Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 694: 108591, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32961113

RESUMO

The alteration of the intestinal barrier function is currently believed to be involved in the pathogenesis of gut diseases mainly associated with the activation of inflammation processes. Diet plays an important role in the control of human gut integrity. Theobromine is a natural methylxanthine present in dark chocolate particularly abundant in cocoa bean shell. This is a polyphenol rich by-product generated in cocoa industrial processing, which is gaining value as a functional ingredient. This study aims to highlight for the first time the capability of theobromine in protecting the intestinal cell monolayer from a mixture of dietary oxysterols showing an inflammatory action in terms of IL-8 and MCP-1 overproduction. Differentiated CaCo-2 cells were treated with 60 µM oxysterol mixture and pre-incubated with 10 µM theobromine. Intestinal barrier damage was investigated in terms of tight junction claudin 1, occludin and JAM-A protein levels, matrix metalloproteinase (MMP) -2 and -9 activation and anti/pro-apoptotic protein changes. The observed cell monolayer permeability protection by theobromine may be due to its ability to inhibit the production of cytokines and MMPs that can be responsible for tight junction loss and apoptosis in intestinal cells. Our findings provide additional mechanistic hints on the healthy effect of theobromine cocoa component as an attractive natural molecule in the prevention of inflammatory gut diseases.


Assuntos
Apoptose/efeitos dos fármacos , Oxisteróis/toxicidade , Substâncias Protetoras/farmacologia , Teobromina/farmacologia , Junções Íntimas/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Células CACO-2 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
2.
BMC Psychiatry ; 20(1): 542, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208138

RESUMO

BACKGROUND: To explore the relationship between adult Attention Deficit/ Hyperactivity Disorder (ADHD), antistreptococcal titers, ABGA, and recurrent infections during early childhood. METHOD: Childhood history of recurrent infections and a blood sample were collected in a sample of DSM-IV adult outpatients with ADHD. The anti-streptolysin O (ASO), anti-deoxyribonuclease B (anti-DNase B), and anti-basal ganglia antibodies (ABGA) titers were determined in patient plasma by enzyme-linked immunosorbent assay (ELISA). Titers positivity was evaluated following manufacturer's specifications. Absolute titers were also collected as continuous variables. RESULTS: Fourteen out of 22 (63.6%) have had recurrent infections in childhood (i.e., seven, 31.8%, have had tonsillitis or adenoiditis and seven, 31.8%, have had any other infections). Eighteen patients (81.9%) were positive for anti-DNase B, five (22.7%) for ASO, and 4 (18.2%) were positive for both of them. Five participants (22.7%) were ABGA positive, whereas only two (9.1%) were positive for all three antibodies. CONCLUSIONS: patients with ADHD might be more prone to infections during childhood and subclinical streptococcal infections during adulthood. Moreover, they seem to have an increased risk for basal ganglia autoimmunity in adulthood. Both infections and the ensuing acquired autoimmunity could influence the neurodevelopmental process, by contributing, at least in part, to the ADHD pathogenesis.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Infecções Estreptocócicas , Adulto , Gânglios da Base , Criança , Pré-Escolar , Humanos , Infecções Estreptocócicas/complicações
3.
J Transl Med ; 11: 314, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24341512

RESUMO

BACKGROUND: CD34+ progenitor cells comprise both hematopoietic and endothelial progenitor cells. Recent studies suggest that circulating endothelial progenitor cells are recruited into the angiogenic vascular system of several cancers, including pancreatic carcinoma, and that they correlate with clinical progress. However, whether endothelial progenitor cell mobilization occurs in response to cytokine release by tumor cells is still unclear. METHODS: The chemotactic- and/or differentiating-activities of the poorly-differentiated pancreatic carcinoma cell line PT45, and of the immortal H6c7 cell line, a line of near-normal pancreatic duct epithelial cells, on endothelial progenitor cells were investigated in vitro using circulating CD34+ as model. RESULTS: The study showed that Vascular Endothelial Growth Factor produced by PT45 cells and, at lesser extent, by H6c7 cells, predominantly chemoattract peripheral blood CD34+ expressing the type 2 relative receptor. Addition of PT45-conditioned medium to CD34+ cells, cultured under conditions supporting myeloid cell development, diverted the differentiation of a subset of these progenitor cells into cells expressing endothelial cell markers, such as CD146, CD105, VE-cadherin and von Willebrand Factor-related antigen. Moreover, these endothelial-like cells formed capillary networks in vitro, chiefly through the release of Angiopoietin-1 by PT45 cells. CONCLUSIONS: The results demonstrate that pancreatic-carcinoma cells potentially attract circulating endothelial progenitor cells to the tumor site, by releasing high levels of pro-angiogenic factors such as Vascular Endothelial Growth Factor and Angiopoietin-1, and may direct the differentiation of these cell subsets of the CD34+ cell population into endothelial cells; the latter cells may become a component of the newly-formed vessels, contributing to angiogenesis-mediated tumor growth and metastasis.


Assuntos
Indutores da Angiogênese/metabolismo , Antígenos CD34/imunologia , Diferenciação Celular/fisiologia , Células Endoteliais/patologia , Neoplasias Pancreáticas/metabolismo , Células-Tronco/imunologia , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Primers do DNA , Citometria de Fluxo , Humanos , Neoplasias Pancreáticas/patologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Int J Mol Sci ; 13(11): 14278-93, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23203064

RESUMO

The hypercholesterolemia-atherosclerosis association is now established; hypercholesterolemia may induce vascular-cell activation, subsequently increasing expression of adhesion molecules, cytokines, chemokines, growth factors, and other key inflammatory molecules. Among inflammatory molecules expressed by vascular cells, integrins play a critical role in regulating macrophage activation and migration to the site of inflammation, by mediating cell-cell and cell-extracellular matrix interactions. The main lipid oxidation products present in oxidized LDL that may be responsible for inflammatory processes in atherogenesis, are cholesterol oxidation products, known as oxysterols. This study demonstrates the effect of an oxysterol mixture, compatible with that detectable in human hypercholesterolemic plasma, on the expression and synthesis of ß(1)-integrin in cells of the macrophage lineage. The molecular signaling whereby oxysterols induce ß(1)-integrin up-regulation is also comprehensively investigated. Over-expression of ß(1)-integrin depends on activation of classic and novel members of protein kinase C and extracellular signal-regulated kinases 1 and 2, as well as of the up-stream G-protein (Gq and G13), c-Src, and phospholipase C. In addition, the localization of ß(1)-integrin in advanced human carotid plaques is highlighted, marking its importance in atherosclerotic plaque progression.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Integrina beta1/genética , Integrina beta1/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Transdução de Sinais , Esteroides/farmacologia , Aterosclerose/genética , Aterosclerose/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Oxirredução , Fosfoinositídeo Fosfolipase C/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Interferência de RNA , Células U937
5.
Vascul Pharmacol ; 145: 107001, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35623548

RESUMO

Experimentally, many strong cardioprotective treatments have been identified in different animal models of acute ischaemia/reperfusion injury (IRI) and coronary artery disease (CAD). However, the translation of these cardioprotective therapies for the benefit of the patients into the clinical scenario has been very disappointing. The reasons for this lack are certainly multiple. Indeed, many confounding factors we must deal in clinical reality, such as aging, sex and inflammatory processes are neglected in many experiments. Due to the pivotal role of aging, sex and inflammation in determining cardiac ischaemic disease, in this review, we take into account age as a modifier of tolerance to IRI in the two sexes, dissecting aging and myocardial reperfusion injury mechanisms and the sex differences in tolerance to IRI. Then we focus on the role of the gut microbiota and the NLRP3 inflammasome in myocardial IRI and on the possibility to consider NLRP3 inflammasome as a potential target in the treatment of CAD in relationship with age and sex. Finally, we consider the cardioprotective mechanisms and cardioprotective treatments during aging in the two sexes.


Assuntos
Inflamassomos , Traumatismo por Reperfusão Miocárdica , Envelhecimento , Animais , Feminino , Isquemia , Masculino , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLR
6.
Redox Biol ; 49: 102220, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34968886

RESUMO

More and more attention is nowadays given to the possible translational application of a great number of biochemical and biological findings with the involved molecules. This is also the case of cholesterol oxidation products, redox molecules over the last years deeply investigated for their implication in human pathophysiology. Oxysterols of non-enzymatic origin, the excessive increase of which in biological fluids and tissues is of toxicological relevance for their marked pro-oxidant and pro-inflammatory properties, are increasingly applied in clinical biochemistry as molecular markers in the diagnosis and monitoring of several human and veterinary diseases. Conversely, oxysterols of enzymatic origin, the production of which is commonly under physiological regulation, could be considered and tested as promising pharmaceutical agents because of their antiviral, pro-osteogenic and antiadipogenic properties of some of them. Very recently, the quantification of oxysterols of non-enzymatic origin has been adopted in a systematic way to evaluate, monitor and improve the quality of cholesterol-based food ingredients, that are prone to auto-oxidation, as well as their industrial processing and the packaging and the shelf life of the finished food products. The growing translational value of oxysterols is here reviewed in its present and upcoming applications in various industrial fields.


Assuntos
Oxisteróis , Biomarcadores , Colesterol , Humanos , Hidroxicolesteróis , Oxirredução
7.
Biochem Pharmacol ; 196: 114618, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34023292

RESUMO

Direct translation of findings achieved in experimental cell or animal models to humans is quite a difficult task. We focused here only on the epidemiological and ex vivo human studies so far available about the role of 27-hydroxycholesterol (27OHC) and related metabolism in cancer development. Some studies point to an adverse effect of 27OHC in breast cancer, based on the oxysterol's recognized ability to bind to and modulate estrogen receptors. The detrimental role of this side chain oxysterol would be evident in cancer progression, mainly in post-menopausal women and in an advanced stage of the disease. Other human researches, however, would rather correlate 27OHC intra-tumoral levels to a better prognosis. The analyses on human prostate cancer specimens performed to date are all against a detrimental contribution of 27OHC, rather suggesting interesting anti-prostate cancer effects exerted by this oxysterol. Finally, an increased 27OHC synthesis on the contrary seems to favour progression of late stage cancers in colon, brain and thyroid tissues, as found for breast cancer, possibly due to pro-inflammatory and pro-survival signalling triggered by disproportionate amounts of this oxysterol.


Assuntos
Biomarcadores Tumorais/metabolismo , Progressão da Doença , Hidroxicolesteróis/metabolismo , Neoplasias/metabolismo , Animais , Colestanotriol 26-Mono-Oxigenase/metabolismo , Família 7 do Citocromo P450/metabolismo , Humanos , Neoplasias/patologia , Esteroide Hidroxilases/metabolismo
8.
Antioxidants (Basel) ; 10(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067119

RESUMO

The development of Alzheimer's disease (AD) is influenced by several events, among which the dysregulation of cholesterol metabolism in the brain plays a major role. Maintenance of brain cholesterol homeostasis is essential for neuronal functioning and brain development. To maintain the steady-state level, excess brain cholesterol is converted into the more hydrophilic metabolite 24-S-hydroxycholesterol (24-OHC), also called cerebrosterol, by the neuron-specific enzyme CYP46A1. A growing bulk of evidence suggests that cholesterol oxidation products, named oxysterols, are the link connecting altered cholesterol metabolism to AD. It has been shown that the levels of some oxysterols, including 27-hydroxycholesterol, 7ß-hydroxycholesterol and 7-ketocholesterol, significantly increase in AD brains contributing to disease progression. In contrast, 24-OHC levels decrease, likely due to neuronal loss. Among the different brain oxysterols, 24-OHC is certainly the one whose role is most controversial. It is the dominant oxysterol in the brain and evidence shows that it represents a signaling molecule of great importance for brain function. However, numerous studies highlighted the potential role of 24-OHC in favoring AD development, since it promotes neuroinflammation, amyloid ß (Aß) peptide production, oxidative stress and cell death. In parallel, 24-OHC has been shown to exert several beneficial effects against AD progression, such as preventing tau hyperphosphorylation and Aß production. In this review we focus on the current knowledge of the controversial role of 24-OHC in AD pathogenesis, reporting a detailed overview of the findings about its levels in different AD biological samples and its noxious or neuroprotective effects in the brain. Given the relevant role of 24-OHC in AD pathophysiology, its targeting could be useful for disease prevention or slowing down its progression.

9.
Antioxidants (Basel) ; 10(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673085

RESUMO

BACKGROUND: Cocoa bean shell (CBS), a main byproduct of cocoa processing, represents a source of components such as polyphenols and methylxanthines, which have been associated with a reduced risk of several diseases. Therefore, CBS has potential application as a food ingredient. Intestinal mucosa is exposed to immune and inflammatory responses triggered by dietary agents, such as oxysterols, which derive from cholesterol oxidation and are pro-oxidant compounds able to affect intestinal function. We aimed at investigating the capability of the Forastero cultivar CBS, added or not added to ice cream, to protect against the intestinal barrier damage induced by a dietary oxysterol mixture. METHODS: Composition and antioxidant capacity of in vitro digested CBS and CBS-enriched ice cream were analyzed by high-performance liquid chromatography and 1,1-diphenyl-2-picryl-hydrazyl radical-scavenging assay, respectively. CaCo-2 cells differentiated into enterocyte-like monolayer were incubated with 60 µM oxysterol mixture in the presence of CBS formulations. RESULTS: The oxysterol mixture induced tight junction impairment, interleukin-8 and monocyte chemoattractant protein-1 cell release, and oxidative stress-related nuclear factor erythroid 2 p45-related factor 2 response Nrf2. Both CBSs protected cells from these adverse effects, probably thanks to their high phenolic content. CBS-enriched ice cream showed the highest antioxidant capacity. Theobromine, which is in high concentrations of CBS, was also tested. Although theobromine exerted no effect on Nrf2 expression, its anti-inflammatory cooperating activity in CBS effect cannot be excluded. CONCLUSIONS: Our findings suggest that CBS-enriched ice cream may be effective in the prevention of gut integrity damage associated with oxidative/inflammatory reactions.

10.
J Steroid Biochem Mol Biol ; 210: 105854, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33631373

RESUMO

Hepatitis B virus (HBV) infection is a global health problem with different immunological phases and therapeutic approaches. The serological condition of inactive carrier (IC) was recently well defined as a clinical and virological stable status, in which specific treatment is usually deferred, while the active chronic hepatitis B (CHB) condition requires an immediate treatment strategy. Recently, a possible broad antiviral effect of oxysterols, in particular 25-hydroxycholesterol (25OHC) and 27-hydroxycholesterol (27OHC), was observed, as most likely linked to the positive modulation of innate immunity, but no clear evidence is available about their possible role in chronic HBV infection. Thus, we examined the relationship between the plasma levels of oxysterols and the disease condition of 40 HBV patients, without treatment at the start of the study. Of these, 33 were ICs and 7 were active CHB subjects. A marked reduction of 25OHC and 27OHC plasma levels was detectable in all active CHB recruited patients, while the plasma values observed in ICs all remained within the physiological range. No difference was observed between the two groups of patients with regard to the plasma levels of 24-hydroxycholesterol (24OHC). Further, the plasma level of 27OHC ≥ 140 µg/L was shown to be predictive of an inactive carrier status. This cohort study points to 27OHC as a good candidate biomarker to differentiate active and inactive CHB status. An increasing bulk of research reports is supporting the very likely contribution of this oxysterol to the immunological control of chronic hepatitis B.


Assuntos
Portador Sadio/sangue , Hepatite B Crônica/sangue , Hepatite B Crônica/virologia , Hidroxicolesteróis/sangue , Adulto , Biomarcadores/sangue , Portador Sadio/virologia , Técnicas de Imagem por Elasticidade , Feminino , Genótipo , Antígenos da Hepatite B/sangue , Vírus da Hepatite B/genética , Hepatite B Crônica/imunologia , Hepatite B Crônica/fisiopatologia , Humanos , Fígado/fisiopatologia , Fígado/virologia , Masculino , Estudos Prospectivos
11.
Cells ; 9(4)2020 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260362

RESUMO

Adrenocortical carcinoma (ACC) is a rare cancer with poor prognosis. Mitotane, the standard treatment for ACC, impairs adrenocortical steroid biosynthesis and cholesterol metabolism. In the H295R cell line, a standard ACC in vitro model, mitotane was previously reported to enhance the production of some oxysterols. To verify the possible mechanistic involvement of oxysterols in the anti-ACC effect of mitotane, a gas chromatography mass spectrometry (GC-MS) profiling of oxysterols and the main cholesterol precursors was carried out in H295R cells. Among the oxysterols detected in mitotane-treated cells, 27OHC was markedly produced, as well as lanosterol and lathosterol cholesterol precursors. In this cell model, mitotane was confirmed to affect mitochondrial transmembrane potential and induce apoptosis. Such cytotoxic effects were perfectly matched by H295R cell treatment with a single identical micromolar amount of 27OHC. The mitotane-dependent strong increase in 27OHC was confirmed in vivo, in the plasma of ACC patients under treatment with the drug. Moreover, lanosterol, lathosterol, desmosterol and, to a minor extent, 24-hydroxycholesterol and 25-hydroxycholesterol plasma levels were significantly increased in those patients. The cytotoxic effect of mitotane on ACC cells may be partly related to the increased intracellular level of 27OHC induced by the drug itself.


Assuntos
Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Carcinoma Adrenocortical/tratamento farmacológico , Hidroxicolesteróis/metabolismo , Mitotano/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitotano/farmacologia , Oxirredução , Oxisteróis/metabolismo
12.
Antioxidants (Basel) ; 8(6)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151323

RESUMO

BACKGROUND: Exaggerated Toll-like receptor (TLR)-mediated immune and inflammatory responses play a role in inflammatory bowel diseases. This report deals with the ability of a mixture of oxysterols widely present in cholesterol-rich foods to induce in vitro intestinal inflammation through TLR up-regulation. The anti-inflammatory action of four cocoa bean shell (CBS) extracts with different polyphenol content, was tested. METHODS: Differentiated intestinal CaCo-2 cells were treated with a dietary oxysterol mixture (Oxy-mix) (60 µM). The expression and activation of TLR2 and TLR4, as well as the production of their downstream signaling effectors IL-8, IFNß and TNFα were analyzed in the presence or absence of TLR antibodies. Honduras CBS extracts were characterized for their polyphenol contents; their anti-inflammatory action was analyzed in CaCo-2 cells treated with Oxy-mix. RESULTS: Oxysterol-dependent TLR-2 and TLR4 over-expression and activation together with cytokine induction were abolished by blocking TLRs with specific antibodies. Polyphenol-rich CBS extracts consisting of high quantities of (-)-epicatechin and tannins also prevented TLR induction. CONCLUSIONS: TLR2 and TLR4 mainly contribute to inducing oxysterol-dependent intestinal inflammation. The fractionation method of CBS allowed the recovery of fractions rich in (-)-epicatechin and tannins able to counteract oxysterol-induced inflammation, thus highlighting the beneficial biological potential of specific CBS extracts.

13.
Carcinogenesis ; 29(5): 890-4, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18453540

RESUMO

It is now unanimously accepted that neoplastic cells tend to become less susceptible to the growth regulatory effects of transforming growth factor-beta1 (TGF-beta1), mainly because of reduced expression and/or activity of TGF-beta1-specific receptors, as reported for many human cancers including colon cancer. Consequently, a sustained increase of TGF-beta1 in the intestinal mucosa, like that caused by inflammatory processes and/or high dietary intake of animal fat, might become crucial for the progression of a neoplastic clone. In fact, this proapoptotic and prodifferentiating cytokine could eliminate neoplastic cells still susceptible to TGF-beta1's antiproliferative action (TGF-beta1 receptor-positive cells), indirectly favoring the expansion of TGF-beta1 resistant ones (TGF-beta1 receptors deficient or negative cells). The actual concentration of TGF-beta1 in the colonic mucosa undergoing neoplastic transformation is still debated, and the phase of the relevant carcinogenetic process in which a reduced susceptibility to this antiproliferative molecule first occurs has not been precisely established yet. However, no doubt that TGF-beta1 level and activity may be upregulated in cells of the macrophage lineage by animal fat oxidation products, such as oxysterols and aldehydes, as reviewed here. But phagocytes as well as fibroblasts constitutively express TGF-beta1 and are accumulating in tumor-associated stroma. Thus, upregulation of this cytokine system within colonic tumor-associated stroma by excess dietary intake of cholesterol and n-6 polyunsaturated fatty acids appears as a primary mechanism of cancer progression at least in neoplastic lesions of the digestive tract.


Assuntos
Neoplasias do Colo/epidemiologia , Gorduras na Dieta/efeitos adversos , Mucosa Intestinal/fisiopatologia , Fator de Crescimento Transformador beta1/fisiologia , Animais , Apoptose , Araquidonato 5-Lipoxigenase/metabolismo , Diferenciação Celular , Divisão Celular , Neoplasias Colorretais/epidemiologia , Ácidos Graxos Ômega-6/efeitos adversos , Humanos , Doenças Inflamatórias Intestinais/etiologia , Estilo de Vida , Oxirredução , Transdução de Sinais
14.
Mol Aspects Med ; 29(1-2): 67-71, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18158180

RESUMO

The aldehyde 4-hydroxynonenal (HNE) is a major end-product of peroxidation of membrane n-6-polyunsaturated fatty acids. Primary reactants for HNE are the amino acids cysteine, histidine and lysine, and quantitatively, proteins and peptides represent the most important group of HNE-targeted biomolecules. HNE-protein adducts actually elude the metabolism of the aldehyde, particularly active in the liver, so that they can be easily detected in the hepatic tissue itself and in peripheral blood, and quantified by using immunoassays. Since consistently detectable in various liver disease processes and well related to the intensity of necro-inflammation, HNE-protein adducts may be considered a particularly good marker of lipid oxidation during liver injury. In addition, the demonstrated adduction reaction of HNE with important signalling proteins strongly suggests a pathogenetic role for this lipid aldehyde in the progression of liver diseases.


Assuntos
Aldeídos/metabolismo , Hepatopatias/metabolismo , Proteínas/metabolismo , Aldeídos/química , Biomarcadores/química , Biomarcadores/metabolismo , Humanos , Lipídeos/química , Hepatopatias/diagnóstico , Oxirredução , Proteínas/química
15.
Curr Med Chem ; 25(11): 1311-1326, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28625152

RESUMO

BACKGROUND: A defective mucosal barrier function is the principal cause of the uncontrolled onset and progression of a number of human inflammatory gut diseases, most of which are characterized by chronic intermittent immune and inflammatory responses leading to structural intestinal damage, which can represent a potential risk for colorectal cancer development. During the active disease phase the production of pro-inflammatory cytokines and chemokines, and the induction of oxidative reactions by activated leukocytes and epithelial cells represent the main event in the intestinal inflammation. OBJECTIVE: Oxidative stress plays a key role in the development of intestinal damage. Indeed reactive oxygen species and their oxidized by-products regulate redox-sensitive signaling pathways and transcription factors, which sustain inflammation within the intestinal layer. METHODS: Polyunsaturated fatty acids and cholesterol are the principal targets of oxidative modifications. These lipids, which are cell membrane constituents or are present in food, readily undergo non-enzymatic oxidation to form chemically-reactive species that can induce a wide range of biological effects including inflammation, programmed cell death, and proliferation. RESULTS AND CONCLUSIONS: In this review we summarize the current knowledge on the role of lipid oxidation products in regulating redox pathways involved in the pathogenesis of inflammation- related gut diseases. In particular, lipid peroxidation end products, such as isoprostanes and aldehydes, and cholesterol oxidation-derived oxysterols are taken into consideration. The control of oxidative damage and consequently tissue local over-production of lipid oxidation products by using specific antioxidant and anti-inflammatory molecules in the diet may have clinical and therapeutic benefits.


Assuntos
Aldeídos/metabolismo , Doenças Inflamatórias Intestinais/etiologia , Isoprostanos/metabolismo , Peroxidação de Lipídeos , Oxisteróis/metabolismo , Fármacos Gastrointestinais/uso terapêutico , Humanos , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/fisiopatologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo
16.
Biochimie ; 153: 220-231, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29894701

RESUMO

A growing bulk of evidence suggests that cholesterol oxidation products, known as oxysterols, are potentially involved in the pathogenesis of major chronic diseases, including atherosclerosis, Alzheimer's disease, and inflammatory bowel disease. Oxysterols are involved in various key steps of these complex processes, mainly thanks to their ability to act through up-regulation of oxidative stress, inflammation, and cell toxicity. This review summarizes the current knowledge of the effects induced by these compounds on cells, after their accumulation in the arterial wall, brain, and intestine. This evidence might help to develop innovative strategies to counteract the progression of these chronic inflammatory human diseases.


Assuntos
Inflamação/metabolismo , Oxisteróis/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Morte Celular , Doença Crônica , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Neurônios/patologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
17.
Free Radic Biol Med ; 129: 354-363, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30312760

RESUMO

Atherosclerosis is currently understood to be mainly the consequence of a complicated inflammatory process at the different stages of plaque development. Among the several inflammatory molecules involved, up-regulation of the functional cyclooxygenase 2/membrane-bound prostaglandin E synthase 1 (COX-2/mPGES-1) axis plays a key role in plaque development. Excessive production of oxidized lipids, following low-density lipoprotein (LDL) oxidation, is a characteristic feature of atherosclerosis. Among the oxidized lipids of LDLs, the oxysterol 27-hydroxycholesterol (27-OH) and the aldehyde 4-hydroxynonenal (HNE) substantially accumulate in the atherosclerotic plaque, contributing to its progression and instability through a variety of processes. This study shows that 27-OH and HNE promote up-regulation of both the inducible enzymes COX-2 and mPGES-1, leading to increased production of prostaglandin (PG) E2 and inducible nitric oxide synthase, and the subsequent release of nitric oxide in human promonocytic U937 cells. The study also examined the potential involvement of the functionally coupled COX-2/mPGES-1 in enhancing the production of certain pro-inflammatory cytokines and of matrix metalloproteinase 9 by U937 cells. This enhancement is presumably due to the induction of PGE2 synthesis, as a result of the up-regulation of the COX-2/mPGES-1, stimulated by the two oxidized lipids, 27-OH and HNE. Induction of PGE2 synthesis might thus be a mechanism of plaque instability and eventual rupture, contributing to matrix metalloproteinase production by activated macrophages.


Assuntos
Aldeídos/farmacologia , Ciclo-Oxigenase 2/genética , Hidroxicolesteróis/farmacologia , Monócitos/efeitos dos fármacos , Prostaglandina-E Sintases/genética , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Lipoproteínas LDL/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Modelos Biológicos , Monócitos/metabolismo , Monócitos/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Oxirredução , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Prostaglandina-E Sintases/metabolismo , Transdução de Sinais
18.
Redox Biol ; 17: 348-354, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29793168

RESUMO

Dietary habits may strongly influence intestinal homeostasis. Oxysterols, the oxidized products of cholesterol present in cholesterol-containing foodstuffs, have been shown to exert pro-oxidant and pro-inflammatory effects, altering intestinal epithelial layer and thus contributing to the pathogenesis of human inflammatory bowel diseases and colon cancer. Extra virgin olive oil polyphenols possess antioxidant and anti-inflammatory properties, and concentrate in the intestinal lumen, where may help in preventing intestinal diseases. In the present study we evaluated the ability of an extra virgin olive oil phenolic extract to counteract the pro-oxidant and pro-inflammatory action of a representative mixture of dietary oxysterols in the human colon adenocarcinoma cell line (Caco-2) undergoing full differentiation into enterocyte-like cells. Oxysterols treatment significantly altered differentiated Caco-2 cells redox status, leading to oxidant species production and a decrease of GSH levels, after 1 h exposure, followed by an increase of cytokines production, IL-6 and IL-8, after 24 h. Oxysterol cell treatment also induced after 48 h an increase of NO release, due to the induction of iNOS. Pretreatment with the phenolic extract counteracted oxysterols effects, at least in part by modulating one of the main pathways activated in the cellular response to the action of oxysterols, the MAPK-NF-kB pathway. We demonstrated the ability of the phenolic extract to directly modulate p38 and JNK1/2 phosphorylation and activation of NF-kB, following its inhibitor IkB phosphorylation. The phenolic extract also inhibited iNOS induction, keeping NO concentration at the control level. Our results suggest a protective effect at intestinal level of extra virgin olive oil polyphenols, able to prevent or limit redox unbalance and the onset and progression of chronic intestinal inflammation.


Assuntos
Antioxidantes/farmacologia , Inflamação/prevenção & controle , Azeite de Oliva/farmacologia , Polifenóis/farmacologia , Células CACO-2 , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/biossíntese , Interleucina-8/biossíntese , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , NF-kappa B/genética , Óxido Nítrico/biossíntese , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Oxisteróis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Front Biosci ; 12: 791-9, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17127339

RESUMO

A significant fraction of cholesterol that accumulates in atherosclerotic lesions is actually oxidized to yield a number of derivatives, named oxysterols, which are provided with much stronger biochemical effects than the parental compound. Of note, an increasing bulk of studies is giving evidence of accumulation of oxysterols in a number of other chronic disease processes including quite common neurodegenerative diseases. In particular, defined cholesterol oxidation products, among those of main interest in pathophysiology, may strongly activate the mitochondrial pathway of apoptotic death. Modulation by oxysterols of various pro- and anti-apoptotic molecules involved in that pathway are hereafter examined under the light of the most recent relevant literature.


Assuntos
Apoptose , Colesterol/análogos & derivados , Mitocôndrias/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Colesterol/química , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Oxirredução , Transdução de Sinais
20.
Free Radic Biol Med ; 111: 186-195, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28089726

RESUMO

Consistent experimental data suggest the importance of inflammation-associated oxidative stress in colorectal cancer (CRC) pathogenesis. Inflammatory bowel disease with chronic intestinal inflammation is now considered a precancerous condition. Oxidative stress is an essential feature of inflammation. Activation of redox-sensitive pro-inflammatory cell signals and inflammatory mediators concur to establish a pro-tumoral environment. In this frame, lipid oxidation products, namely 4-hydroxynonenal and oxysterols, can be produced in big quantity so as to be able to exert their function as inducers of cell signaling pathways of proliferation and survival. Notably, an important source of these two compounds is represented by a high fat diet, which is undoubtedly a risk factor for inflammation and CRC development. Current evidence for the emerging implication of these two oxidized lipids in inflammation and CRC development is discussed in this review.


Assuntos
Aldeídos/metabolismo , Carcinogênese/metabolismo , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Doenças Inflamatórias Intestinais/metabolismo , Oxisteróis/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Colesterol/metabolismo , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Dieta Hiperlipídica/efeitos adversos , Humanos , Inflamação , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Oxirredução , Estresse Oxidativo , Fatores de Risco , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA