Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 41(11): e108882, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35298090

RESUMO

Biomolecular condensation of the neuronal microtubule-associated protein Tau (MAPT) can be induced by coacervation with polyanions like RNA, or by molecular crowding. Tau condensates have been linked to both functional microtubule binding and pathological aggregation in neurodegenerative diseases. We find that molecular crowding and coacervation with RNA, two conditions likely coexisting in the cytosol, synergize to enable Tau condensation at physiological buffer conditions and to produce condensates with a strong affinity to charged surfaces. During condensate-mediated microtubule polymerization, their synergy enhances bundling and spatial arrangement of microtubules. We further show that different Tau condensates efficiently induce pathological Tau aggregates in cells, including accumulations at the nuclear envelope that correlate with nucleocytoplasmic transport deficits. Fluorescent lifetime imaging reveals different molecular packing densities of Tau in cellular accumulations and a condensate-like density for nuclear-envelope Tau. These findings suggest that a complex interplay between interaction partners, post-translational modifications, and molecular crowding regulates the formation and function of Tau condensates. Conditions leading to prolonged existence of Tau condensates may induce the formation of seeding-competent Tau and lead to distinct cellular Tau accumulations.


Assuntos
Doenças Neurodegenerativas , RNA , Humanos , Microtúbulos/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Ligação Proteica , RNA/metabolismo , Proteínas tau/metabolismo
2.
J Biol Chem ; 300(6): 107404, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782204

RESUMO

Infectious diseases are a significant cause of death, and recent studies estimate that common bacterial infectious diseases were responsible for 13.6% of all global deaths in 2019. Among the most significant bacterial pathogens is Staphylococcus aureus, accounting for more than 1.1 million deaths worldwide in 2019. Vitamin biosynthesis has been proposed as a promising target for antibacterial therapy. Here, we investigated the biochemical, structural, and dynamic properties of the enzyme complex responsible for vitamin B6 (pyridoxal 5-phosphate, PLP) biosynthesis in S. aureus, which comprises enzymes SaPdx1 and SaPdx2. The crystal structure of the 24-mer complex of SaPdx1-SaPdx2 enzymes indicated that the S. aureus PLP synthase complex forms a highly dynamic assembly with transient interaction between the enzymes. Solution scattering data indicated that SaPdx2 typically binds to SaPdx1 at a substoichiometric ratio. We propose a structure-based view of the PLP synthesis mechanism initiated with the assembly of SaPLP synthase complex that proceeds in a highly dynamic interaction between Pdx1 and Pdx2. This interface interaction can be further explored as a potentially druggable site for the design of new antibiotics.


Assuntos
Proteínas de Bactérias , Fosfato de Piridoxal , Staphylococcus aureus , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Conformação Proteica , Ligação Proteica
3.
J Biol Chem ; 298(12): 102631, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273579

RESUMO

In higher plants, long-distance RNA transport via the phloem is crucial for communication between distant plant tissues to align development with stress responses and reproduction. Several recent studies suggest that specific RNAs are among the potential long-distance information transmitters. However, it is yet not well understood how these RNAs enter the phloem stream, how they are transported, and how they are released at their destination. It was proposed that phloem RNA-binding proteins facilitate RNA translocation. In the present study, we characterized two orthologs of the phloem-associated RNA chaperone-like (PARCL) protein from Arabidopsis thaliana and Brassica napus at functional and structural levels. Microscale thermophoresis showed that these phloem-abundant proteins can bind a broad spectrum of RNAs and show RNA chaperone activity in FRET-based in vitro assays. Our SAXS experiments revealed a high degree of disorder, typical for RNA-binding proteins. In agroinfiltrated tobacco plants, eYFP-PARCL proteins mainly accumulated in nuclei and nucleoli and formed cytosolic and nuclear condensates. We found that formation of these condensates was impaired by tyrosine-to-glutamate mutations in the predicted prion-like domain (PLD), while C-terminal serine-to-glutamate mutations did not affect condensation but reduced RNA binding and chaperone activity. Furthermore, our in vitro experiments confirmed phase separation of PARCL and colocalization of RNA with the condensates, while mutation as well as phosphorylation of the PLD reduced phase separation. Together, our results suggest that RNA binding and condensate formation of PARCL can be regulated independently by modification of the C-terminus and/or the PLD.


Assuntos
Arabidopsis , Proteínas Intrinsicamente Desordenadas , Proteínas de Plantas , Proteínas de Ligação a RNA , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Brassica napus , Nicotiana , RNA de Plantas
4.
Soft Matter ; 19(7): 1363-1372, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36723049

RESUMO

Alpha-Synuclein (ASN), a presynaptic protein, has been widely reported to form amyloid-rich hydrogel clusters through liquid-liquid phase separation (LLPS) and liquid-to-solid transition. However, in-depth investigations about the parameters that influence the assembling kinetics, structures, and physicochemical properties of intermediate ASN assemblies are still missing. Therefore, we monitored for the first time the assembling and ordering kinetics of ASN by polarized/depolarized light scattering (DLS/DDLS) under the effect of ionic strength and a pulsed electric field (EF), followed by characterizing the resultant ASN assemblies applying thermostability assays, fluorescence/autofluorescence assays, and TEM. The underlying molecular mechanism was discussed based on experimental evidence. Results showed that in the presence of 150-250 mM NaCl, monomeric ASN is highly soluble in a temperature range of 20-70 °C and could form dissoluble liquid dense clusters via LLPS in crowded environments, while the ionic strength of 50 mM NaCl could trigger conformational changes and attractive diffusion interactions of ASN monomers towards the formation of mesoscopic assemblies with ordered internal structures and high thermostabilities. We discovered that pulsed EFs and ionic strength can modulate effectively the thermostability and autofluorescence effect of mesoscopic ASN assemblies by tuning the molecular interaction and arrangement. Remarkably, a specie of thermostable ASN assemblies showing a maximum autofluorescence emission at approx. 700 nm was synthesized applying 250 mM NaCl and the distinct pulsed EF, which could be attributed to the increase of ß-sheet structures and hydrogen-bond networks within ASN assemblies. In summary, the presented data provide novel insights for modulating the growth kinetics, structures, and physicochemical properties of bio-macromolecular mesoscopic assemblies.


Assuntos
Cloreto de Sódio , alfa-Sinucleína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Amiloide/química , Cinética , Cloreto de Sódio/química , Fenômenos Químicos
5.
Traffic ; 21(2): 220-230, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31664760

RESUMO

Liquid-liquid phase separation (LLPS) in cells is known as a complex physicochemical process causing the formation of membrane-less organelles (MLOs). Cells have well-defined different membrane-surrounded organelles like mitochondria, endoplasmic reticulum, lysosomes, peroxisomes, etc., however, on demand they can create MLOs as stress granules, nucleoli and P bodies to cover vital functions and regulatory activities. However, the mechanism of intracellular molecule assembly into functional compartments within a living cell remains till now not fully understood. in vitro and in vivo investigations unveiled that MLOs emerge after preceding liquid-liquid, liquid-gel, liquid-semi-crystalline, or liquid-crystalline phase separations. Liquid-liquid and liquid-gel MLOs form the majority of cellular phase separation events, while the occurrence of micro-sized crystals in cells was only rarely observed, however can be considered as a result of a preceding protein phase separation event. In vivo, also known and termed as in cellulo crystals, are reported since 1853. In some cases, they have been linked to vital cellular functions, such as storage and detoxification. However, the occurrence of in cellulo crystals is also associated to diseases like cataract, hemoglobin C diseases, etc. Therefore, better knowledge about the involved molecular processes will support drug discovery investigations to cure diseases related to in cellulo crystallization. We summarize physical and chemical determinants known today required for phase separation initiation and formation and in cellulo crystal growth. In recent years it has been demonstrated that LLPS plays a crucial role in cell compartmentalization and formation of MLOs. Here we discuss potential mechanisms and potential crowding agents involved in protein phase separation and in cellulo crystallization.


Assuntos
Células , Extração Líquido-Líquido , Proteínas , Células/química , Cristalização , Humanos , Organelas/química , Proteínas/química
6.
J Struct Biol ; 213(4): 107796, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34508858

RESUMO

Ubiquitin fold modifier 1 (UFM1) is an ubiquitin-like protein (Ubl) involved especially in endoplasmic stress response. Activation occurs via a three-step mechanism like other Ubls. Data obtained reveal that UFM1 regulates the oligomeric state of ubiquitin activating enzyme 5 (UBA5) to initiate the activation step. Mixtures of homodimers and heterotrimers are observed in solution at the equilibrium state, demonstrating that the UBA5-UFM1 complex undergoes several concentration dependent oligomeric translational states to form a final functional complex. The oligomerization state of unbound UBA5 is also concentration dependent and shifts from the monomeric to the dimeric state. Data describing different oligomeric states are complemented with binding studies that reveal a negative cooperativity for the complex formation and thereby provide more detailed insights into the complex formation mechanism.


Assuntos
Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Conformação Proteica , Multimerização Proteica , Proteínas/química , Enzimas Ativadoras de Ubiquitina/química , Humanos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteínas/genética , Proteínas/metabolismo , Espalhamento a Baixo Ângulo , Espectrometria de Fluorescência , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Difração de Raios X
7.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502365

RESUMO

Plant U-box armadillo repeat (PUB-ARM) ubiquitin (Ub) ligases have important functions in plant defense through the ubiquitination of target proteins. Defense against pathogens involves vesicle trafficking and the formation of extracellular vesicles. The PUB-ARM protein SENESCENCE ASSOCIATED UBIQUITIN E3 LIGASE1 (SAUL1) can form patches at the plasma membrane related to tethering multi-vesicular bodies (MVBs) to the plasma membrane. We uncovered the structure of a full-length plant ubiquitin ligase and the structural requirements of SAUL1, which are crucial for its function in patch formation. We resolved the structure of SAUL1 monomers by small-angle X-ray scattering (SAXS). The SAUL1 model showed that SAUL1 consists of two domains: a domain containing the N-terminal U-box and armadillo (ARM) repeats and the C-terminal ARM repeat domain, which includes a positively charged groove. We showed that all C-terminal ARM repeats are essential for patch formation and that this function requires arginine residue at position 736. By applying SAXS to polydisperse SAUL1 systems, the oligomerization of SAUL1 is detectable, with SAUL1 tetramers being the most prominent oligomers at higher concentrations. The oligomerization domain consists of the N-terminal U-box and some N-terminal ARM repeats. Deleting the U-box resulted in the promotion of the SAUL1 tethering function. Our findings indicate that structural changes in SAUL1 may be fundamental to its function in forming patches at the plasma membrane.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/ultraestrutura , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Domínios Proteicos/genética , Transporte Proteico , Espalhamento a Baixo Ângulo , Ubiquitina/metabolismo , Ubiquitinação , Difração de Raios X/métodos
8.
Int J Cancer ; 146(6): 1618-1630, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31291468

RESUMO

MALT1 is a key mediator of NF-κB signaling and a main driver of B-cell lymphomas. Remarkably, MALT1 is expressed in the majority of pancreatic ductal adenocarcinomas (PDACs) as well, but absent from normal exocrine pancreatic tissue. Following, MALT1 shows off to be a specific target in cancer cells of PDAC without affecting regular pancreatic cells. Therefore, we studied the impact of pharmacological MALT1 inhibition in pancreatic cancer and showed promising effects on tumor progression. Mepazine (Mep), a phenothiazine derivative, is a known potent MALT1 inhibitor. Newly, we described that biperiden (Bip) is a potent MALT1 inhibitor with even less pharmacological side effects. Thus, Bip is a promising drug leading to reduced proliferation and increased apoptosis in PDAC cells in vitro and in vivo. By compromising MALT1 activity, nuclear translocation of c-Rel is prevented. c-Rel is critical for NF-κB-dependent inhibition of apoptosis. Hence, off-label use of Bip or Mep represents a promising new therapeutic approach to PDAC treatment. Regularly, the Anticholinergicum Bip is used to treat neurological side effects of Phenothiazines, like extrapyramidal symptoms.


Assuntos
Biperideno/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Fenotiazinas/farmacologia , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Knockout , Modelos Moleculares , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/biossíntese , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/química , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , NF-kappa B/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-rel/metabolismo , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Soft Matter ; 16(37): 8547-8553, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32909579

RESUMO

The time-resolved dynamic assembly and the structures of protein liquid dense clusters (LDCs) were analyzed under pulsed electric fields (EFs) applying complementary polarized and depolarized dynamic light scattering (DLS/DDLS), optical microscopy, and transmission electron microscopy (TEM). We discovered that pulsed EFs substantially affected overall morphologies and spatial distributions of protein LDCs and microcrystals, and affected the phase diagrams of LDC formation, including enabling protein solutions to overcome the diffusive flux energy barrier to phase separate. Data obtained from DLS/DDLS and TEM showed that LDCs appeared as precursors of protein crystal nuclei, followed by the formation of ordered structures within LDCs applying a pulsed EF. Experimental results of circular dichroism spectroscopy provided evidence that the protein secondary structure content is changing under EFs, which may consequently modulate protein-protein interactions, and the morphology, dimensions, and internal structure of LDCs. Data and results obtained unveil options to modulate the phase diagram of crystallization, and physical morphologies of protein LDCs and microcrystals by irradiating sample suspensions with pulsed EFs.


Assuntos
Proteínas , Cristalização , Difusão Dinâmica da Luz , Microscopia Eletrônica de Transmissão , Estrutura Secundária de Proteína
10.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825141

RESUMO

Plasmodium species are protozoan parasites causing the deadly malaria disease. They have developed effective resistance mechanisms against most antimalarial medication, causing an urgent need to identify new antimalarial drug targets. Ideally, new drugs would be generated to specifically target the parasite with minimal or no toxicity to humans, requiring these drug targets to be distinctly different from the host's metabolic processes or even absent in the host. In this context, the essential presence of vitamin B6 biosynthesis enzymes in Plasmodium, the pyridoxal phosphate (PLP) biosynthesis enzyme complex, and its absence in humans is recognized as a potential drug target. To characterize the PLP enzyme complex in terms of initial drug discovery investigations, we performed structural analysis of the Plasmodium vivax PLP synthase domain (Pdx1), glutaminase domain (Pdx2), and Pdx1-Pdx2 (Pdx) complex (PLP synthase complex) by utilizing complementary bioanalytical techniques, such as dynamic light scattering (DLS), X-ray solution scattering (SAXS), and electron microscopy (EM). Our investigations revealed a dodecameric Pdx1 and a monodispersed Pdx complex. Pdx2 was identified in monomeric and in different oligomeric states in solution. Interestingly, mixing oligomeric and polydisperse Pdx2 with dodecameric monodisperse Pdx1 resulted in a monodispersed Pdx complex. SAXS measurements revealed the low-resolution dodecameric structure of Pdx1, different oligomeric structures for Pdx2, and a ring-shaped dodecameric Pdx1 decorated with Pdx2, forming a heteromeric 24-meric Pdx complex.


Assuntos
Glutaminase/química , Simulação de Dinâmica Molecular , Plasmodium vivax/enzimologia , Multimerização Proteica , Proteínas de Protozoários/química , Sítios de Ligação , Glutaminase/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , Fosfato de Piridoxal/biossíntese , Vitamina B 6/biossíntese
11.
Phys Chem Chem Phys ; 21(38): 21213-21222, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31418759

RESUMO

Trivalent actinides and their lanthanide homologues are being scrutinized for their potential health risk when ingested as a result of a range of industrial activities such as mining. Importantly, these ions are known to exhibit high affinity towards calmodulin (CaM). In case of their inadvertent uptake, the holoproteins that are occupied by these cations may block signal transduction pathways or increase the concentration of these ions in intact cells, which could lead to accumulation in human organs. Accordingly, this investigation employed spectroscopy, computational chemistry, calorimetry, and biochemistry to study the results of metal ion substitution on the protein structure, enzymatic activity and chemo- and cytotoxicity of An3+/Ln3+ ions. As will be demonstrated herein, our data confirm the higher affinity of Cm3+ and Eu3+ compared to Ca2+ to all 4 binding sites of CaM, with one site differing from the remaining three. This higher-affinity site will complex Eu3+ in an exothermic fashion; in contrast, ion binding to the three lower-affinity EF-hands was found to be endothermic. The overall endothermic binding process is ascribed to the loss of the hydration shells of the trivalent ions upon protein binding. These findings are supported by extensive quantum chemical calculations of full holo-CaM, which were performed at the MP2 level using the fragment molecular orbital method. The exceptional binding site (EF-hand 3) features fewer negatively charged residues compared to the other EF-hands, thereby allowing Eu3+ and Cm3+ to carry one or two additional waters compared to Ca2+-CaM, while also causing the structure of Cm3+/Eu3+-CaM to become slightly disordered. Moreover, the enzymatic activity decreases somewhat in comparison to Ca2+-CaM. By utilizing a combination of techniques, we were able to generate a comprehensive picture of the CaM-actinide/lanthanide system from the molecular level to its functional impact. Such knowledge could also be applied to other metal-binding proteins.


Assuntos
Calmodulina/química , Calmodulina/metabolismo , Cúrio/química , Európio/química , Sítios de Ligação , Cálcio/química , Cátions , Simulação de Dinâmica Molecular , Conformação Proteica , Água
12.
Biochem Biophys Res Commun ; 505(4): 979-984, 2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30297111

RESUMO

The notoriety of parasitic nematode survival is directly related to chronic pathogenicity, which is evident in human lymphatic filariasis. It is a disease of poverty which causes severe disability affecting more than 120 million people worldwide. These nematodes down-regulate host immune system through a myriad of strategies that includes secretion of antioxidant and detoxification enzymes like glutathione-S-transferases (GSTs). Earlier studies have shown Wuchereria bancrofti GST to be a potential therapeutic target. Parasite GSTs catalyse the conjugation of glutathione to xenobiotic and other endogenous electrophiles and are essential for their long-term survival in lymph tissues. Hence, the crystal structure of WbGST along with its cofactor GSH at 2.3 Šresolution was determined. Structural comparisons against host GST reveal distinct differences in the substrate binding sites. The parasite xenobiotic binding site is more substrate/solvent accessible. The structure also suggests the presence of putative non-catalytic binding sites that may permit sequestration of endogenous and exogenous ligands. The structure of WbGST also provides a case for the role of the π-cation interaction in stabilizing catalytic Tyr compared to stabilization interactions described for other GSTs. Hence, the obtained information regarding crucial differences in the active sites will support future design of parasite specific inhibitors. Further, the study also evaluates the inhibition of WbGST and its variants by antifilarial diethylcarbamazine through kinetic assays.


Assuntos
Filariose Linfática/tratamento farmacológico , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Wuchereria bancrofti/enzimologia , Animais , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Dietilcarbamazina/farmacologia , Filariose Linfática/metabolismo , Glutationa Transferase/antagonistas & inibidores , Humanos , Cinética , Modelos Moleculares , Wuchereria bancrofti/efeitos dos fármacos
13.
J Synchrotron Radiat ; 25(Pt 2): 361-372, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488914

RESUMO

Small-angle X-ray scattering (SAXS) analysis of biomolecules is increasingly common with a constantly high demand for comprehensive and efficient sample quality control prior to SAXS experiments. As monodisperse sample suspensions are desirable for SAXS experiments, latest dynamic light scattering (DLS) techniques are most suited to obtain non-invasive and rapid information about the particle size distribution of molecules in solution. A multi-receiver four-channel DLS system was designed and adapted at the BioSAXS endstation of the EMBL beamline P12 at PETRA III (DESY, Hamburg, Germany). The system allows the collection of DLS data within round-shaped sample capillaries used at beamline P12. Data obtained provide information about the hydrodynamic radius of biological particles in solution and dispersity of the solution. DLS data can be collected directly prior to and during an X-ray exposure. To match the short X-ray exposure times of around 1 s for 20 exposures at P12, the DLS data collection periods that have been used up to now of 20 s or commonly more were substantially reduced, using a novel multi-channel approach collecting DLS data sets in the SAXS sample capillary at four different neighbouring sample volume positions in parallel. The setup allows online scoring of sample solutions applied for SAXS experiments, supports SAXS data evaluation and for example indicates local inhomogeneities in a sample solution in a time-efficient manner. Biological macromolecules with different molecular weights were applied to test the system and obtain information about the performance. All measured hydrodynamic radii are in good agreement with DLS results obtained by employing a standard cuvette instrument. Moreover, applying the new multi-channel DLS setup, a reliable radius determination of sample solutions in flow, at flow rates normally used for size-exclusion chromatography-SAXS experiments, and at higher flow rates, was verified as well. This study also shows and confirms that the newly designed sample compartment with attached DLS instrumentation does not disturb SAXS measurements.


Assuntos
Espalhamento a Baixo Ângulo , Cromatografia em Gel , Difusão Dinâmica da Luz
14.
PLoS Pathog ; 12(6): e1005635, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27300328

RESUMO

Andes virus (ANDV) is a human-pathogenic hantavirus. Hantaviruses presumably initiate their mRNA synthesis by using cap structures derived from host cell mRNAs, a mechanism called cap-snatching. A signature for a cap-snatching endonuclease is present in the N terminus of hantavirus L proteins. In this study, we aimed to solve the atomic structure of the ANDV endonuclease and characterize its biochemical features. However, the wild-type protein was refractory to expression in Escherichia coli, presumably due to toxic enzyme activity. To circumvent this problem, we introduced attenuating mutations in the domain that were previously shown to enhance L protein expression in mammalian cells. Using this approach, 13 mutant proteins encompassing ANDV L protein residues 1-200 were successfully expressed and purified. Protein stability and nuclease activity of the mutants was analyzed and the crystal structure of one mutant was solved to a resolution of 2.4 Å. Shape in solution was determined by small angle X-ray scattering. The ANDV endonuclease showed structural similarities to related enzymes of orthobunya-, arena-, and orthomyxoviruses, but also differences such as elongated shape and positively charged patches surrounding the active site. The enzyme was dependent on manganese, which is bound to the active site, most efficiently cleaved single-stranded RNA substrates, did not cleave DNA, and could be inhibited by known endonuclease inhibitors. The atomic structure in conjunction with stability and activity data for the 13 mutant enzymes facilitated inference of structure-function relationships in the protein. In conclusion, we solved the structure of a hantavirus cap-snatching endonuclease, elucidated its catalytic properties, and present a highly active mutant form, which allows for inhibitor screening.


Assuntos
Endonucleases/química , Endonucleases/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Orthohantavírus/química , Orthohantavírus/enzimologia , Conformação Proteica , Estabilidade Proteica , Relação Estrutura-Atividade
15.
PLoS Pathog ; 12(6): e1005660, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27300509

RESUMO

Yersinia outer protein M (YopM) is a crucial immunosuppressive effector of the plaque agent Yersinia pestis and other pathogenic Yersinia species. YopM enters the nucleus of host cells but neither the mechanisms governing its nucleocytoplasmic shuttling nor its intranuclear activities are known. Here we identify the DEAD-box helicase 3 (DDX3) as a novel interaction partner of Y. enterocolitica YopM and present the three-dimensional structure of a YopM:DDX3 complex. Knockdown of DDX3 or inhibition of the exportin chromosomal maintenance 1 (CRM1) increased the nuclear level of YopM suggesting that YopM exploits DDX3 to exit the nucleus via the CRM1 export pathway. Increased nuclear YopM levels caused enhanced phosphorylation of Ribosomal S6 Kinase 1 (RSK1) in the nucleus. In Y. enterocolitica infected primary human macrophages YopM increased the level of Interleukin-10 (IL-10) mRNA and this effect required interaction of YopM with RSK and was enhanced by blocking YopM's nuclear export. We propose that the DDX3/CRM1 mediated nucleocytoplasmic shuttling of YopM determines the extent of phosphorylation of RSK in the nucleus to control transcription of immunosuppressive cytokines.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/biossíntese , Yersiniose/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Western Blotting , Linhagem Celular , Núcleo Celular/metabolismo , Cristalografia por Raios X , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/imunologia , Imunofluorescência , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Parasita/fisiologia , Humanos , Tolerância Imunológica/fisiologia , Imunoprecipitação , Macrófagos/microbiologia , Espectrometria de Massas , Microscopia Confocal , Reação em Cadeia da Polimerase , Transporte Proteico/fisiologia , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo , Yersiniose/metabolismo , Yersinia enterocolitica
16.
Eur Biophys J ; 46(1): 77-89, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27270294

RESUMO

The formation of stable and functional surface layers (S-layers) via self-assembly of surface-layer proteins on the cell surface is a dynamic and complex process. S-layers facilitate a number of important biological functions, e.g., providing protection and mediating selective exchange of molecules and thereby functioning as molecular sieves. Furthermore, S-layers selectively bind several metal ions including uranium, palladium, gold, and europium, some of them with high affinity. Most current research on surface layers focuses on investigating crystalline arrays of protein subunits in Archaea and bacteria. In this work, several complementary analytical techniques and methods have been applied to examine structure-function relationships and dynamics for assembly of S-layer protein slp-B53 from Lysinibacillus sphaericus: (1) The secondary structure of the S-layer protein was analyzed by circular dichroism spectroscopy; (2) Small-angle X-ray scattering was applied to gain insights into the three-dimensional structure in solution; (3) The interaction with bivalent cations was followed by differential scanning calorimetry; (4) The dynamics and time-dependent assembly of S-layers were followed by applying dynamic light scattering; (5) The two-dimensional structure of the paracrystalline S-layer lattice was examined by atomic force microscopy. The data obtained provide essential structural insights into the mechanism of S-layer self-assembly, particularly with respect to binding of bivalent cations, i.e., Mg2+ and Ca2+. Furthermore, the results obtained highlight potential applications of S-layers in the fields of micromaterials and nanobiotechnology by providing engineered or individual symmetric thin protein layers, e.g., for protective, antimicrobial, or otherwise functionalized surfaces.


Assuntos
Bacillaceae , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Cátions Bivalentes/farmacologia , Modelos Moleculares , Estabilidade Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína
17.
J Biol Chem ; 290(22): 14154-65, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25878249

RESUMO

Elastase-like enzymes are involved in important diseases such as acute pancreatitis, chronic inflammatory lung diseases, and cancer. Structural insights into their interaction with specific inhibitors will contribute to the development of novel anti-elastase compounds that resist rapid oxidation and proteolysis. Proteinaceous Kunitz-type inhibitors homologous to the bovine pancreatic trypsin inhibitor (BPTI) provide a suitable scaffold, but the structural aspects of their interaction with elastase-like enzymes have not been elucidated. Here, we increased the selectivity of ShPI-1, a versatile serine protease inhibitor from the sea anemone Stichodactyla helianthus with high biomedical and biotechnological potential, toward elastase-like enzymes by substitution of the P1 residue (Lys(13)) with leucine. The variant (rShPI-1/K13L) exhibits a novel anti-porcine pancreatic elastase (PPE) activity together with a significantly improved inhibition of human neuthrophil elastase and chymotrypsin. The crystal structure of the PPE·rShPI-1/K13L complex determined at 2.0 Å resolution provided the first details of the canonical interaction between a BPTI-Kunitz-type domain and elastase-like enzymes. In addition to the essential impact of the variant P1 residue for complex stability, the interface is improved by increased contributions of the primary and secondary binding loop as compared with similar trypsin and chymotrypsin complexes. A comparison of the interaction network with elastase complexes of canonical inhibitors from the chelonian in family supports a key role of the P3 site in ShPI-1 in directing its selectivity against pancreatic and neutrophil elastases. Our results provide the structural basis for site-specific mutagenesis to further improve the binding affinity and/or direct the selectivity of BPTI-Kunitz-type inhibitors toward elastase-like enzymes.


Assuntos
Elastase Pancreática/química , Animais , Aprotinina/química , Bovinos , Quimotripsina/química , Clonagem Molecular , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Inflamação , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Serina Endopeptidases/química , Serina Proteases/química , Inibidores de Serina Proteinase/química , Suínos , Tripsina/química
18.
J Neurochem ; 137(1): 88-100, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26710111

RESUMO

Alzheimer's disease is a common neurodegenerative, progressive, and fatal disorder. Generation and deposition of amyloid beta (Aß) peptides associate with its pathogenesis and small soluble Aß oligomers show the most pronounced neurotoxic effects and correlate with disease initiation and progression. Recent findings showed that Aß oligomers bind to the cellular prion protein (PrP(C) ) eliciting neurotoxic effects. The role of exosomes, small extracellular vesicles of endosomal origin, in Alzheimer's disease is only poorly understood. Besides serving as disease biomarkers they may promote Aß plaque formation, decrease Aß-mediated synaptotoxicity, and enhance Aß clearance. Here, we explore how exosomal PrP(C) connects to protective functions attributed to exosomes in Alzheimer's disease. To achieve this, we generated a mouse neuroblastoma PrP(C) knockout cell line using transcription activator-like effector nucleases. Using these, as well as SH-SY5Y human neuroblastoma cells, we show that PrP(C) is highly enriched on exosomes and that exosomes bind amyloid beta via PrP(C) . Exosomes showed highest binding affinity for dimeric, pentameric, and oligomeric Aß species. Thioflavin T assays revealed that exosomal PrP(C) accelerates fibrillization of amyloid beta, thereby reducing neurotoxic effects imparted by oligomeric Aß. Our study provides further evidence for a protective role of exosomes in Aß-mediated neurodegeneration and highlights the importance of exosomal PrP(C) in molecular mechanisms of Alzheimer's disease. We show that the prion protein (PrP(C) ) on exosomes captures neurotoxic species of amyloid beta (Aß) promoting its fibrillization. Our study provides evidence for a protective role of exosomes in Alzheimer`s disease and suggests that, depending on its membrane topology, PrP(C) holds a dual function: when expressed at the neuronal surface it acts as receptor for Aß leading to neurotoxic signaling, whereas it detoxifies Aß when present on exosomes. This provides further support for key roles of PrP(C) in Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Exossomos/fisiologia , Proteínas PrPC/fisiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Camundongos , Proteínas de Neoplasias/metabolismo , Neuroblastoma/patologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Solubilidade , Transfecção
19.
Proteome Sci ; 14: 1, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26770072

RESUMO

BACKGROUND: Snake venom is a source of many pharmacologically important molecules. Agkistrodon bilineatus commonly known as Cantil, is spread over Central America particularly in Mexico and Costa Rica. From the venom of Agkistrodon bilineatus we have isolated and characterised six hypotensive peptides, and two bradykinin inhibitor peptides. The IC-50 value of four synthesized peptides was studied, towards angiotensin converting enzyme, in order to study the structure-function relationship of these peptides. RESULTS: The purification of the peptides was carried out by size exclusion chromatography, followed by reverse phase chromatography. Sequences of all peptides were determined applying MALDI-TOF/TOF mass spectrometry. These hypotensive peptides bear homology to bradykinin potentiating peptides and venom vasodilator peptide. The peptide with m/z 1355.53 (M + H)(+1), and the corresponding sequence ZQWAQGRAPHPP, we identified for the first time. A precursor protein containing a fragment of this peptide was reported at genome level, (Uniprot ID P68515), in Bothrops insularis venom gland. These proline rich hypotensive peptides or bradykinin potentiating peptides are usually present in the venom of Crotalinae, and exhibit specificity in binding to the C domain of somatic angiotensin converting enzyme. Four of these hypotensive peptides, were selected and synthesized to obtain the required quantity to study their IC50 values in complex with the angiotensin converting enzyme. The peptide with the sequence ZLWPRPQIPP displayed the lowest IC50 value of 0.64 µM. The IC50 value of the peptide ZQWAQGRAPHPP was 3.63 µM. CONCLUSION: The canonical snake venom BPPs classically display the IPP motif at the C-terminus. Our data suggest that the replacement of the highly conserved hydrophobic isoleucine by histidine does not affect the inhibitory activity, indicating that isoleucine is not mandatory to inhibit the angiotensin converting enzyme. The evaluation of IC 50 values show that the peptide with basic pI value exhibits a lower IC 50 value.

20.
Protein Expr Purif ; 123: 42-50, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26993255

RESUMO

The major protease inhibitor from the sea anemone Stichodactyla helianthus (ShPI-1) is a non-specific inhibitor that binds trypsin and other trypsin-like enzymes, as well as chymotrypsin, and human neutrophil elastase. We performed site-directed mutagenesis of ShPI-1 to produce two variants (rShPI-1/K13L and rShPI/Y15S) that were expressed in Pichia pastoris, purified, and characterized. After a single purification step, 65 mg and 15 mg of protein per liter of culture supernatant were obtained for rShPI-1/K13L and rShPI/Y15S, respectively. Functional studies demonstrated a 100-fold decreased trypsin inhibitory activity as result of the K13L substitution at the reactive (P1) site. This protein variant has a novel tight-binding inhibitor activity of pancreatic elastase and increased activity toward neutrophil elastase in comparison to rShPI-1A. In contrast, the substitution Y15S at P2' site did not affect the Ki value against trypsin, but did reduce activity 10-fold against chymotrypsin and neutrophil elastase. Our results provide two new ShPI-1 variants with modified inhibitory activities, one of them with increased biomedical potential. This study also offers new insight into the functional impact of the P1 and P2' sites on ShPI-1 specificity.


Assuntos
Clonagem Molecular , Pichia/genética , Anêmonas-do-Mar/enzimologia , Anêmonas-do-Mar/genética , Inibidores de Serina Proteinase/genética , Inibidor da Tripsina de Soja de Kunitz/genética , Sequência de Aminoácidos , Animais , Quimotripsina/metabolismo , Clonagem Molecular/métodos , Humanos , Mutagênese Sítio-Dirigida , Elastase Pancreática/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Anêmonas-do-Mar/química , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/isolamento & purificação , Inibidores de Serina Proteinase/metabolismo , Tripsina/metabolismo , Inibidor da Tripsina de Soja de Kunitz/química , Inibidor da Tripsina de Soja de Kunitz/isolamento & purificação , Inibidor da Tripsina de Soja de Kunitz/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA