Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 17(6)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28910984

RESUMO

Succinic acid is a platform chemical that plays an important role as precursor for the synthesis of many valuable bio-based chemicals. Its microbial production from renewable resources has seen great developments, specially exploring the use of yeasts to overcome the limitations of using bacteria. The objective of the present work was to screen for succinate-producing isolates, using a yeast collection with different origins and characteristics. Four strains were chosen, two as promising succinic acid producers, in comparison with two low producers. Genome of these isolates was analysed, and differences were found mainly in genes SDH1, SDH3, MDH1 and the transcription factor HAP4, regarding the number of single nucleotide polymorphisms and the gene copy-number profile. Real-time PCR was used to study gene expression of 10 selected genes involved in the metabolic pathway of succinic acid production. Results show that for the non-producing strain, higher expression of genes SDH1, SDH2, ADH1, ADH3, IDH1 and HAP4 was detected, together with lower expression of ADR1 transcription factor, in comparison with the best producer strain. This is the first study showing the capacity of natural yeast isolates to produce high amounts of succinic acid, together with the understanding of the key factors associated, giving clues for strain improvement.


Assuntos
Perfilação da Expressão Gênica , Genômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Dosagem de Genes , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Proteínas de Saccharomyces cerevisiae/genética
2.
FEMS Yeast Res ; 15(8)2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26500234

RESUMO

We have functionally characterized the four Saccharomyces cerevisiae (Sc) Jen1 homologues of Debaryomyces hansenii (Dh) by heterologous expression in S. cerevisiae. Debaryomyces hansenii cells display mediated transport for the uptake of lactate, acetate, succinate and malate. DHJEN genes expression was detected by RT-PCR in all carbon sources assayed, namely lactate, succinate, citrate, glycerol and glucose. The heterologous expression in the S. cerevisiae W303-1A jen1Δ ady2Δ strain demonstrated that the D. hansenii JEN genes encode four carboxylate transporters. DH27 gene encodes an acetate transporter (Km 0.94 ± 0.17 mM; Vmax 0.43 ± 0.03 nmol s(-1) mg(-1)), DH17 encodes a malate transporter (Km 0.27 ± 0.04 mM; Vmax 0.11 ± 0.01 nmol s(-1) mg(-1)) and both DH18 and DH24 encode succinate transporters with the following kinetic parameters, respectively, Km 0.31 ± 0.06 mM; Vmax 0.83 ± 0.04 nmol s(-1) mg(-1)and Km 0.16 ± 0.02 mM; Vmax 0.19 ± 0.02 nmol s(-1) mg(-1). Surprisingly, no lactate transporter was found, although D. hansenii presents a mediated transport for this acid. This work advanced the current knowledge on yeast carboxylate transporters by characterizing four new plasma membrane transporters in D. hansenii.


Assuntos
Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Transporte Biológico , Ácidos Carboxílicos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
3.
Yeast ; 29(10): 419-23, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23018625

RESUMO

Gap repair is a fast and efficient method for assembling recombinant DNA molecules in Saccharomyces cerevisiae. This method produces a circular DNA molecule by homologous recombination between two or more linear DNA fragments, one of which is typically a vector carrying replicative sequences and a selective marker. This technique avoids laborious and costly in vitro purification and ligation of DNA. The DNA repair machinery can also close and ligate the linear vector by mechanisms other than homologous recombination, resulting in an empty vector. The frequency of these unwanted events can be lowered by removing the 5'-phosphate groups using phosphatase, which is the standard method used for in vitro ligation. However, phosphatase treatment is less effective for gap repair cloning than for in vitro ligation, presumably due to the ability of the S. cerevisiae DNA repair machinery to efficiently repair the missing phosphate group to allow religation. We have developed a more efficient method to prevent vector religation, based on treatment of the vector fragment with Taq DNA polymerase and dATP. This procedure prevents vector recircularization almost completely, facilitating the screening for true recombinant clones.


Assuntos
Clonagem Molecular/métodos , Reparo do DNA/genética , DNA Circular/genética , DNA Recombinante/genética , Saccharomyces cerevisiae/genética , Taq Polimerase/metabolismo , DNA Fúngico/genética , Vetores Genéticos , Yarrowia/genética
4.
FEMS Yeast Res ; 12(3): 375-81, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22260735

RESUMO

We aimed to manipulate the metabolism of Saccharomyces cerevisiae to produce lactic acid and search for the potential influence of acid transport across the plasma membrane in this process. Saccharomyces cerevisiae W303-1A is able to use l-lactic acid but its production in our laboratory has not previously been detected. When the l-LDH gene from Lactobacillus casei was expressed in S. cerevisiae W303-1A and in the isogenic mutants jen1∆, ady2∆ and jen1∆ ady2∆, all strains were able to produce lactic acid, but higher titres were achieved in the mutant strains. In strains constitutively expressing both LDH and JEN1 or ADY2, a higher external lactic acid concentration was found when glucose was present in the medium, but when glucose was exhausted, its consumption was more pronounced. These results demonstrate that expression of monocarboxylate permeases influences lactic acid production. Ady2 has been previously characterized as an acetate permease but our results demonstrated its additional role in lactate uptake. Overall, we demonstrate that monocarboxylate transporters Jen1 and Ady2 are modulators of lactic acid production and may well be used to manipulate lactic acid export in yeast cells.


Assuntos
Regulação Fúngica da Expressão Gênica , Ácido Láctico/biossíntese , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Simportadores/metabolismo , Membrana Celular/metabolismo , Engenharia Genética/métodos , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Lacticaseibacillus casei/enzimologia , Lacticaseibacillus casei/genética , Proteínas de Membrana Transportadoras/genética , Transportadores de Ácidos Monocarboxílicos/genética , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Simportadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA