Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Emerg Infect Dis ; 26(3): 491-503, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32091371

RESUMO

Mycobacterium ulcerans is the causative agent of Buruli ulcer, a neglected tropical disease found in rural areas of West and Central Africa. Despite the ongoing efforts to tackle Buruli ulcer epidemics, the environmental reservoir of its pathogen remains elusive, underscoring the need for new approaches to improving disease prevention and management. In our study, we implemented a local-scale spatial clustering model and deciphered the genetic diversity of the bacteria in a small area of Benin where Buruli ulcer is endemic. Using 179 strain samples from West Africa, we conducted a phylogeographic analysis combining whole-genome sequencing with spatial scan statistics. The 8 distinct genotypes we identified were by no means randomly spread over the studied area. Instead, they were divided into 3 different geographic clusters, associated with landscape characteristics. Our results highlight the ability of M. ulcerans to evolve independently and differentially depending on location in a specific ecologic reservoir.


Assuntos
Úlcera de Buruli/epidemiologia , Mycobacterium ulcerans/isolamento & purificação , Benin/epidemiologia , Úlcera de Buruli/tratamento farmacológico , Úlcera de Buruli/microbiologia , DNA Bacteriano/análise , Reservatórios de Doenças , Genótipo , Humanos , Mycobacterium ulcerans/genética , Filogeografia , Microbiologia da Água
2.
Front Microbiol ; 14: 1161674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180249

RESUMO

The impact of human sewage on environmental and food contamination constitutes an important safety issue. Indeed, human sewage reflects the microbiome of the local population, and a variety of human viruses can be detected in wastewater samples. Being able to describe the diversity of viruses present in sewage will provide information on the health of the surrounding population health and will help to prevent further transmission. Metagenomic developments, allowing the description of all the different genomes present in a sample, are very promising tools for virome analysis. However, looking for human enteric viruses with short RNA genomes which are present at low concentrations is challenging. In this study we demonstrate the benefits of performing technical replicates to improve viral identification by increasing contig length, and the set-up of quality criteria to increase confidence in results. Our approach was able to effectively identify some virus sequences and successfully describe the viral diversity. The method yielded full genomes either for norovirus, enterovirus and rotavirus, even if, for these segmented genomes, combining genes remain a difficult issue. Developing reliable viromic methods is important as wastewater sample analysis provides an important tool to prevent further virus transmission by raising alerts in case of viral outbreaks or emergence.

3.
Front Microbiol ; 13: 889811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756003

RESUMO

Since the beginning of the Coronavirus Disease-19 (COVID-19) pandemic, multiple Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mutations have been reported and led to the emergence of variants of concern (VOC) with increased transmissibility, virulence or immune escape. In parallel, the observation of viral fecal shedding led to the quantification of SARS-CoV-2 genomes in wastewater, providing information about the dynamics of SARS-CoV-2 infections within a population including symptomatic and asymptomatic individuals. Here, we aimed to adapt a sequencing technique initially designed for clinical samples to apply it to the challenging and mixed wastewater matrix, and hence identify the circulation of VOC at the community level. Composite raw sewage sampled over 24 h in two wastewater-treatment plants (WWTPs) from a city in western France were collected weekly and SARS-CoV-2 quantified by RT-PCR. Samples collected between October 2020 and May 2021 were submitted to whole-genome sequencing (WGS) using the primers and protocol published by the ARTIC Network and a MinION Mk1C sequencer (Oxford Nanopore Technologies, Oxford, United Kingdom). The protocol was adapted to allow near-full genome coverage from sewage samples, starting from ∼5% to reach ∼90% at depth 30. This enabled us to detect multiple single-nucleotide variant (SNV) and assess the circulation of the SARS-CoV-2 VOC Alpha, Beta, Gamma, and Delta. Retrospective analysis of sewage samples shed light on the emergence of the Alpha VOC with detection of first co-occurring signature mutations in mid-November 2020 to reach predominance of this variant in early February 2021. In parallel, a mutation-specific qRT-PCR assay confirmed the spread of the Alpha VOC but detected it later than WGS. Altogether, these data show that SARS-CoV-2 sequencing in sewage can be used for early detection of an emerging VOC in a population and confirm its ability to track shifts in variant predominance.

4.
Front Microbiol ; 12: 770385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917052

RESUMO

Many recent pandemics have been recognized as zoonotic viral diseases. While their origins remain frequently unknown, environmental contamination may play an important role in emergence. Thus, being able to describe the viral diversity in environmental samples contributes to understand the key issues in zoonotic transmission. This work describes the use of a metagenomic approach to assess the diversity of eukaryotic RNA viruses in river clams and identify sequences from human or potentially zoonotic viruses. Clam samples collected over 2years were first screened for the presence of norovirus to verify human contamination. Selected samples were analyzed using metagenomics, including a capture of sequences from viral families infecting vertebrates (VirCapSeq-VERT) before Illumina NovaSeq sequencing. The bioinformatics analysis included pooling of data from triplicates, quality filtering, elimination of bacterial and host sequences, and a deduplication step before de novo assembly. After taxonomic assignment, the viral fraction represented 0.8-15% of reads with most sequences (68-87%) remaining un-assigned. Yet, several mammalian RNA viruses were identified. Contigs identified as belonging to the Astroviridae were the most abundant, with some nearly complete genomes of bastrovirus identified. Picobirnaviridae sequences were related to strains infecting bats, and few others to strains infecting humans or other hosts. Hepeviridae sequences were mostly related to strains detected in sponge samples but also strains from swine samples. For Caliciviridae and Picornaviridae, most of identified sequences were related to strains infecting bats, with few sequences close to human norovirus, picornavirus, and genogroup V hepatitis A virus. Despite a need to improve the sensitivity of our method, this study describes a large diversity of RNA virus sequences from clam samples. To describe all viral contaminants in this type of food, and being able to identify the host infected by viral sequences detected, may help to understand some zoonotic transmission events and alert health authorities of possible emergence.

5.
Virulence ; 12(1): 1438-1451, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34107844

RESUMO

Mycobacterium ulcerans is the causal agent of Buruli ulcer, a chronic infectious disease and the third most common mycobacterial disease worldwide. Without early treatment, M. ulcerans provokes massive skin ulcers, caused by the mycolactone toxin, its main virulence factor. However, spontaneous healing may occur in Buruli ulcer patients several months or years after the disease onset. We have shown, in an original mouse model, that bacterial load remains high and viable in spontaneously healed tissues, with a switch of M. ulcerans to low levels of mycolactone production, adapting its strategy to survive in such a hostile environment. This original model offers the possibility to investigate the regulation of mycolactone production, by using an RNA-seq strategy to study bacterial adaptation during mouse infection. Pathway analysis and characterization of the tissue environment showed that the bacillus adapted to its new environment by modifying its metabolic activity and switching nutrient sources. Thus, M. ulcerans ensures its survival in healing tissues by reducing its secondary metabolism, leading to an inhibition of mycolactone synthesis. These findings shed new light on mycolactone regulation and pave the way for new therapeutic strategies.


Assuntos
Úlcera de Buruli , Macrolídeos/metabolismo , Infecções por Mycobacterium , Mycobacterium ulcerans , Adaptação Biológica , Animais , Úlcera de Buruli/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Infecções por Mycobacterium/microbiologia , Mycobacterium ulcerans/genética
6.
PLoS Negl Trop Dis ; 15(12): e0010053, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962930

RESUMO

BACKGROUND: Buruli ulcer is a neglected tropical disease caused by Mycobacterium ulcerans, an environmental mycobacterium. Although transmission of M. ulcerans remains poorly understood, the main identified risk factor for acquiring Buruli ulcer is living in proximity of potentially contaminated water sources. Knowledge about the clinical features of Buruli ulcer and its physiopathology is increasing, but little is known about recurrence due to reinfection. METHODOLOGY/PRINCIPAL FINDINGS: We describe two patients with Buruli ulcer recurrence due to reinfection with M. ulcerans, as demonstrated by comparisons of DNA from the strains isolated at the time of the first diagnosis and at recurrence. Based on the spatial distribution of M. ulcerans genotypes in this region and a detailed study of the behavior of these two patients with respect to sources of water as well as water bodies and streams, we formulated hypotheses concerning the sites at which they may have been contaminated. CONCLUSIONS/SIGNIFICANCE: Second episodes of Buruli ulcer may occur through reinfection, relapse or a paradoxical reaction. We formally demonstrated that the recurrence in these two patients was due to reinfection. Based on the sites at which the patients reported engaging in activities relating to water, we were able to identify possible sites of contamination. Our findings indicate that the non-random distribution of M. ulcerans genotypes in this region may provide useful information about activities at risk.


Assuntos
Úlcera de Buruli/microbiologia , Mycobacterium ulcerans/genética , Reinfecção/microbiologia , Adulto , Benin , Criança , DNA Bacteriano/genética , Feminino , Genótipo , Humanos , Masculino , Mycobacterium ulcerans/classificação , Mycobacterium ulcerans/isolamento & purificação , Filogenia
7.
Int J Food Microbiol ; 323: 108588, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32200157

RESUMO

Human virus transmission through food consumption has been identified since many years and the international trade increases the risk of dissemination of viral pathogens. The development of metagenomic approach holds many promises for the surveillance of viruses in food and water. This work aimed to analyze norovirus diversity and to evaluate strain-dependent accumulation patterns in three oyster types by using a metagenomic approach. Different hexamer sets to prime cDNA were evaluated before capture-based approach to enhance virus reads recovery during deep sequencing. The study includes the use of technical replicates of artificially contaminated oysters and the analysis of multiple negatives controls. Results showed a clear impact of the hexamer set used for cDNA synthesis. A set of In-house designed (I-HD) hexamers, selected to lower mollusk amplification, gave promising results in terms of viral reads abundancy. However, the best correlation between CT values, thus concentrations, and number of reads was observed using random hexamers. Random hexamers also provided the highest numbers of reads and allowed the identification of sequence of different human enteric viruses. Regarding human norovirus, different genogroups and genotypes were identified among contigs longer than 500 bp. Two full genomes and six sequences longer than 3600 bases were obtained allowing a precise strain identification. The use of technical triplicates was found valuable to increase the chances to sequence viral strains present at low concentrations. Analyzing viral contamination in shellfish samples is quite challenging, however this work demonstrates that the recovery of full genome or long contigs, allowing clear identification of viral strains is possible.


Assuntos
Variação Genética , Metagenômica , Norovirus/genética , Ostreidae/virologia , Animais , Genoma Viral/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala
8.
Front Microbiol ; 10: 2394, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681246

RESUMO

Metagenomic sequencing is a promising method to determine the virus diversity in environmental samples such as sewage or shellfish. However, to identify the short RNA genomes of human enteric viruses among the large diversity of nucleic acids present in such complex matrices, method optimization is still needed. This work presents methodological developments focused on norovirus, a small ssRNA non-enveloped virus known as the major cause of human gastroenteritis worldwide and frequently present in human excreta and sewage. Different elution protocols were applied and Illumina MiSeq technology were used to study norovirus diversity. A double approach, agnostic deep sequencing and a capture-based approach (VirCapSeq-VERT) was used to identify norovirus in environmental samples. Family-specific viral contigs were classified and sorted by SLIM and final norovirus contigs were genotyped using the online Norovirus genotyping tool v2.0. From sewage samples, 14 norovirus genogroup I sequences were identified of which six were complete genomes. For norovirus genogroup II, nine sequences were identified and three of them comprised more than half of the genome. In oyster samples bioaccumulated with these sewage samples, only the use of an enrichment step during library preparation allowed successful identification of nine different sequences of norovirus genogroup I and four for genogroup II (>500 bp). This study demonstrates the importance of method development to increase virus recovery, and the interest of a capture-based approach to be able to identify viruses present at low concentrations.

9.
PLoS One ; 11(5): e0154609, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27171472

RESUMO

Targeted sequence capture is a promising technology which helps reduce costs for sequencing and genotyping numerous genomic regions in large sets of individuals. Bait sequences are designed to capture specific alleles previously discovered in parents or reference populations. We studied a set of 135 RILs originating from a cross between an emmer cultivar (Dic2) and a recent durum elite cultivar (Silur). Six thousand sequence baits were designed to target Dic2 vs. Silur polymorphisms discovered in a previous RNAseq study. These baits were exposed to genomic DNA of the RIL population. Eighty percent of the targeted SNPs were recovered, 65% of which were of high quality and coverage. The final high density genetic map consisted of more than 3,000 markers, whose genetic and physical mapping were consistent with those obtained with large arrays.


Assuntos
Alelos , Mapeamento Cromossômico , Técnicas de Genotipagem/métodos , Análise de Sequência de DNA/métodos , Triticum/genética , Mapeamento de Sequências Contíguas , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA