Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475239

RESUMO

The effective identification and mitigation of non-line-of-sight (NLOS) ranging errors are essential for achieving high-precision positioning and navigation with ultra-wideband (UWB) technology in harsh indoor environments. In this paper, an efficient UWB ranging-error mitigation strategy that uses novel channel impulse response parameters based on the results of a two-step NLOS identification, composed of a decision tree and feedforward neural network, is proposed to realize indoor locations. NLOS ranging errors are classified into three types, and corresponding mitigation strategies and recall mechanisms are developed, which are also extended to partial line-of-sight (LOS) errors. Extensive experiments involving three obstacles (humans, walls, and glass) and two sites show an average NLOS identification accuracy of 95.05%, with LOS/NLOS recall rates of 95.72%/94.15%. The mitigated LOS errors are reduced by 50.4%, while the average improvement in the accuracy of the three types of NLOS ranging errors is 61.8%, reaching up to 76.84%. Overall, this method achieves a reduction in LOS and NLOS ranging errors of 25.19% and 69.85%, respectively, resulting in a 54.46% enhancement in positioning accuracy. This performance surpasses that of state-of-the-art techniques, such as the convolutional neural network (CNN), long short-term memory-extended Kalman filter (LSTM-EKF), least-squares-support vector machine (LS-SVM), and k-nearest neighbor (K-NN) algorithms.

2.
Sensors (Basel) ; 19(12)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234289

RESUMO

Trusted positioning data are very important for the fusion of Bluetooth fingerprint positioning (BFP) and Wi-Fi fingerprint positioning (WFP). This paper proposes an adaptive Bluetooth/Wi-Fi fingerprint positioning method based on Gaussian process regression (GPR) and relative distance (RD), which can choose trusted positioning results for fusion. In the offline stage, measurements of the Bluetooth and Wi-Fi received signal strength (RSS) were collected to construct Bluetooth and Wi-Fi fingerprint databases, respectively. Then, fingerprint positioning error prediction models were built with GPR and data from the fingerprint databases. In the online stage, online Bluetooth and Wi-Fi RSS readings were matched with the fingerprint databases to get a Bluetooth fingerprint positioning result (BFPR) and a Wi-Fi fingerprint positioning result (WFPR). Then, with the help of RD and fingerprint positioning error prediction models, whether the positioning results are trusted was determined. The trusted result is selected as the position estimation result when there is only one trusted positioning result among the BFPR and WFPR. The mean is chosen as the position estimation result when both the BFPR and WFPR results are trusted or untrusted. Experimental results showed that the proposed method was better than BFP and WFP, with a mean positioning error of 2.06 m and a root-mean-square error of 1.449 m.

3.
Sensors (Basel) ; 19(3)2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30744141

RESUMO

The radio map construction is usually time-consuming and labor-sensitive in indoor fingerprinting localization. We propose a fast construction method by using an adaptive path loss model interpolation. Received signal strength (RSS) fingerprints are collected at sparse reference points by using multiple smartphones based on crowdsourcing. Then, the path loss model of an access point (AP) can be built with several reference points by the least squares method in a small area. Afterwards, the RSS value can be calculated based on the constructed model and corresponding AP's location. In the small area, all models of detectable APs can be built. The corresponding RSS values can be estimated at each interpolated point for forming the interpolated fingerprints considering RSS loss, RSS noise and RSS threshold. Through combining all interpolated and sparse reference fingerprints, the radio map of the whole area can be obtained. Experiments are conducted in corridors with a length of 211 m. To evaluate the performance of RSS estimation and positioning accuracy, inverse distance weighted and Kriging interpolation methods are introduced for comparing with the proposed method. Experimental results show that our proposed method can achieve the same positioning accuracy as complete manual radio map even with the interval of 9.6 m, reducing 85% efforts and time of construction.

4.
Sensors (Basel) ; 18(8)2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30071642

RESUMO

The human body has a great influence on Wi-Fi signal power. A fixed K value leads to localization errors for the K-nearest neighbor (KNN) algorithm. To address these problems, we present an adaptive weighted KNN positioning method based on an omnidirectional fingerprint database (ODFD) and twice affinity propagation clustering. Firstly, an OFPD is proposed to alleviate body's sheltering impact on signal, which includes position, orientation and the sequence of mean received signal strength (RSS) at each reference point (RP). Secondly, affinity propagation clustering (APC) algorithm is introduced on the offline stage based on the fusion of signal-domain distance and position-domain distance. Finally, adaptive weighted KNN algorithm based on APC is proposed for estimating user's position during online stage. K initial RPs can be obtained by KNN, then they are clustered by APC algorithm based on their position-domain distances. The most probable sub-cluster is reserved by the comparison of RPs' number and signal-domain distance between sub-cluster center and the online RSS readings. The weighted average coordinates in the remaining sub-cluster can be estimated. We have implemented the proposed method with the mean error of 2.2 m, the root mean square error of 1.5 m. Experimental results show that our proposed method outperforms traditional fingerprinting methods.

5.
Sci Rep ; 14(1): 5819, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461310

RESUMO

Monitoring and predicting the regional groundwater storage (GWS) fluctuation is an essential support for effectively managing water resources. Therefore, taking Shandong Province as an example, the data from Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) is used to invert GWS fluctuation from January 2003 to December 2022 together with Watergap Global Hydrological Model (WGHM), in-situ groundwater volume and level data. The spatio-temporal characteristics are decomposed using Independent Components Analysis (ICA), and the impact factors, such as precipitation and human activities, which are also analyzed. To predict the short-time changes of GWS, the Support Vector Machines (SVM) is adopted together with three commonly used methods Long Short-Term Memory (LSTM), Singular Spectrum Analysis (SSA), Auto-Regressive Moving Average Model (ARMA), as the comparison. The results show that: (1) The loss intensity of western GWS is significantly greater than those in coastal areas. From 2003 to 2006, GWS increased sharply; during 2007 to 2014, there exists a loss rate - 5.80 ± 2.28 mm/a of GWS; the linear trend of GWS change is - 5.39 ± 3.65 mm/a from 2015 to 2022, may be mainly due to the effect of South-to-North Water Diversion Project. The correlation coefficient between GRACE and WGHM is 0.67, which is consistent with in-situ groundwater volume and level. (2) The GWS has higher positive correlation with monthly Global Precipitation Climatology Project (GPCP) considering time delay after moving average, which has the similar energy spectrum depending on Continuous Wavelet Transform (CWT) method. In addition, the influencing facotrs on annual GWS fluctuation are analyzed, the correlation coefficient between GWS and in-situ data including the consumption of groundwater mining, farmland irrigation is 0.80, 0.71, respectively. (3) For the GWS prediction, SVM method is adopted to analyze, three training samples with 180, 204 and 228 months are established with the goodness-of-fit all higher than 0.97. The correlation coefficients are 0.56, 0.75, 0.68; RMSE is 5.26, 4.42, 5.65 mm; NSE is 0.28, 0.43, 0.36, respectively. The performance of SVM model is better than the other methods for the short-term prediction.

6.
Sci Rep ; 13(1): 7817, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188735

RESUMO

YOLOv5 is one of the most popular object detection algorithms, which is divided into multiple series according to the control of network depth and width. To realize the deployment of mobile devices or embedded devices, the paper proposes a lightweight aerial image object detection algorithm (LAI-YOLOv5s) based on the improvement of YOLOv5s with a relatively small amount of calculation and parameter and relatively fast reasoning speed. Firstly, to better detect small objects, the paper replaces the minimum detection head with the maximum detection head and proposes a new feature fusion method, DFM-CPFN(Deep Feature Map Cross Path Fusion Network), to enrich the semantic information of deep features. Secondly, the paper designs a new module based on VoVNet to improve the feature extraction ability of the backbone network. Finally, based on the idea of ShuffleNetV2, the paper makes the network more lightweight without affecting detection accuracy. Based on the VisDrone2019 dataset, the detection accuracy of LAI-YOLOv5s on the mAP@0.5 index is 8.3% higher than that of the original algorithm. Compared with other series of YOLOv5 and YOLOv3 algorithms, LAI-YOLOv5s has the advantages of low computational cost and high detection accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA