Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell Immunol ; 401-402: 104843, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38905771

RESUMO

Monocyte migration is an important process in inflammation and atherogenesis. Identification of the key signalling pathways that regulate monocyte migration can provide prospective targets for prophylactic treatments in inflammatory diseases. Previous research showed that the focal adhesion kinase Pyk2, Src kinase and MAP kinases play an important role in MCP-1-induced monocyte migration. In this study, we demonstrate that MCP-1 induces iPLA2 activity, which is regulated by PKCß and affects downstream activation of Rac1 and Pyk2. Rac1 interacts directly with iPLA2 and Pyk2, and plays a crucial role in MCP-1-mediated monocyte migration by modulating downstream Pyk2 and p38 MAPK activation. Furthermore, Rac1 is necessary for cell spreading and F-actin polymerization during monocyte adhesion to fibronectin. Finally, we provide evidence that Rac1 controls the secretion of inflammatory mediator vimentin from MCP-1-stimulated monocytes. Altogether, this study demonstrates that the PKCß/iPLA2/Rac1/Pyk2/p38 MAPK signalling cascade is essential for MCP-1-induced monocyte adhesion and migration.

2.
Langmuir ; 39(31): 10947-10964, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37501125

RESUMO

A series of pyrrolidine-based Pd(II) complexes, [Pd(AEP)Cl2] (C-1), [Pd(AEP)(OH2)2]2+(C-2), [Pd(AEP)(L-cys)]+ (C-3), [Pd(AEP)(N-ac-L-cys)] (C-4), [Pd(AEP)(GSH)] (C-5), and [Pd(AEP)(DL-meth)]2+ (C-6) (where, AEP = 1-(2-aminoethyl)pyrrolidine, L-cys = l-cysteine, N-ac-L-cys = N-acetyl-l-cysteine, GSH = glutathione, and DL-meth = dl-methionine), as anticancer drug candidates have been synthesized and characterized. The DNA binding property of the complexes was executed by gel electrophoresis and spectrophotometric and viscometric methods, and their interaction with BSA was also investigated by various spectroscopic methodologies. The binding activity of the Pd(II) complexes with DNA and BSA were assessed to evaluate their binding mode and binding constants. Molecular docking was performed to correlate with the experimental results on the interaction of the complexes with DNA and BSA. The changes in the microenvironmental and structural properties of BSA are monitored by a synchronous and 3D fluorescence study. The structural properties were evaluated by DFT and TD-DFT studies. The anticarcinogenic activity of the Pd(II) complexes was assessed by PASS prediction software to corroborate with the experimental results of the anticancer activity of the complexes. The ROS generation in cancer cell lines has been investigated, and the cell death mechanism through apoptosis was confirmed by measuring the protein expression. All these complexes have excellent anticancer activity compared to ancillary ligands. The cancer cell line (HCT116) shows almost similar or better cell inhibition activity when treated with the Pd(II) complexes compared to cisplatin, whereas the adverse effect is minimum on a normal cell (NKE). Both the Pd(II) and Pt(II) complexes carrying the same ligands reveal almost similar antiproliferative activity.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Humanos , Simulação de Acoplamento Molecular , Paládio/farmacologia , Paládio/química , Ligantes , DNA/química , Linhagem Celular , Antineoplásicos/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Soroalbumina Bovina/química
3.
J Immunol ; 206(1): 181-192, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277387

RESUMO

MCP-1-induced monocyte chemotaxis is a crucial event in inflammation and atherogenesis. Identifying the important signal transduction pathways that control monocyte chemotaxis can unravel potential targets for preventive therapies in inflammatory disease conditions. Previous studies have shown that the focal adhesion kinase Pyk2 plays a critical role in monocyte motility. In this study, we investigated the MCP-1-mediated activation of Pyk2 (particularly by the phosphorylation of Tyr402) in primary human peripheral blood monocytes. We showed that MCP-1 induces Src phosphorylation in a similar time frame and that the MCP-1-induced Pyk2 tyrosine phosphorylation is controlled by the Src family kinase. We also report, in this study, that PKCß, an isoform of PKC, is required for both Src and Pyk2 activation/phosphorylation in response to MCP-1 stimulation. We identified Lyn as the specific Src kinase isoform that is activated by MCP-1 and acts upstream of Pyk2 in primary monocytes. Furthermore, Lyn is found to be indispensable for monocyte migration in response to MCP-1 stimulation. Moreover, our coimmunoprecipitation studies in monocytes revealed that PKCß, Pyk2, and Lyn exist constitutively in a molecular complex. To our knowledge, our study has uncovered a novel PKCß-Lyn-Pyk2 signaling cascade in primary monocytes that regulates MCP-1-induced monocyte adhesion and migration.


Assuntos
Quimiocina CCL2/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Monócitos/fisiologia , Complexos Multiproteicos/metabolismo , Proteína Quinase C beta/metabolismo , Quinases da Família src/metabolismo , Adesão Celular , Células Cultivadas , Quimiocina CCL2/genética , Quimiotaxia , Humanos , Fosforilação , Cultura Primária de Células , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Transdução de Sinais
4.
Prostaglandins Other Lipid Mediat ; 160: 106637, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35341977

RESUMO

The oxygenation of polyunsaturated fatty acids such as arachidonic and linoleic acid through enzymes like lipoxygenases (LOXs) are common and often leads to the production of various bioactive lipids that are important both in acute inflammation and its resolution and thus in disease progression. Amongst the several isoforms of LOX that are expressed in mammals, 15-lipoxygenase (15-LOX) has shown to be crucial in the context of inflammation. Moreover, being expressed in cells of the immune system, as well as in epithelial cells; the enzyme has been shown to crosstalk with a number of important signalling pathways. Mounting evidences from recent reports suggest that 15-LOX has anti-cancer activities which are dependent or independent of its metabolites, and is executed through several downstream pathways like cGMP, PPAR, p53, p21 and NAG-1. However, it is still unclear whether the up-regulation of 15-LOX is associated with cancer cell apoptosis. Monoamine oxidase A (MAO-A), on the other hand, is a mitochondrial flavoenzyme which is believed to be involved in the pathogenesis of atherosclerosis and inflammation and in many other neurological disorders. MAO-A has also been reported as a potential therapeutic target in different types of cancers like prostate cancer, lung cancer etc. In this review, we discussed about the role of fatty acids and their lipid mediators in cancer cell apoptosis. Here we particularly focused on the contribution of oxidative enzymes like 15-LOX and MAO-A in mediating apoptosis in lung cancer cell after fatty acid induction.


Assuntos
Ácidos Graxos , Neoplasias Pulmonares , Animais , Apoptose , Inflamação , Mamíferos , Monoaminoxidase
5.
J Biol Chem ; 293(36): 14040-14064, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30021838

RESUMO

Monoamine oxidase A (MAO-A) is a mitochondrial flavoenzyme implicated in the pathogenesis of atherosclerosis and inflammation and also in many neurological disorders. MAO-A also has been reported as a potential therapeutic target in prostate cancer. However, the regulatory mechanisms controlling cytokine-induced MAO-A expression in immune or cancer cells remain to be identified. Here, we show that MAO-A expression is co-induced with 15-lipoxygenase (15-LO) in interleukin 13 (IL-13)-activated primary human monocytes and A549 non-small cell lung carcinoma cells. We present evidence that MAO-A gene expression and activity are regulated by signal transducer and activator of transcription 1, 3, and 6 (STAT1, STAT3, and STAT6), early growth response 1 (EGR1), and cAMP-responsive element-binding protein (CREB), the same transcription factors that control IL-13-dependent 15-LO expression. We further established that in both primary monocytes and in A549 cells, IL-13-stimulated MAO-A expression, activity, and function are directly governed by 15-LO. In contrast, IL-13-driven expression and activity of MAO-A was 15-LO-independent in U937 promonocytic cells. Furthermore, we demonstrate that the 15-LO-dependent transcriptional regulation of MAO-A in response to IL-13 stimulation in monocytes and in A549 cells is mediated by peroxisome proliferator-activated receptor γ (PPARγ) and that signal transducer and activator of transcription 6 (STAT6) plays a crucial role in facilitating the transcriptional activity of PPARγ. We further report that the IL-13-STAT6-15-LO-PPARγ axis is critical for MAO-A expression, activity, and function, including migration and reactive oxygen species generation. Altogether, these results have major implications for the resolution of inflammation and indicate that MAO-A may promote metastatic potential in lung cancer cells.


Assuntos
Interleucina-13/fisiologia , Monoaminoxidase/metabolismo , Monócitos/metabolismo , Células A549 , Araquidonato 15-Lipoxigenase/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Inflamação , Neoplasias Pulmonares/patologia , Monoaminoxidase/fisiologia , Metástase Neoplásica , PPAR gama/metabolismo , Fator de Transcrição STAT6/metabolismo , Células U937
6.
J Biol Chem ; 288(4): 2778-88, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23184931

RESUMO

IL-13 is a potent stimulator of alternative monocyte/macrophage activation. During alternative activation, the expression of several proteins is induced including 15-lipoxygenase (15-LO), a lipid-peroxidating enzyme and the scavenger receptor CD36. We previously reported that α(M)ß(2) integrin activation or clustering suppresses the expression of both 15-LO and CD36. In this study we focused on exploring the molecular mechanisms that down-regulate CD36 expression and CD36-mediated foam cell formation in IL-13-stimulated monocytes/macrophages after α(M)ß(2) activation. Our studies reveal that α(M)ß(2) integrin activation inhibits the IL-13 activation of several critical pathways that are required for macrophage alternative activation; namely, blocking Jak2 and Tyk2 phosphorylation, which bind to the cytoplasmic tails of the IL-4Rα/IL-13Rα1 complex. This leads to the inhibition of tyrosine phosphorylation of Stats (Stat1, Stat3, and Stat6) and prevents the formation of a signaling complex (containing p38MAPK, PKCδ, and Stat3) that are critical for the expression of both 15-LO and CD36. Jak2-mediated Hck activation is also inhibited, thereby preventing Stats serine phosphorylation, which is essential for downstream Stat-dependent gene transcription. Moreover, inhibition of Jak2, Tyk2, or their downstream target 15-LO with antisense oligonucleotides profoundly inhibits IL-13-induced CD36 expression and CD36-dependent foam cell formation, whereas13(S) Hydroperoxyoctadecadienoic acid (HPODE), a 15-LO product and peroxisome proliferator-activated receptor-γ ligand, completely restores CD36 expression in monocytes treated with 15-LO antisense. α(M)ß(2) integrin activation controls CD36 expression and foam cell formation in alternatively activated monocyte/macrophages by blocking Tyk2/Jak2 phosphorylation via a 15-LO-dependent pathway. The discovery of this mechanism helps our understanding of the potential role of alternatively activated macrophages in atherogenesis and highlights the impact of integrin α(M)ß(2) on this process.


Assuntos
Células Espumosas/citologia , Antígeno de Macrófago 1/metabolismo , Macrófagos/metabolismo , Receptores de Interleucina-13/metabolismo , Animais , Aterosclerose , Antígenos CD36/biossíntese , Separação Celular , Feminino , Citometria de Fluxo , Humanos , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Janus Quinase 2/metabolismo , Lipídeos/química , Macrófagos/citologia , Camundongos , Transdução de Sinais , TYK2 Quinase/metabolismo
7.
Life Sci ; 352: 122857, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914305

RESUMO

AIM: AMPK can be considered as an important target molecule for cancer for its unique ability to directly recognize cellular energy status. The main aim of this study is to explore the role of different AMPK activators in managing cancer cell aggressiveness and to understand the mechanistic details behind the process. MAIN METHODS: First, we explored the AMPK expression pattern and its significance in different subtypes of lung cancer by accessing the TCGA data sets for LUNG, LUAD and LUSC patients and then established the correlation between AMPK expression pattern and overall survival of lung cancer patients using Kaplan-Meire plot. We further carried out several cell-based assays by employing different wet lab techniques including RT-PCR, Western Blot, proliferation, migration and invasion assays to fulfil the aim of the study. KEY FINDINGS: SIGNIFICANCE: This study identifies the importance of AMPK activators as a repurposing agent for combating lung and colon cancer cell aggressiveness. It also suggests SRT-1720 as a potent repurposing agent for cancer treatment especially in NSCLC patients where a point mutation is present in LKB1.

8.
J Lipid Res ; 54(2): 436-47, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23160182

RESUMO

Monocyte chemoattractant protein-1 (MCP-1)-induced monocyte chemotaxis is a major event in inflammatory disease. Our prior studies have demonstrated that MCP-1-dependent chemotaxis requires release of arachidonic acid (AA) by activated cytosolic phospholipase A(2) (cPLA(2)). Here we investigated the involvement of AA metabolites in chemotaxis. Neither cyclooxygenase nor lipoxygenase pathways were required, whereas pharmacologic inhibitors of both the cytochrome-P450 (CYP) and the soluble epoxide hydrolase (sEH) pathways blocked monocyte chemotaxis to MCP-1. To verify specificity, we demonstrated that the CYP and sEH products epoxyeiscosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DHETs), respectively, restored chemotaxis in the presence of the inhibitors, indicating that sEH-derived products are essential for MCP-1-driven chemotaxis. Importantly, DHETs also rescued chemotaxis in cPLA(2)-deficient monocytes and monocytes with blocked Erk1/2 activity, because Erk controls cPLA(2) activation. The in vitro findings regarding the involvement of CYP/sEH pathways were further validated in vivo using two complementary approaches measuring MCP-1-dependent chemotaxis in mice. These observations reveal the importance of sEH in MCP-1-regulated monocyte chemotaxis and may explain the observed therapeutic value of sEH inhibitors in treatment of inflammatory diseases, cardiovascular diseases, pain, and even carcinogenesis. Their effectiveness, often attributed to increasing EET levels, is probably influenced by the impairment of DHET formation and inhibition of chemotaxis.


Assuntos
Quimiocina CCL2/metabolismo , Quimiotaxia , Epóxido Hidrolases/química , Epóxido Hidrolases/metabolismo , Monócitos/citologia , Animais , Ácido Araquidônico/biossíntese , Quimiotaxia/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Ácidos Graxos Monoinsaturados/química , Ácidos Graxos Monoinsaturados/metabolismo , Feminino , Humanos , Lipoxigenase/metabolismo , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/enzimologia , Monócitos/metabolismo , Fosfolipases A2 Citosólicas/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Solubilidade
9.
Circ Res ; 108(5): 544-54, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21252155

RESUMO

RATIONALE: The alternative activation of monocytes by interleukin (IL)-13 and IL-4 is a significant component of the inflammatory response. The consequences of alternative activation in inflammatory diseases remain to be determined. OBJECTIVE: In this report, we explored how integrins, receptors important for monocyte migration to inflammatory sites, regulate IL-13-mediated monocyte activation. We focused on the analysis of 2 proteins, which are upregulated during the alternative activation and are important for the development of atherosclerosis, an oxidative enzyme 15-lipoxygenase (15-LO) and a scavenger receptor CD36. METHODS AND RESULTS: We found that adhesion of resting monocytes through ß(2) integrins and inside-out activation of ß(2) integrins by monocyte chemoattractant protein-1 did not change IL-13-stimulated 15-LO upregulation; however, preincubation of monocytes with the antibody MEM48, which generates full activation of ß(2) integrins, significantly inhibited 15-LO mRNA and protein expression. In contrast, activation of ß(1) integrins had no effect on 15-LO expression. Analysis of integrin clustering through α(M), α(L), α(X), and α(D) subunits demonstrated the pivotal role for integrin α(M)ß(2) in inhibiting 15-LO expression. IL-13 treatment upregulates 15-LO-dependent CD36 expression on human monocytes; our studies showed that ß(2) integrin activation and α(M) integrin clustering significantly inhibited IL-13-dependent CD36 mRNA and protein expression, as well as CD36-related foam cell formation. Moreover, IL-13 stimulation of α(M)-deficient peritoneal macrophages demonstrated an upregulated level of 15-LO induction, CD36 expression, and lipid accumulation as compared with wild-type controls. CONCLUSIONS: The adhesion of monocytes/macrophages through activated integrin α(M)ß(2) has a regulatory and potential atheroprotective function during the alternative activation of macrophages.


Assuntos
Células Espumosas/citologia , Células Espumosas/metabolismo , Ativação de Macrófagos/fisiologia , Antígeno de Macrófago 1/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Animais , Araquidonato 15-Lipoxigenase/metabolismo , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Antígenos CD36/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Interleucina-13/farmacologia , Lectinas Tipo C/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Knockout , Modelos Animais , Fragmentos de Peptídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de IgG/metabolismo
10.
Int J Biol Macromol ; 253(Pt 1): 126683, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37666396

RESUMO

Parkinson's disease (PD) is linked to α-synuclein (aS) aggregation and deposition of amyloid in the substantia nigra region of the brain tissues. In the current investigation we produced two distinct classes of aS oligomer of differed protein conformation, stability and compared their toxic nature to cultured neuronal cells. Lyophilized oligomer (LO) was produced in storage of aS at-20 °C for 7 days and it was enriched with loosely hold molten globule like structure with residues having preferences for α-helical conformational space. The size of the oligomer was 4-5.5 nm under AFM. This kind of oligomer exhibited potential toxicity towards neuronal cell lines and did not transform into compact ß-sheet rich amyloid fiber even after incubation at 37 °C for several days. Formation of another type of oligomer was often observed in the lag phase of aS fibrillation that often occurred at an elevated temperature (37 °C). This kind of heat induced oligomer (IO) was more hydrophobic and relatively less toxic to neuronal cells compared to lyophilized oligomer (LO). Importantly, initiation of hydrophobic zipping of aS caused the transformation of IO into thermodynamically stable ß-sheet rich amyloid fibril. On the other hand, the presence of molten globule like conformation in LO, rendered greater toxicity to cultured neuronal cells.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Doença de Parkinson/metabolismo , Conformação Proteica , Neurônios/metabolismo , Conformação Proteica em Folha beta , Amiloide/química , Proteínas Amiloidogênicas
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 1): 122059, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410178

RESUMO

The complex [Pt(AEP)Cl2]; C-1 (where, AEP = 1-(2-Aminoethyl) pyrrolidine) and its hydrolyzed diaqua form cis-[Pt(AEP)(H2O)2]2+; C-2 were synthesized for their bioactivity and in vitro kinetic study with bioactive thiol group (-SH) containing ligands (like; L- cysteine and N-ac-L- cysteine) for their biological importance for 'drug reservoir' activity. The Thermal Gravimetric Analysis (TGA) was executed to confirm about the weight loss due to coordinated water molecules at high temperature range. At pH 4.0, the substitution behavior of C-2 with the thiols was studied in pseudo-first order reaction condition. The interaction mechanism of thiols with complex C-2 to their corresponding thiol substituted C-3 [Pt(AEP)(L-cys)] and C-4 [Pt(AEP)(N-ac-L-cys)] (where L-cys = L-cysteine and N-ac-L-cys = N-ac-L- cysteine) were proposed from their thermodynamical activation parameters (ΔH≠ and ΔS≠), which were obtained from Eyring equation. DNA and BSA binding activity of the complexes C-1 to C-4 were investigated by gel electrophoresis technique, spectroscopic titration and viscosity methods. The binding activity of the complexes with DNA and BSA was evaluated using a theoretical approach molecular docking study. The drug-like nature of the complexes is supported by the prediction of activity spectra for substance (PASS) from 2D structure of the Pt(II) complexes. Structural optimization, HOMO-LUMO energy calculation, Molecular electrostatic potential surface, NBO and TD-DFT calculation were executed by using density functional theory (DFT) with Gaussian 09 software package to pre-assessment of biological activity of the complexes. DFT-based descriptors were determined from the HOMO-LUMA energy to be related with the ability of binding affinity of Pt(II) complexes towards DNA and BSA to the formation of their corresponding adducts. The anticancer property of the design complexes were examined on HCT116 (colorectal carcinoma) cancer cell lines and as well as human normal cell NKE (Normal Kidney Epithelial) and compared with the recognised anticancer drug cisplatin. The Reactive Oxygen Species (ROS) production was assessed by DCFDA assay in presence of the Pt(II) complexes.


Assuntos
Cisteína , DNA , Humanos , Simulação de Acoplamento Molecular , Cinética , Pirrolidinas , Compostos de Sulfidrila
12.
Heliyon ; 9(2): e13620, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873140

RESUMO

In the quest of recognizing hazardous nitro-aromatic compounds in water, two pyridine-functionalized Schiff-base chemosensors, DMP ((E)-N-(3,4-dimethoxybenzylidene)(pyridin-2-yl)methanamine)) and MP (4-((E)-((pyridin-2-yl)methylimino)methyl)-2-ethoxyphenol) have been synthesized to detect mutagenic 2,4,6-Trinitrophenol (TNP) in soil, water as well as cellular matrices by producing turn-off emission responses as a combined consequence of PET and RET processes. Several experimental analyses including ESI-MS, FT-IR, photoluminescence, 1H NMR titration, and the theoretical calculations ascertained the formation and sensing efficacies of the chemosensors. The analytical substantiations revealed that structural variation of the chemosensors played a significant role in improving the sensing efficiency, which would certainly be worthwhile in developing small molecular TNP sensors. The present work depicted that the electron density within the MP framework was more than that of DMP due to the intentional incorporation of -OEt and -OH groups. As a result, MP represented a strong interaction mode towards the electron-deficient TNP with a detection limit of 39 µM.

13.
Free Radic Biol Med ; 195: 309-328, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592660

RESUMO

This study depicted the effect of IL-13 and 13(S)HpODE (the endogenous product during IL-13 activation) in the process of cancer cell apoptosis. We examined the role of both IL-13 and 13(S)HpODE in mediating apoptotic pathway in three different in vitro cellular models namely A549 lung cancer, HCT116 colorectal cancer and CCF52 GBM cells. Our data showed that IL-13 promotes apoptosis of A549 lung carcinoma cells through the involvement of 15-LO, PPARγ and MAO-A. Our observations demonstrated that IL-13/13(S)HpODE stimulate MAO-A-mediated intracellular ROS production and p53 as well as p21 induction which play a crucial role in IL-13-stimulated A549 cell apoptosis. We further showed that 13(S)HpODE promotes apoptosis of HCT116 and CCF52 cells through the up-regulation of p53 and p21 expression. Our data delineated that IL-13 stimulates p53 and p21 induction which is mediated through 15-LO and MAO-A in A549 cells. In addition, we observed that PPARγ plays a vital role in apoptosis as well as in p53 and p21 expression in A549 cells in the presence of IL-13. We validated our observations in case of an in vivo colon cancer tumorigenic study using syngeneic mice model and demonstrated that 13(S)HpODE significantly reduces solid tumor growth through the activation of apoptosis. These data thus confirmed that IL-13 > 15-LO>13(S)HpODE > PPARγ>MAO-A > ROS > p53>p21 axis has a major contribution in regulating cancer cell apoptosis and further identified 13(S)HpODE as a potential chemo-preventive agent which can improve the efficacy of cancer treatment as a combination compound.


Assuntos
Apoptose , Interleucina-13 , Neoplasias Pulmonares , Proteína Supressora de Tumor p53 , Animais , Camundongos , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Interleucina-13/farmacologia , Neoplasias Pulmonares/patologia , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Humanos , Células A549
14.
Cancers (Basel) ; 15(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36765950

RESUMO

Colorectal cancer (CRC) is the third most diagnosed and second leading cause of cancer-related death worldwide. Limitations with existing treatment regimens have demanded the search for better treatment options. Different phytochemicals with promising anti-CRC activities have been reported, with the molecular mechanism of actions still emerging. This review aims to summarize recent progress on the study of natural phenolic compounds in ameliorating CRC using in vivo models. This review followed the guidelines of the Preferred Reporting Items for Systematic Reporting and Meta-Analysis. Information on the relevant topic was gathered by searching the PubMed, Scopus, ScienceDirect, and Web of Science databases using keywords, such as "colorectal cancer" AND "phenolic compounds", "colorectal cancer" AND "polyphenol", "colorectal cancer" AND "phenolic acids", "colorectal cancer" AND "flavonoids", "colorectal cancer" AND "stilbene", and "colorectal cancer" AND "lignan" from the reputed peer-reviewed journals published over the last 20 years. Publications that incorporated in vivo experimental designs and produced statistically significant results were considered for this review. Many of these polyphenols demonstrate anti-CRC activities by inhibiting key cellular factors. This inhibition has been demonstrated by antiapoptotic effects, antiproliferative effects, or by upregulating factors responsible for cell cycle arrest or cell death in various in vivo CRC models. Numerous studies from independent laboratories have highlighted different plant phenolic compounds for their anti-CRC activities. While promising anti-CRC activity in many of these agents has created interest in this area, in-depth mechanistic and well-designed clinical studies are needed to support the therapeutic use of these compounds for the prevention and treatment of CRC.

15.
J Biol Chem ; 286(42): 36709-23, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21878628

RESUMO

IL-13 is a Th2 cytokine that promotes alternative activation (M2 polarization) in primary human monocytes. Our studies have characterized the functional IL-13 receptor complex and the downstream signaling events in response to IL-13 stimulation in alternatively activated monocytes/macrophages. In this report, we present evidence that IL-13 induces the activation of a Src family tyrosine kinase, which is required for IL-13 induction of M2 gene expression, including 15-lipoxygenase (15-LO). Our data show that Src kinase activity regulates IL-13-induced p38 MAPK tyrosine phosphorylation via the upstream kinases MKK3 or MKK6. Our findings also reveal that the IL-13 receptor-associated tyrosine kinase Jak2 is required for the activation of both Src kinase as well as p38 MAPK. Further, we found that Src tyrosine kinase-mediated activation of p38 MAPK is required for Stat1 and Stat3 serine 727 phosphorylation in alternatively activated monocytes/macrophages. Additional studies identify Hck as the specific Src family member, stimulated by IL-13 and involved in regulating both p38 MAPK activation and p38 MAPK-mediated 15-LO expression. Finally we show that the Hck regulates the expression of other alternative state (M2)-specific genes (Mannose receptor, MAO-A, and CD36) and therefore conclude that Hck acts as a key regulator controlling gene expression in alternatively activated monocytes/macrophages.


Assuntos
Regulação da Expressão Gênica/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Ativação de Macrófagos/fisiologia , Monócitos/metabolismo , Proteínas Proto-Oncogênicas c-hck/metabolismo , Araquidonato 15-Lipoxigenase/biossíntese , Antígenos CD36/metabolismo , Ativação Enzimática/fisiologia , Humanos , Interleucina-13/biossíntese , Janus Quinase 2/metabolismo , Lectinas Tipo C/metabolismo , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 6/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Monoaminoxidase/metabolismo , Monócitos/citologia , Fosforilação/fisiologia , Receptores de Superfície Celular/metabolismo , Receptores de Interleucina-13/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases da Família src/metabolismo
16.
J Immunol ; 185(9): 5211-24, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20861348

RESUMO

IL-13 induces profound expression of 15-lipoxygenase (15-LO) in primary human monocytes. Our studies have defined the functional IL-13R complex, association of Jaks with the receptor components, and the tyrosine phosphorylation of several Stat molecules in response to IL-13. Furthermore, we identified both p38MAPK and protein kinase Cδ as critical regulators of 15-LO expression. In this study, we report an ERK1/2-dependent signaling cascade that regulates IL-13-mediated 15-LO gene expression. We show the rapid phosphorylation/activation of ERK1/2 upon IL-13 exposure. Our results indicate that Tyk2 kinase is required for the activation of ERK1/2, which is independent of the Jak2, p38MAPK, and protein kinase Cδ pathways, suggesting bifurcating parallel regulatory pathways downstream of the receptor. To investigate the signaling mechanisms associated with the ERK1/2-dependent expression of 15-LO, we explored the involvement of transcription factors, with predicted binding sites in the 15-LO promoter, in this process including Elk1, early growth response-1 (Egr-1), and CREB. Our findings indicate that IL-13 induces Egr-1 nuclear accumulation and CREB serine phosphorylation and that both are markedly attenuated by inhibition of ERK1/2 activity. We further show that ERK1/2 activity is required for both Egr-1 and CREB DNA binding to their cognate sequences identified within the 15-LO promoter. Furthermore, by transfecting monocytes with the decoy oligodeoxyribonucleotides specific for Egr-1 and CREB, we discovered that Egr-1 and CREB are directly involved in regulating 15-LO gene expression. These studies characterize an important regulatory role for ERK1/2 in mediating IL-13-induced monocyte 15-LO expression via the transcription factors Egr-1 and CREB.


Assuntos
Araquidonato 15-Lipoxigenase/biossíntese , Regulação da Expressão Gênica/imunologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Monócitos/enzimologia , Araquidonato 15-Lipoxigenase/imunologia , Proteína de Ligação a CREB , DNA de Cadeia Simples , Ativação Enzimática/imunologia , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Humanos , Immunoblotting , Imunoprecipitação , Interleucina-13/imunologia , Interleucina-13/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Monócitos/imunologia , Fosforilação , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Transfecção
17.
Free Radic Biol Med ; 172: 136-151, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34097996

RESUMO

Prostate cancer (PCa) is a major cause of mortality and morbidity in men. Available therapies yield limited outcome. We explored anti-PCa activity in a polyphenol-rich fraction of Bergenia ligulata (PFBL), a plant used in Indian traditional and folk medicine for its anti-inflammatory and antineoplastic properties. PFBL constituted of about fifteen different compounds as per LCMS analysis induced apoptotic death in both androgen-dependent LNCaP and androgen-refractory PC3 and DU145 cells with little effect on NKE and WI38 cells. Further investigation revealed that PFBL mediates its function through upregulating ROS production by enhanced catalytic activity of Monoamine oxidase A (MAO-A). Notably, the differential inactivation of NRF2-antioxidant response pathway by PFBL resulted in death in PC3 versus NKE cells involving GSK-3ß activity facilitated by AKT inhibition. PFBL efficiently reduced the PC3-tumor xenograft in NOD-SCID mice alone and in synergy with Paclitaxel. Tumor tissues in PFBL-treated mice showed upregulation of similar mechanism of cell death as observed in isolated PC3 cells i.e., elevation of MAO-A catalytic activity, ROS production accompanied by activation of ß-TrCP-GSK-3ß axis of NRF2 degradation. Blood counts, liver, and splenocyte sensitivity analyses justified the PFBL safety in the healthy mice. To our knowledge this is the first report of an activity that crippled NRF2 activation both in vitro and in vivo in response to MAO-A activation. Results of this study suggest the development of a novel treatment protocol utilizing PFBL to improve therapeutic outcome for patients with aggressive PCa which claims hundreds of thousands of lives each year.


Assuntos
Antioxidantes , Neoplasias da Próstata , Animais , Glicogênio Sintase Quinase 3 beta , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Monoaminoxidase , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Polifenóis/farmacologia , Neoplasias da Próstata/tratamento farmacológico
18.
J Immunol Methods ; 330(1-2): 86-95, 2008 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-18191414

RESUMO

Identification of novel signal transduction pathways regulating monocyte chemotaxis can indicate unique targets for preventive therapies for treatment of chronic inflammatory diseases. To aid in this endeavor we report conditions for optimal transfection of primary human monocytes coupled with a new model system for assessing their chemotactic activity in vivo. This method can be used as a tool to identify the relevant signal transduction pathways regulating human monocyte chemotaxis to MCP-1 in the complex in vivo environment that were previously identified to regulate chemotaxis in vitro. MCP-1-dependent chemotaxis of monocytes is studied in an adoptive transfer model where human monocytes transfected with mutant cDNAs are transferred to mice followed by initiation of peritonitis. Harvesting peritoneal cells at 24 h diminishes the contribution of immunologic responses to the cross-species transfer. Validation of relevant regulatory molecules in vivo is critical for understanding the most relevant therapeutic targets for drug development.


Assuntos
Bioensaio/métodos , Quimiocina CCL2/metabolismo , Quimiotaxia de Leucócito , Monócitos/imunologia , Peritonite/imunologia , Proteína Quinase C/metabolismo , Transdução de Sinais/imunologia , Transfecção/métodos , Transferência Adotiva , Animais , Movimento Celular , Sobrevivência Celular , Células Cultivadas , Quimiotaxia de Leucócito/genética , Modelos Animais de Doenças , Estudos de Viabilidade , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Monócitos/enzimologia , Monócitos/transplante , Mutação , Peritonite/induzido quimicamente , Peritonite/enzimologia , Proteína Quinase C/genética , Proteína Quinase C beta , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Tioglicolatos , Fatores de Tempo
19.
Mol Cell Biol ; 23(11): 3918-28, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12748293

RESUMO

Interleukin-13 (IL-13) is a cytokine secreted by Th2 lymphocytes that is capable of inducing expression of 15-lipoxygenase (15-LO) in primary human monocytes. We recently demonstrated that induction of 15-LO requires the activation of Jak2 and Tyk2 kinases and Stats 1, 3, 5, and 6. Since IL-13-induced 15-LO expression was inhibited by H7 (a serine-threonine kinase inhibitor), we predicted that Stat serine phosphorylation may also be crucial for 15-LO expression. In this study, we present evidence indicating that IL-13-induced 15-LO mRNA expression was detectable as early as 1 h by real-time reverse transcription-PCR. We found that IL-13 induced a time-dependent serine phosphorylation of both Stat1 and Stat3, detectable at 15 min after IL-13 treatment. In addition, the activation of p38 mitogen-activated protein kinase (MAPK) was detected in a time-dependent fashion, with peak phosphorylation at 15 min after IL-13 treatment. SB202190, a p38 MAPK-specific inhibitor, markedly inhibited IL-13-induced Stat1 and Stat3 serine phosphorylation as well as DNA binding. Furthermore, treatment of cells with Stat1 or Stat3 decoys significantly impaired IL-13-induced 15-LO expression. Taken together, our results provide the first evidence that IL-13 induces p38 MAPK phosphorylation/activation, which regulates Stat1 and Stat3 serine 727 phosphorylation. Both of these events are important steps in IL-13-induced 15-LO expression in human monocytes.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Interleucina-13/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Serina/metabolismo , Transativadores/metabolismo , Animais , Araquidonato 15-Lipoxigenase/genética , Células Cultivadas , DNA/metabolismo , Inibidores Enzimáticos/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Monócitos/citologia , Monócitos/metabolismo , Fosforilação , Fator de Transcrição STAT1 , Fator de Transcrição STAT3 , Transdução de Sinais/fisiologia , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno
20.
Plant Physiol Biochem ; 45(12): 887-97, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17977002

RESUMO

Deposition of oleate, stearate and palmitate at the later stages of seed development in Mahua (Madhuca longifolia (latifolia)), a tropical non-conventional oil seed plant, has been found to be the characteristic feature of the regulatory mechanism that produces the saturated fatty acid rich Mahua seed fat (commonly known as Mowrah fat). Although, the content of palmitate has been observed to be higher than that of stearate at the initial stages of seed development, it goes down when the stearate and oleate contents consistently rise till maturity. The present study was undertaken in order to identify the kind of acyl-ACP thioesterase(s) that drives the characteristic composition of signature fatty acids (oleate 37%, palmitate 25%, stearate 23%, linoleate 12.5%) in its seed oil at maturity. The relative Fat activities in the crude protein extracts of the matured seeds towards three thioester substrates (oleoyl-, stearoyl- and palmitoyl-ACP) have been found to be present in the following respective ratio 100:31:8. Upon further purification of the crude extract, the search revealed the presence of two partially purified thioesterases: a long-chain oleoyl preferring house-keeping LC-Fat and a novel stearoyl-oleoyl preferring SO-Fat. The characteristic accumulation of oleate and linoleate in the M. latifolia seed fat is believed to be primarily due to the thioesterase activity of the LC-Fat or MlFatA. On the other hand, the SO-Fat showed almost equal substrate specificity towards stearoyl- and oleoyl-ACP, when its activity towards palmitoyl-ACP compared to stearoyl-ACP was only about 12%. An RT-PCR based technique for cloning of a DNA fragment from the mRNA pool of the developing seed followed by nucleotide sequencing resulted in the identification of a FatB type of thioesterase gene (MlFatB). This gene was found to exist as a single copy in the mother plant genome. Ectopic expression of this MlFatB gene product in E. coli strain fadD88 further proved that it induced a higher level of accumulation of both stearic and oleic acids when compared to the negative control line that did not contain this MlFatB gene. It also indicated that SO-Fat indeed is the product of the MlFatB gene present in the maturing seeds of M. latifolia in nature. Additionally, a predicted 3D-structure for MlFatB protein has been developed through use of bioinformatics tools.


Assuntos
Madhuca/enzimologia , Madhuca/genética , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Domínio Catalítico , Clonagem Molecular , Primers do DNA/genética , Escherichia coli/genética , Ácidos Graxos/metabolismo , Genes de Plantas , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/genética , RNA de Plantas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/enzimologia , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Tioléster Hidrolases/química , Tioléster Hidrolases/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA