Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 44(12): 4523-4534, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37318814

RESUMO

The explorations of brain functional connectivity network (FCN) using resting-state functional magnetic resonance imaging can provide crucial insights into discriminative analysis of neuropsychiatric disorders, such as schizophrenia (SZ). Pearson's correlation (PC) is widely used to construct a densely connected FCN which may overlook some complex interactions of paired regions of interest (ROIs) under confounding effect of other ROIs. Although the method of sparse representation takes into account this issue, it penalizes each edge equally, which often makes the FCN look like a random network. In this paper, we establish a new framework, called convolutional neural network with sparsity-guided multiple functional connectivity, for SZ classification. The framework consists of two components. (1) The first component constructs a sparse FCN by integrating PC and weighted sparse representation (WSR). The FCN retains the intrinsic correlation between paired ROIs, and eliminates false connection simultaneously, resulting in sparse interactions among multiple ROIs with the confounding effect regressed out. (2) In the second component, we develop a functional connectivity convolution to learn discriminative features for SZ classification from multiple FCNs by mining the joint spatial mapping of FCNs. Finally, an occlusion strategy is employed to explore the contributive regions and connections, to derive the potential biomarkers in identifying associated aberrant connectivity of SZ. The experiments on SZ identification verify the rationality and advantages of our proposed method. This framework also can be used as a diagnostic tool for other neuropsychiatric disorders.


Assuntos
Esquizofrenia , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem , Encéfalo
2.
Neuroimage ; 244: 118635, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624503

RESUMO

Brain function relies on a precisely coordinated and dynamic balance between the functional integration and segregation of distinct networks. Characterizing the way in which brain regions reconfigure their interactions to give rise to distinct but hidden brain states remains an open challenge. In this paper, we propose a Bayesian method for characterizing community structure-based latent brain states and showcase a novel strategy based on posterior predictive discrepancy using the latent block model to detect transitions between community structures in blood oxygen level-dependent (BOLD) time series. The set of estimated parameters in the model includes a latent label vector that assigns network nodes to communities, and also block model parameters that reflect the weighted connectivity within and between communities. Besides extensive in-silico model evaluation, we also provide empirical validation (and replication) using the Human Connectome Project (HCP) dataset of 100 healthy adults. Our results obtained through an analysis of task-fMRI data during working memory performance show appropriate lags between external task demands and change-points between brain states, with distinctive community patterns distinguishing fixation, low-demand and high-demand task conditions.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Teorema de Bayes , Cognição , Simulação por Computador , Conectoma , Técnicas Histológicas , Humanos , Saturação de Oxigênio , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA