Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35898048

RESUMO

Low Earth Orbit (LEO) satellites have stronger received signals and more rapid geometry changes than Global Navigation Satellite System (GNSS) satellites, making them attractive for positioning, navigation, and timing (PNT) applications. Due to the low altitude, the LEO constellation requires more satellites to cover the entire globe and more Pseudo Random Noise (PRN) codes to realize Code Division Multiple Access (CDMA), which means greater receiver storage resources and receiver acquisition time. In this paper, different from the traditional methods that assign a unique PRN code to each satellite, we propose a novel method in which several satellites share the same PRN code, and simply demonstrate the feasibility and benefits of this method. To determine the minimum number of PRN codes needed for a constellation, we build a mathematical model. After the algorithm comparison, we improve the recursive largest first (RLF) algorithm so that it has a higher running speed and a smaller approximate optimal solution within a certain time period. By studying polar-orbiting and walker constellations, we find that if other satellite parameters remain the same, the higher the orbital altitude is, the more PRN codes are needed, and no matter what the orbital inclination is, the minimum number of PRN codes remains the same. Overall, it is feasible and meaningful for several satellites sharing the same PRN code to save storage resources and reduce the satellite acquisition time of the receiver. If this new technology is applied, the storage resources and the average satellite acquisition time of the receiver will be, at most, one-third of previous ones.

2.
Phys Chem Chem Phys ; 20(25): 17268-17278, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29901058

RESUMO

A WO3-x/TiO2-x nanotube array (NTA) heterojunction photoanode was strategically designed to improve photoelectrocatalytic (PEC) performance by establishing a synergistic vacancy-induced self-doping effect and localized surface plasmon resonance (LSPR) effect of metalloid non-stoichiometric tungsten suboxide. The WO3-x/TiO2-x NTA heterojunction photoanode was synthesized through a successive process of anodic oxidation to form TiO2 nanotube arrays, magnetron sputtering to deposit metalloid WO3-x, and post-hydrogen reduction to engender oxygen vacancy in TiO2-x as well as crystallization. On the merits of such a synergistic effect, WO3-x/TiO2-x shows higher light-harvesting ability, stronger photocurrent response, and resultant improved photoelectrocatalytic performance than the contrast of WO3-x/TiO2, WO3/TiO2 and TiO2, confirming the importance of oxygen vacancies in improving PEC performance. Theoretical calculation based on density functional theory was applied to investigate the electronic structural features of samples and reveal how the oxygen vacancy determines the optical property. The carrier density tuning mechanism and charge transfer model were considered to be associated with the synergistic effect of self-doping and metalloid LSPR effect in the WO3-x/TiO2-x NTA.

3.
ACS Appl Mater Interfaces ; 15(40): 47221-47228, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37768723

RESUMO

Next-generation electromechanical conversion devices have a significant demand for high-performance lead-free piezoelectric materials to meet environmentally friendly requirements. However, the low electromechanical properties of lead-free piezoceramics limit their application in high-end transducer applications. In this work, a 0.96K0.48Na0.52Nb0.96Sb0.04O3-0.04(Bi0.5-xSmx)Na0.5ZrO3 (abbreviated as T-NKN-xSm) ceramic was designed through phase regulation and texture engineering, which is expected to solve this difficulty. Through our research, we successfully demonstrated the enhanced electromechanical performance of lead-free textured ceramics with a highly oriented [001]c orientation. Notably, the T-NKN-xSm textured ceramics doped with 0.05 mol % Sm exhibited the optimal electromechanical performance: piezoelectric coefficient d33 ≈ 710 pC N-1, longitudinal electromechanical coupling k33 ≈ 0.88, planar electromechanical coupling kp ≈ 0.80, and Curie temperature Tc ≈ 244 °C. Finally, we conducted a detailed investigation into the phase and domain structures of the T-NKN-Sm ceramics, providing valuable insights for achieving high electromechanical properties in NKN-based ceramics. This research serves as a crucial reference for the development of advanced electromechanical devices by facilitating the utilization of lead-free piezoelectric materials with superior performance and environmental benefits.

4.
ACS Appl Mater Interfaces ; 14(2): 3076-3083, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34984909

RESUMO

Although the MPB composition 0.42PNN-0.21PZ-0.37PT ceramic has high piezoelectric properties, its temperature stability at room temperature is rather poor due to the low phase-transition temperature. By texture engineering using BaTiO3 (BT) as the template, the temperature stability of this material can be greatly improved. In the temperature range from room temperature up to 140 °C, the high effective piezoelectric strain constant d33* of 0.42PNN-0.21PZ-0.37PT-3BT only changed by 4.9% from 1278 to 1215 pm/V, while the d33* of the nontextured counterpart changed by 46.7% from the room temperature value of 920 pm/V with the maximum deviation to 1350 pm/V at 80 °C. In addition, the textured ceramic has higher piezoelectric properties, lower dielectric loss, and slightly higher coercive field. The room-temperature figure-of-merit d33 × g33 for PNN-PZT-2BT is increased by as much as 42% compared with the nontextured counterpart. Our results demonstrated that texture engineering is an effective way to improve the temperature stability of the MPB composition piezoceramics.

5.
Adv Mater ; 34(2): e2107236, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34655460

RESUMO

Piezoelectric ceramic devices, which utilize multifarious vibration modes to realize electromechanical coupling and energy conversions, are extensively used in high-technological fields. However, the excitation of basic modes is mainly subjected to natural eigenfrequency of ceramic devices, which is related to the structure and material parameters. Herein, inspired by metamaterial theory, a programmable, 3D ordered structure with piezoceramic strain units (3D OSPSU) is developed to artificially generate basic modes in a broad frequency band other than only in narrow eigenfrequency. A (2 × 2 × 2) arrayed, co-fired, multilayer 3D OSPSU is painstakingly designed and fabricated for generating basic modes, such as flexural, extension, shear, torsion, and even coupled modes at nonresonance. To validate the 3D OSPSU method, a five-degree-of-freedom micro-nano actuating platform based on only one co-fired multilayer ceramic is constructed. The proposed methodology provides a new paradigm for creating extraordinary material properties of piezoelectric ceramics and will inspire brand-new piezoelectric device designs.

6.
Adv Sci (Weinh) ; 7(16): 2001155, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32832366

RESUMO

Continual precision actuations with nanoscale resolution over large ranges have extensive requirements in advanced intelligent manufacturing and precise surgical robots. To produce continual nanostep motion, conventionally, multiple pairs of piezo-actuators are employed to operate in inchworm principle under complex three- or four-phase timing signal drive. Inspired by the idea of ordered structures with functional units, a much simpler nanostep piezoelectric actuator consisting of (2 × 2) arrayed, cofired multilayer piezoceramic actuation units is developed, which operates in an artificially generated quasi shear mode (AGQSM) that is missing in natural piezoelectric ceramics. Under only one-phase square-wave voltage drive, the actuator can produce a stable, continual nanostep motion in two ways at nonresonant frequencies, and the obtained minimum step displacement is as low as 7 nm in open control, indicating its potential application as a precise finger or knife actuator in surgical robots. This work is of great guiding significance for future actuator designs using the methodology of ordered structure with piezoceramic actuation units and AGQSM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA