION: The study protocol has been registered on 22 April 2024 with ClinicalTrials.gov Protocol Registration and Results System (PRS), ID: NCT06379074. PROTOCOL VERSION: April 23, 2024.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Humanos , Feminino , Gravidez , Distúrbios do Início e da Manutenção do Sono/terapia , Distúrbios do Início e da Manutenção do Sono/psicologia , Estudos Longitudinais , Adulto , Mães/psicologia , Complicações na Gravidez/terapia , Complicações na Gravidez/psicologia , Saúde da Mulher , Período Pós-Parto/psicologia
20.
Nutrients ; 15(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37432449

RESUMO

The increasing prevalence of overweight and obesity suggests that current strategies based on diet, exercise, and pharmacological knowledge are not sufficient to tackle this epidemic. Obesity results from a high caloric intake and energy storage, the latter by white adipose tissue (WAT), and when neither are counterbalanced by an equally high energy expenditure. As a matter of fact, current research is focused on developing new strategies to increase energy expenditure. Against this background, brown adipose tissue (BAT), whose importance has recently been re-evaluated via the use of modern positron emission techniques (PET), is receiving a great deal of attention from research institutions worldwide, as its main function is to dissipate energy in the form of heat via a process called thermogenesis. A substantial reduction in BAT occurs during normal growth in humans and hence it is not easily exploitable. In recent years, scientific research has made great strides and investigated strategies that focus on expanding BAT and activating the existing BAT. The present review summarizes current knowledge about the various molecules that can be used to promote white-to-brown adipose tissue conversion and energy expenditure in order to assess the potential role of thermogenic nutraceuticals. This includes tools that could represent, in the future, a valid weapon against the obesity epidemic.


Assuntos
Obesidade , Sobrepeso , Humanos , Obesidade/epidemiologia , Obesidade/terapia , Adipócitos , Tecido Adiposo Marrom , Tecido Adiposo Branco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA