Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 587(7835): 588-593, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33239800

RESUMO

The quantum spin properties of nitrogen-vacancy defects in diamond enable diverse applications in quantum computing and communications1. However, fluorescent nanodiamonds also have attractive properties for in vitro biosensing, including brightness2, low cost3 and selective manipulation of their emission4. Nanoparticle-based biosensors are essential for the early detection of disease, but they often lack the required sensitivity. Here we investigate fluorescent nanodiamonds as an ultrasensitive label for in vitro diagnostics, using a microwave field to modulate emission intensity5 and frequency-domain analysis6 to separate the signal from background autofluorescence7, which typically limits sensitivity. Focusing on the widely used, low-cost lateral flow format as an exemplar, we achieve a detection limit of 8.2 × 10-19 molar for a biotin-avidin model, 105 times more sensitive than that obtained using gold nanoparticles. Single-copy detection of HIV-1 RNA can be achieved with the addition of a 10-minute isothermal amplification step, and is further demonstrated using a clinical plasma sample with an extraction step. This ultrasensitive quantum diagnostics platform is applicable to numerous diagnostic test formats and diseases, and has the potential to transform early diagnosis of disease for the benefit of patients and populations.


Assuntos
Técnicas Biossensoriais/métodos , Diagnóstico Precoce , Infecções por HIV/diagnóstico , Infecções por HIV/virologia , HIV-1/genética , Nanodiamantes/química , RNA Viral/sangue , Avidina/química , Técnicas Biossensoriais/instrumentação , Biotina/química , Fluorescência , Ouro/química , HIV-1/isolamento & purificação , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Microfluídica/instrumentação , Microfluídica/métodos , Micro-Ondas , Técnicas de Amplificação de Ácido Nucleico , Papel , Plasma/virologia , Teoria Quântica , Sensibilidade e Especificidade , Imagem Individual de Molécula , Temperatura
2.
Anal Chem ; 96(25): 10443-10450, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38864271

RESUMO

Due to their ability to selectively target pathogen-specific nucleic acids, CRISPR-Cas systems are increasingly being employed as diagnostic tools. "One-pot" assays that combine nucleic acid amplification and CRISPR-Cas systems (NAAT-CRISPR-Cas) in a single step have emerged as one of the most popular CRISPR-Cas biosensing formats. However, operational simplicity comes at a cost, with one-pot assays typically being less sensitive than corresponding two-step NAAT-CRISPR-Cas assays and often failing to detect targets at low concentrations. It is thought that these performance reductions result from the competition between the two enzymatic processes driving the assay, namely, Cas-mediated cis-cleavage and polymerase-mediated amplification of the target DNA. Herein, we describe a novel one-pot RPA-Cas12a assay that circumvents this issue by leveraging in situ complexation of the target-specific sgRNA and Cas12a to purposefully limit the concentration of active Cas12a during the early stages of the assay. Using a clinically relevant assay against a DNA target for HPV-16, we show how this in situ format reduces competition between target cleavage and amplification and engenders significant improvements in detection limit when compared to the traditional one-pot assay format, even in patient-derived samples. Finally, to gain further insight into the assay, we use experimental data to formulate a mechanistic model describing the competition between the Cas enzyme and nucleic acid amplification. These findings suggest that purposefully limiting cis-cleavage rates of Cas proteins is a viable strategy for improving the performance of one-pot NAAT-CRISPR-Cas assays.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Proteínas Associadas a CRISPR/metabolismo , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Humanos , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Técnicas de Amplificação de Ácido Nucleico , Proteína de Replicação A/metabolismo , Técnicas Biossensoriais/métodos
3.
Small ; : e2401148, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801400

RESUMO

Electrochemical paper-based microfluidics has attracted much attention due to the promise of transforming point-of-care diagnostics by facilitating quantitative analysis with low-cost and portable analyzers. Such devices harness capillary flow to transport samples and reagents, enabling bioassays to be executed passively. Despite exciting demonstrations of capillary-driven electrochemical tests, conventional methods for fabricating electrodes on paper impede capillary flow, limit fluidic pathways, and constrain accessible device architectures. This account reviews recent developments in paper-based electroanalytical devices and offers perspective by revisiting key milestones in lateral flow tests and paper-based microfluidics engineering. The study highlights the benefits associated with electrochemical sensing and discusses how the detection modality can be leveraged to unlock novel functionalities. Particular focus is given to electrofluidic platforms that embed electrodes into paper for enhanced biosensing applications. Together, these innovations pave the way for diagnostic technologies that offer portability, quantitative analysis, and seamless integration with digital healthcare, all without compromising the simplicity of commercially available rapid diagnostic tests.

4.
Chemistry ; 26(72): 17604-17612, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-32780903

RESUMO

Efficient OLED devices have been fabricated using organometallic complexes of platinum group metals. Still, the high material cost and low stability represent central challenges for their application in commercial display technologies. Based on its innate stability, gold(III) complexes are emerging as promising candidates for high-performance OLEDs. Here, a series of alkynyl-, N-heterocyclic carbene (NHC)- and aryl-gold(III) complexes stabilized by a κ3 -(N^C^C) template have been prepared and their photophysical properties have been characterized in detail. These compounds exhibit good photoluminescence quantum efficiency (ηPL ) of up to 33 %. The PL emission can be tuned from sky-blue to yellowish green colors by variations on both the ancillary ligands as well as on the pincer template. Further, solution-processable OLED devices based on some of these complexes display remarkable emissive properties (ηCE 46.6 cd.A-1 and ηext 14.0 %), thus showcasing the potential of these motifs for the low-cost fabrication of display and illumination technologies.

5.
Lab Chip ; 24(15): 3651-3657, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38952211

RESUMO

Paper-based rapid diagnostic tests (RDTs) are an essential component of modern healthcare, particularly for the management of infectious diseases. Despite their utility, these capillary-driven RDTs are compromised by high failure rates, primarily caused by user error. This limits their utility in complex assays that require multiple user operations. Here, we demonstrate how this issue can be directly addressed through continuous electrochemical monitoring of reagent flow inside an RDT using embedded graphenized electrodes. Our method relies on applying short voltage pulses and measuring variations in capacitive discharge currents to precisely determine the flow times of injected samples and reagents. This information is reported to the user, guiding them through the testing process, highlighting failure cases and ultimately decreasing errors. Significantly, the same electrodes can be used to quantify electrochemical signals from immunoassays, providing an integrated solution for both monitoring assays and reporting results. We demonstrate the applicability of this approach in a serology test for the detection of anti-SARS-CoV-2 IgG in clinical serum samples. This method paves the way towards "smart" RDTs able to continuously monitor the testing process and improve the robustness of point-of-care diagnostics.


Assuntos
COVID-19 , Técnicas Eletroquímicas , Papel , SARS-CoV-2 , Humanos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , COVID-19/diagnóstico , COVID-19/sangue , COVID-19/virologia , Imunoglobulina G/sangue , Imunoglobulina G/análise , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Eletrodos , Imunoensaio/instrumentação , Imunoensaio/métodos , Testes de Diagnóstico Rápido
7.
ACS Sens ; 8(10): 3964-3972, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37756250

RESUMO

The development of low-cost, disposable electrochemical sensors is an essential step in moving traditionally inaccessible quantitative diagnostic assays toward the point of need. However, a major remaining limitation of current technologies is the reliance on standardized reference electrode materials. Integrating these reference electrodes considerably restricts the choice of the electrode substrate and drastically increases the fabrication costs. Herein, we demonstrate that adoption of two-electrode detection systems can circumvent these limitations and allow for the development of low-cost, paper-based devices. We showcase the power of this approach by developing a continuous flow assay for urinary creatinine enabled by an embedded graphenic two-electrode detector. The detection system not only simplifies sensor fabrication and readout hardware but also provides a robust sensing performance with high detection efficiencies. In addition to enabling high-throughput analysis of clinical urine samples, our two-electrode sensors provide unprecedented insights into the fundamental mechanism of the ferricyanide-mediated creatinine reaction. Finally, we developed a simplified circuitry to drive the detector. This forms the basis of a smart reader that guides the user through the measurement process. This study showcases the potential of affordable capillary-driven cartridges for clinical analysis within primary care settings.


Assuntos
Técnicas Eletroquímicas , Urinálise , Creatinina , Eletrodos
8.
Sens Diagn ; 2(1): 100-110, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36741250

RESUMO

Despite their simplicity, lateral flow immunoassays (LFIAs) remain a crucial weapon in the diagnostic arsenal, particularly at the point-of-need. However, methods for analysing LFIAs still rely heavily on sub-optimal human readout and rudimentary end-point analysis. This negatively impacts both testing accuracy and testing times, ultimately lowering diagnostic throughput. Herein, we present an automated computational imaging method for processing and analysing multiple LFIAs in real-time and in parallel. This method relies on the automated detection of signal intensity at the test line, control line, and background, and employs statistical comparison of these values to predictively categorise tests as "positive", "negative", or "failed". We show that such a computational methodology can be transferred to a smartphone and detail how real-time analysis of LFIAs can be leveraged to decrease the time-to-result and increase testing throughput. We compare our method to naked-eye readout and demonstrate a shorter time-to-result across a range of target antigen concentrations and fewer false negatives compared to human subjects at low antigen concentrations.

9.
Adv Mater ; 35(30): e2302893, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37261647

RESUMO

Microfluidic paper-based analytical devices (µPADs) are indispensable tools for disease diagnostics. The integration of electronic components into µPADs enables new device functionalities and facilitates the development of complex quantitative assays. Unfortunately, current electrode fabrication methods often hinder capillary flow, considerably restricting µPAD design architectures. Here, laser-induced graphenization is presented as an approach to fabricate porous electrodes embedded into cellulose paper. The resulting electrodes not only have high conductivity and electrochemical activity, but also retain wetting properties for capillary transport. Paper-based electrofluidics, including a lateral flow device for injection analysis of alkaline phosphatase in serum and a vertical flow device for quantitative detection of HPV16 with a CRISPR-based assay are demonstrated. It is expected that this platform will streamline the development of diagnostic devices that combine the operational simplicity of colorimetric lateral flow tests with the added benefits and possibilities offered by electronic signaling.


Assuntos
Técnicas Analíticas Microfluídicas , Papel , Celulose , Dispositivos Lab-On-A-Chip , Eletrodos
10.
Lab Chip ; 22(18): 3340-3360, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35984715

RESUMO

In vitro diagnostics (IVDs) form the cornerstone of modern medicine. They are routinely employed throughout the entire treatment pathway, from initial diagnosis through to prognosis, treatment planning, and post-treatment surveillance. Given the proven links between high quality diagnostic testing and overall health, ensuring broad access to IVDs has long been a focus of both researchers and medical professionals. Unfortunately, the current diagnostic paradigm relies heavily on centralized laboratories, complex and expensive equipment, and highly trained personnel. It is commonly assumed that this level of complexity is required to achieve the performance necessary for sensitive and specific disease diagnosis, and that making something affordable and accessible entails significant compromises in test performance. However, recent work in the field of microfluidics is challenging this notion. By exploiting the unique features of microfluidic systems, researchers have been able to create progressively simple devices that can perform increasingly complex diagnostic assays. This review details how microfluidic technologies are disrupting the status quo, and facilitating the development of simple, affordable, and accessible integrated IVDs. Importantly, we discuss the advantages and limitations of various approaches, and highlight the remaining challenges within the field.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica
11.
ACS Sens ; 5(9): 2701-2723, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32838523

RESUMO

Driven by complex and interconnected factors, including population growth, climate change, and geopolitics, infectious diseases represent one of the greatest healthcare challenges of the 21st century. Diagnostic technologies are the first line of defense in the fight against infectious disease, providing critical information to inform epidemiological models, track diseases, decide treatment choices, and ultimately prevent epidemics. The diagnosis of infectious disease at the genomic level using nucleic acid disease biomarkers has proven to be the most effective approach to date. Such methods rely heavily on enzymes to specifically amplify or detect nucleic acids in complex samples, and significant effort has been exerted to harness the power of enzymes for in vitro nucleic acid diagnostics. Unfortunately, significant challenges limit the potential of enzyme-assisted nucleic acid diagnostics, particularly when translating diagnostic technologies from the lab toward the point-of-use or point-of-care. Herein, we discuss the current state of the field and highlight cross-disciplinary efforts to solve the challenges associated with the successful deployment of this important class of diagnostics at or near the point-of-care.


Assuntos
Doenças Transmissíveis , Ácidos Nucleicos , Doenças Transmissíveis/diagnóstico , Humanos , Sistemas Automatizados de Assistência Junto ao Leito
12.
ACS Appl Mater Interfaces ; 10(22): 18869-18878, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29766716

RESUMO

Recent advances in the development of hybrid organic-inorganic lead halide perovskite (LHP) nanocrystals (NCs) have demonstrated their versatility and potential application in photovoltaics and as light sources through compositional tuning of optical properties. That said, due to their compositional complexity, the targeted synthesis of mixed-cation and/or mixed-halide LHP NCs still represents an immense challenge for traditional batch-scale chemistry. To address this limitation, we herein report the integration of a high-throughput segmented-flow microfluidic reactor and a self-optimizing algorithm for the synthesis of NCs with defined emission properties. The algorithm, named Multiparametric Automated Regression Kriging Interpolation and Adaptive Sampling (MARIA), iteratively computes optimal sampling points at each stage of an experimental sequence to reach a target emission peak wavelength based on spectroscopic measurements. We demonstrate the efficacy of the method through the synthesis of multinary LHP NCs, (Cs/FA)Pb(I/Br)3 (FA = formamidinium) and (Rb/Cs/FA)Pb(I/Br)3 NCs, using MARIA to rapidly identify reagent concentrations that yield user-defined photoluminescence peak wavelengths in the green-red spectral region. The procedure returns a robust model around a target output in far fewer measurements than systematic screening of parametric space and additionally enables the prediction of other spectral properties, such as, full-width at half-maximum and intensity, for conditions yielding NCs with similar emission peak wavelength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA