Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Anal Chem ; 89(1): 830-836, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27991760

RESUMO

Detection of reactive oxygen species (ROS) is important in varied biological processes, disease diagnostics, and chemotherapeutic drug screening. We constructed a ROS sensor comprising an ascorbic-acid-based hydrogel encapsulating luminescent amphiphilic carbon-dots (C-dots). The sensing mechanism is based upon ROS-induced oxidation of the ascorbic acid units within the hydrogel scaffold; as a consequence, the hydrogel framework collapses resulting in aggregation of the C-dots and quenching of their luminescence. The C-dot-hydrogel platform exhibits high sensitivity and detected ROS generated chemically in solution and in actual cell environments. We demonstrate application of the C-dot-hydrogel for evaluating the efficacy of a chemotherapeutic substance, underscoring the potential of the system for drug screening applications.


Assuntos
Ácido Ascórbico/química , Carbono/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Espécies Reativas de Oxigênio/análise , Morte Celular , Citometria de Fluxo , Células HeLa , Humanos , Conformação Molecular , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Fluorescência , Células Tumorais Cultivadas
2.
ACS Appl Bio Mater ; 7(5): 2752-2761, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38662509

RESUMO

Carbon dots (CDs) were synthesized hydrothermally by mixing citric acid (CA) and an antifolic agent, sulfanilamide (SNM), employed for pH sensing and bacterial growth inactivation. Sulfanilamide is a prodrug; aromatic hetero cyclization of the amine moiety along with other chemical modifications produces an active pharmacological compound (chloromycetin and miconazole), mostly administered for the treatment of various microbial infections. On the other hand, the efficacy of the sulfanilamide molecule as a drug for antimicrobial activity was very low. We anticipated that the binding of the sulfanilamide molecule on the carbon dot (CD) surface may form antibacterial CDs. Citric acid was hybridized with sulfanilamide during the hydrothermal preparation of the CDs. The molecular fragments of bioactivated sulfanilamide molecule play a crucial role in bacterial growth inactivation for Gram-positive and Gram-negative bacteria. The functional groups of citric acid and sulfanilamide were conserved during the CD formation, facilitating the zwitterionic behavior of CDs associated with its photophysical activity. At low concentrations of CDs, the antibacterial activity was apparent for Gram-positive bacteria only. This Gram-positive bacteria selectivity was also rationalized by zeta potential measurement.


Assuntos
Antibacterianos , Materiais Biocompatíveis , Carbono , Teste de Materiais , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Sulfanilamida , Carbono/química , Carbono/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Concentração de Íons de Hidrogênio , Sulfanilamida/química , Sulfanilamida/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Pontos Quânticos/química , Sulfanilamidas/química , Sulfanilamidas/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos
3.
Inorg Chem ; 52(22): 12881-92, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24164408

RESUMO

The bis(µ-phenoxo) Fe(III)Ni(II) compound [Fe(III)(N3)2LNi(II)(H2O)(CH3CN)](ClO4) (1) and the bis(µ-phenoxo)-µ-acetate/bis(µ-phenoxo)-bis(µ-acetate) Fe(III)Ni(II) compound {[Fe(III)(OAc)LNi(II)(H2O)(µ-OAc)](0.6)·[Fe(III)LNi(II)(µ-OAc)2](0.4)}(ClO4)·1.1H2O (2) have been synthesized from the Robson type tetraiminodiphenol macrocyclic ligand H2L, which is the [2 + 2] condensation product of 4-methyl-2,6-diformylphenol and 2,2'-dimethyl-1,3-diaminopropane. Single-crystal X-ray structures of both compounds have been determined. The cationic part of the dinuclear compound 2 is a cocrystal of the two species [Fe(III)(OAc)LNi(II)(H2O)(µ-OAc)](+) (2A) and [Fe(III)LNi(II)(µ-OAc)2](+) (2B) with weights of 60% of the former and 40% of the latter. While 2A is a triply bridged bis(µ-phenoxo)-µ-acetate system, 2B is a quadruply bridged bis(µ-phenoxo)-bis(µ-acetate) system. Variable-temperature (2-300 K) magnetic studies reveal antiferromagnetic interaction in 1 and ferromagnetic interaction in 2 with J values of -3.14 and 7.36 cm(-1), respectively (H = -2JS1·S2). Broken-symmetry density functional calculations of exchange interaction have been performed on complexes 1 and 2 and also on previously published related compounds, providing good numerical estimates of J values in comparison to experiments. The electronic origin of the difference in magnetic behavior of 1 and 2 has been well understood from MO analyses and computed overlap integrals of BS empty orbitals. The role of acetate and thus its complementarity/countercomplementarity effect on the magnetic properties of diphenoxo-bridged Fe(III)Ni(II) compounds have been determined on computing J values of model compounds by replacing bridging acetate and nonbridging acetate ligand(s) by water ligands in the model compounds derived from 2A,B. The DFT calculations have also been extended to develop several magneto-structural correlations in these types of complexes, and the correlations focus on the role of Fe-O-Ni bridge angle, average Fe/Ni-O bridge distance, Fe-O-Ni-O dihedral angle, and out-of-plane shift of the phenoxo group.

4.
ACS Infect Dis ; 5(2): 292-302, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30589261

RESUMO

Pseudomonas aeruginosa is a highly virulent bacterium, particularly associated with the spread of multidrug resistance. Here we show that carbon dots (C-dots), synthesized from aminoguanidine and citric acid precursors, can selectively stain and inhibit the growth of P. aeruginosa strains. The aminoguanidine-C-dots were shown both to target P. aeruginosa bacterial cells and also to inhibit biofilm formation by the bacteria. Mechanistic analysis points to interactions between aminoguanidine residues on the C-dots' surface and P. aeruginosa lipopolysaccharide moieties as the likely determinants for both antibacterial and labeling activities. Indeed, the application of biomimetic membrane assays reveals that LPS-promoted insertion and bilayer permeation constitute the primary factors in the anti- P. aeruginosa effect of the aminoguanidine-C-dots. The aminoguanidine C-dots are easy to prepare in large quantities and are inexpensive and biocompatible and thus may be employed as a useful vehicle for selective staining and antibacterial activity against P. aeruginosa.


Assuntos
Antibacterianos/farmacologia , Carbono/química , Nanoestruturas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Materiais Biocompatíveis/química , Biofilmes/efeitos dos fármacos , Carbono/farmacologia , Farmacorresistência Bacteriana Múltipla , Guanidinas/química , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/crescimento & desenvolvimento , Coloração e Rotulagem
5.
ACS Nano ; 13(2): 1433-1442, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30615415

RESUMO

Multicolor, fluorescent self-healing gels were constructed through reacting carbon dots produced from different aldehyde precursors with branched polyethylenimine. The self-healing gels were formed through Schiff base reaction between the aldehyde units displayed upon the carbon dots' surface and primary amine residues within the polyethylenimine network, generating imine bonds. The dynamic covalent imine bonds between the carbon dots and polymeric matrix endowed the gels with both excellent self-healing properties as well as high mechanical strength. Moreover, the viscoelastic properties of the gels could be intimately modulated by controlling the ratio between the carbon dots and polymer. The distinct fluorescence emissions of the gels, originating from the specific carbon dot constituents, were employed for fabrication of light emitters at different colors, particularly generating white light.

6.
ACS Sens ; 2(8): 1215-1224, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28770991

RESUMO

Carbon dots (C-dots) prepared through heating of aminoguanidine and citric acid enable bimodal (colorimetric and fluorescence) detection of nitric oxide (NO) in aqueous solutions. The C-dots retained the functional units of aminoguanidine, which upon reaction with NO produced surface residues responsible for the color and fluorescence transformations. Notably, the aminoguanidine/citric acid C-dots were noncytotoxic, making possible real-time and high sensitivity detection of NO in cellular environments. Using multiprong spectroscopic and chromatography analyses we deciphered the molecular mechanism accounting for the NO-induced structural and photophysical transformations of the C-dots, demonstrating for the first time N2 release and azo dye formation upon the C-dots' surface.

7.
Dalton Trans ; 43(31): 12065-76, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24983388

RESUMO

The work in this report describes the syntheses, characterization, crystal structures and magnetic properties of eight linear trinickel(ii) compounds of the composition [Ni(II)3(L(sal-pyr))2(propionate)4] (), [Ni(II)3(L(sal-pyr))2(benzoate)4]·CH3CN (), [Ni(II)3(L(sal-pip))2(acetate)4]·2CH3CN (), [Ni(II)3(L(sal-pip))2(propionate)4] (), [Ni(II)3(L(sal-pip))2(benzoate)4]·CH2Cl2 (), [Ni(II)3(L(sal-mor))2(propionate)4] (), [Ni(II)3(L(sal-mor))2(benzoate)4]·3CH2Cl2 () and [Ni(II)3(L(sal-mor))2(o-Cl-benzoate)4]·2CH3CN·2H2O (), where HL(sal-pyr), HL(sal-pip) and HL(sal-mor) are the 1 : 1 condensation products of salicylaldehyde and 1-(2-aminoethyl)-pyrrolidine, 1-(2-aminoethyl)-piperidine and 4-(2-aminoethyl)-morpholine, respectively. One-half of the trinuclear core in each complex is symmetry related to the second part due to the presence of an inversion centre on the central metal ion and so the terminal nickelcentral nickelterminal nickel angle is 180°. The terminal and central nickel(ii) ions are triply bridged by a phenoxo, a µ1,1-carboxylato and a µ1,3-carboxylato moiety. The µ1,1-carboxylato also acts as a chelating ligand for the terminal metal ion. Both the variable-temperature (2-300 K) susceptibilities at a fixed field strength of 0.1 T and variable-field (up to 7 T) magnetization at different fixed temperatures (2-10 K) were recorded. The magnetic data indicate the ferromagnetic interaction in all the cases with J (H = -2Jij∑SiSj) values ranging between 2.37 and 3.89 cm(-1) and the single-ion zero-field parameter (D) ranging between 7.21 and 8.94 cm(-1). Satisfactorily simulation of both the χMT vs. T and M vs. H data has been obtained. Comparison of the structures and magnetic properties of compounds with those of the previously published related systems reveals some interesting aspects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA