Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 316(3): L537-L546, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30628486

RESUMO

The direct relationship between pulmonary structural changes and airway hyperresponsiveness (AHR) in chronic obstructive pulmonary disease (COPD) is unclear. We investigated AHR in relation to airway and parenchymal structural changes in a guinea pig model of COPD and in COPD patients. Precision-cut lung slices (PCLS) were prepared from guinea pigs challenged with lipopolysaccharide or saline two times weekly for 12 wk. Peripheral PCLS were obtained from patients with mild to moderate COPD and non-COPD controls. AHR to methacholine was measured in large and small airways using video-assisted microscopy. Airway smooth muscle mass and alveolar airspace size were determined in the same slices. A mathematical model was used to identify potential changes in biomechanical properties underlying AHR. In guinea pigs, lipopolysaccharide increased the sensitivity of large (>150 µm) airways toward methacholine by 4.4-fold and the maximal constriction of small airways (<150 µm) by 1.5-fold. Similarly increased small airway responsiveness was found in COPD patients. In both lipopolysaccharide-challenged guinea pigs and patients, airway smooth muscle mass was unaltered, whereas increased alveolar airspace correlated with small airway hyperresponsiveness in guinea pigs. Fitting the parameters of the model indicated that COPD weakens matrix mechanical properties and enhances stiffness differences between the airway and the parenchyma, in both species. In conclusion, this study demonstrates small airway hyperresponsiveness in PCLS from COPD patients. These changes may be related to reduced parenchymal retraction forces and biomechanical changes in the airway wall. PCLS from lipopolysaccharide-exposed guinea pigs may be useful to study mechanisms of small airway hyperresponsiveness in COPD.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Músculo Liso/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Adulto , Idoso , Animais , Asma/patologia , Asma/fisiopatologia , Modelos Animais de Doenças , Feminino , Cobaias , Humanos , Lipopolissacarídeos/farmacologia , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Músculo Liso/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/patologia , Hipersensibilidade Respiratória/fisiopatologia
2.
Proc Natl Acad Sci U S A ; 112(21): 6619-24, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25918384

RESUMO

The actin cytoskeleton is a key element of cell structure and movement whose properties are determined by a host of accessory proteins. Actin cross-linking proteins create a connected network from individual actin filaments, and though the mechanical effects of cross-linker binding affinity on actin networks have been investigated in reconstituted systems, their impact on cellular forces is unknown. Here we show that the binding affinity of the actin cross-linker α-actinin 4 (ACTN4) in cells modulates cytoplasmic mobility, cellular movement, and traction forces. Using fluorescence recovery after photobleaching, we show that an ACTN4 mutation that causes human kidney disease roughly triples the wild-type binding affinity of ACTN4 to F-actin in cells, increasing the dissociation time from 29 ± 13 to 86 ± 29 s. This increased affinity creates a less dynamic cytoplasm, as demonstrated by reduced intracellular microsphere movement, and an approximate halving of cell speed. Surprisingly, these less motile cells generate larger forces. Using traction force microscopy, we show that increased binding affinity of ACTN4 increases the average contractile stress (from 1.8 ± 0.7 to 4.7 ± 0.5 kPa), and the average strain energy (0.4 ± 0.2 to 2.1 ± 0.4 pJ). We speculate that these changes may be explained by an increased solid-like nature of the cytoskeleton, where myosin activity is more partitioned into tension and less is dissipated through filament sliding. These findings demonstrate the impact of cross-linker point mutations on cell dynamics and forces, and suggest mechanisms by which such physical defects lead to human disease.


Assuntos
Actinina/fisiologia , Actinina/química , Actinina/genética , Actinas/metabolismo , Substituição de Aminoácidos , Sítios de Ligação/genética , Fenômenos Biomecânicos , Linhagem Celular , Movimento Celular/genética , Movimento Celular/fisiologia , Reagentes de Ligações Cruzadas , Recuperação de Fluorescência Após Fotodegradação , Células HeLa , Humanos , Cinética , Microscopia Confocal , Modelos Biológicos , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Macromol Biosci ; 24(2): e2300234, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37776075

RESUMO

Escherichia coli biofilms consist of bacteria embedded in a self-produced matrix mainly made of protein fibers and polysaccharides. The curli amyloid fibers found in the biofilm matrix are promising versatile building blocks to design sustainable bio-sourced materials. To exploit this potential, it is crucial to understand i) how environmental cues during biofilm growth influence the molecular structure of these amyloid fibers, and ii) how this translates at higher length scales. To explore these questions, the effect of water availability during biofilm growth on the conformation and functions of curli is studied. Microscopy and spectroscopy are used to characterize the amyloid fibers purified from biofilms grown on nutritive substrates with different water contents, and micro-indentation to measure the rigidity of the respective biofilms. The purified curli amyloid fibers present differences in the yield, structure, and functional properties upon biofilm growth conditions. Fiber packing and ß-sheets content correlate with their hydrophobicity and chemical stability, and with the rigidity of the biofilms. This study highlights how E. coli biofilm growth conditions impact curli structure and functions contributing to macroscopic materials properties. These fundamental findings infer an alternative strategy to tune curli structure, which will ultimately benefit engineering hierarchical and functional curli-based materials.


Assuntos
Biofilmes , Escherichia coli , Escherichia coli/metabolismo , Amiloide/metabolismo , Proteínas de Bactérias/metabolismo
4.
PNAS Nexus ; 3(4): pgae121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590971

RESUMO

Little is known about the contribution of 3D surface geometry to the development of multilayered tissues containing fibrous extracellular matrix components, such as those found in bone. In this study, we elucidate the role of curvature in the formation of chiral, twisted-plywood-like structures. Tissues consisting of murine preosteoblast cells (MC3T3-E1) were grown on 3D scaffolds with constant-mean curvature and negative Gaussian curvature for up to 32 days. Using 3D fluorescence microscopy, the influence of surface curvature on actin stress-fiber alignment and chirality was investigated. To gain mechanistic insights, we did experiments with MC3T3-E1 cells deficient in nuclear A-type lamins or treated with drugs targeting cytoskeleton proteins. We find that wild-type cells form a thick tissue with fibers predominantly aligned along directions of negative curvature, but exhibiting a twist in orientation with respect to older tissues. Fiber orientation is conserved below the tissue surface, thus creating a twisted-plywood-like material. We further show that this alignment pattern strongly depends on the structural components of the cells (A-type lamins, actin, and myosin), showing a role of mechanosensing on tissue organization. Our data indicate the importance of substrate curvature in the formation of 3D tissues and provide insights into the emergence of chirality.

5.
ACS Omega ; 8(5): 4667-4676, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36777596

RESUMO

Biofilms frequently cause complications in various areas of human life, e.g., in medicine and in the food industry. More recently, biofilms are discussed as new types of living materials with tunable mechanical properties. In particular, Escherichia coli produces a matrix composed of amyloid-forming curli and phosphoethanolamine-modified cellulose fibers in response to suboptimal environmental conditions. It is currently unknown how the interaction between these fibers contributes to the overall mechanical properties of the formed biofilms and if extrinsic control parameters can be utilized to manipulate these properties. Using shear rheology, we show that biofilms formed by the E. coli K-12 strain AR3110 stiffen by a factor of 2 when exposed to the trivalent metal cations Al(III) and Fe(III), while no such response is observed for the bivalent cations Zn(II) and Ca(II). Strains producing only one matrix component did not show any stiffening response to either cation or even a small softening. No stiffening response was further observed when strains producing only one type of fiber were co-cultured or simply mixed after biofilm growth. These results suggest that the E. coli biofilm matrix is a uniquely structured composite material when both matrix fibers are produced from the same bacterium. While the exact interaction mechanism between curli, phosphoethanolamine-modified cellulose, and trivalent metal cations is currently not known, our results highlight the potential of using extrinsic parameters to understand and control the interplay between biofilm structure and mechanical properties. This will ultimately aid in the development of better strategies for controlling biofilm growth.

6.
Mater Today Bio ; 22: 100772, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37674781

RESUMO

Delignified wood (DW) offers a versatile platform for the manufacturing of composites, with material properties ranging from stiff to soft and flexible by preserving the preferential fiber directionality of natural wood through a structure-retaining production process. This study presents a facile method for fabricating anisotropic and mechanically tunable DW-hydrogel composites. These composites were produced by infiltrating delignified spruce wood with an aqueous gelatin solution followed by chemical crosslinking. The mechanical properties could be modulated across a broad strength and stiffness range (1.2-18.3 MPa and 170-1455 MPa, respectively) by varying the crosslinking time. The diffusion-led crosslinking further allowed to manufacture mechanically graded structures. The resulting uniaxial, tubular structure of the anisotropic DW-hydrogel composite enabled the alignment of murine fibroblasts in vitro, which could be utilized in future studies on potential applications in tissue engineering.

7.
Adv Mater ; 35(13): e2206110, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36461812

RESUMO

Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.


Assuntos
Fenômenos Mecânicos , Membrana Celular , Morfogênese
8.
Integr Comp Biol ; 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35675323

RESUMO

From large ventral pleats of humpback whales to nanoscale ridges on flower petals, wrinkled structures are omnipresent, multifunctional, and found at hugely diverse scales. Depending on the particulars of the biological system-its environment, morphology, and mechanical properties-wrinkles may control adhesion, friction, wetting, or drag; promote interfacial exchange; act as flow channels; or contribute to stretching, mechanical integrity, or structural color. Undulations on natural surfaces primarily arise from stress-induced instabilities of surface layers (e.g., buckling) during growth or aging. Variation in the material properties of surface layers and in the magnitude and orientation of intrinsic stresses during growth lead to a variety of wrinkling morphologies and patterns which, in turn, reflect the wide range of biophysical challenges wrinkled surfaces can solve. Therefore, investigating how surface wrinkles vary and are implemented across biological systems is key to understanding their structure-function relationships. In this work, we synthesize the literature in a metadata analysis of surface wrinkling in various terrestrial and marine organisms to review important morphological parameters and classify functional aspects of surface wrinkles in relation to the size and ecology of organisms. Building on our previous and current experimental studies, we explore case studies on nano/micro-scale wrinkles in biofilms, plant surfaces, and basking shark filter structures to compare developmental and structure-vs-function aspects of wrinkles with vastly different size scales and environmental demands. In doing this and by contrasting wrinkle development in soft and hard biological systems, we provide a template of structure-function relationships of biological surface wrinkles and an outlook for functionalized wrinkled biomimetic surfaces.

9.
ACS Biomater Sci Eng ; 7(11): 5315-5325, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34672512

RESUMO

Biofilms are complex living materials that form as bacteria become embedded in a matrix of self-produced protein and polysaccharide fibers. In addition to their traditional association with chronic infections or clogging of pipelines, biofilms currently gain interest as a potential source of functional material. On nutritive hydrogels, micron-sized Escherichia coli cells can build centimeter-large biofilms. During this process, bacterial proliferation, matrix production, and water uptake introduce mechanical stresses in the biofilm that are released through the formation of macroscopic delaminated buckles in the third dimension. To clarify how substrate water content could be used to tune biofilm material properties, we quantified E. coli biofilm growth, delamination dynamics, and rigidity as a function of water content of the nutritive substrates. Time-lapse microscopy and computational image analysis revealed that softer substrates with high water content promote biofilm spreading kinetics, while stiffer substrates with low water content promote biofilm delamination. The delaminated buckles observed on biofilm cross sections appeared more bent on substrates with high water content, while they tended to be more vertical on substrates with low water content. Both wet and dry biomass, accumulated over 4 days of culture, were larger in biofilms cultured on substrates with high water content, despite extra porosity within the matrix layer. Finally, microindentation analysis revealed that substrates with low water content supported the formation of stiffer biofilms. This study shows that E. coli biofilms respond to substrate water content, which might be used for tuning their material properties in view of further applications.


Assuntos
Escherichia coli , Água , Bactérias , Biofilmes
10.
Sci Rep ; 10(1): 6504, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300110

RESUMO

Förster Resonance Energy Transfer (FRET) allows for the visualization of nanometer-scale distances and distance changes. This sensitivity is regularly achieved in single-molecule experiments in vitro but is still challenging in biological materials. Despite many efforts, quantitative FRET in living samples is either restricted to specific instruments or limited by the complexity of the required analysis. With the recent development and expanding utilization of FRET-based biosensors, it becomes essential to allow biologists to produce quantitative results that can directly be compared. Here, we present a new calibration and analysis method allowing for quantitative FRET imaging in living cells with a simple fluorescence microscope. Aside from the spectral crosstalk corrections, two additional correction factors were defined from photophysical equations, describing the relative differences in excitation and detection efficiencies. The calibration is achieved in a single step, which renders the Quantitative Three-Image FRET (QuanTI-FRET) method extremely robust. The only requirement is a sample of known stoichiometry donor:acceptor, which is naturally the case for intramolecular FRET constructs. We show that QuanTI-FRET gives absolute FRET values, independent of the instrument or the expression level. Through the calculation of the stoichiometry, we assess the quality of the data thus making QuanTI-FRET usable confidently by non-specialists.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência/métodos , Estudos de Avaliação como Assunto , Fluorescência
11.
Nat Commun ; 10(1): 1038, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833561

RESUMO

AMP-activated protein kinase AMPK senses and regulates cellular energy state. AMPK activation by increasing AMP and ADP concentrations involves a conformational switch within the heterotrimeric complex. This is exploited here for the construction of a synthetic sensor of cellular energetics and allosteric AMPK activation, AMPfret. Based on engineered AMPK fused to fluorescent proteins, the sensor allows direct, real-time readout of the AMPK conformational state by fluorescence resonance energy transfer (FRET). AMPfret faithfully and dynamically reports the binding of AMP and ADP to AMPK γ-CBS sites, competed by Mg2+-free ATP. FRET signals correlate with activation of AMPK by allosteric mechanisms and protection from dephosphorylation, attributed here to specific CBS sites, but does not require activation loop phosphorylation. Moreover, AMPfret detects binding of pharmacological compounds to the AMPK α/ß-ADaM site enabling activator screening. Cellular assays demonstrate that AMPfret is applicable in vivo for spatiotemporal analysis of energy state and allosteric AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP/química , Difosfato de Adenosina/química , Monofosfato de Adenosina/química , Engenharia de Proteínas , Células 3T3 , Proteínas Quinases Ativadas por AMP/genética , Trifosfato de Adenosina , Regulação Alostérica , Animais , Sítios de Ligação , Ativação Enzimática , Ensaios Enzimáticos , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Cinética , Proteínas Luminescentes , Camundongos , Modelos Moleculares , Fosforilação , Ratos
12.
Sci Adv ; 4(1): eaao4881, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29349300

RESUMO

Myofibroblasts orchestrate wound healing processes, and if they remain activated, they drive disease progression such as fibrosis and cancer. Besides growth factor signaling, the local extracellular matrix (ECM) and its mechanical properties are central regulators of these processes. It remains unknown whether transforming growth factor-ß (TGF-ß) and tensile forces work synergistically in up-regulating the transition of fibroblasts into myofibroblasts and whether myofibroblasts undergo apoptosis or become deactivated by other means once tissue homeostasis is reached. We used three-dimensional microtissues grown in vitro from fibroblasts in macroscopically engineered clefts for several weeks and found that fibroblasts transitioned into myofibroblasts at the highly tensed growth front as the microtissue progressively closed the cleft, in analogy to closing a wound site. Proliferation was up-regulated at the growth front, and new highly stretched fibronectin fibers were deposited, as revealed by fibronectin fluorescence resonance energy transfer probes. As the tissue was growing, the ECM underneath matured into a collagen-rich tissue containing mostly fibroblasts instead of myofibroblasts, and the fibronectin fibers were under reduced tension. This correlated with a progressive rounding of cells from the growth front inward, with decreased α-smooth muscle actin expression, YAP nuclear translocation, and cell proliferation. Together, this suggests that the myofibroblast phenotype is stabilized at the growth front by tensile forces, even in the absence of endogenously supplemented TGF-ß, and reverts into a quiescent fibroblast phenotype already 10 µm behind the growth front, thus giving rise to a myofibroblast-to-fibroblast transition. This is the hallmark of reaching prohealing homeostasis.


Assuntos
Diferenciação Celular , Miofibroblastos/citologia , Resistência à Tração , Engenharia Tecidual/métodos , Actinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Derme/citologia , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta/farmacologia
13.
Sci Rep ; 8(1): 1464, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362476

RESUMO

Cells are able to sense and react to their physical environment by translating a mechanical cue into an intracellular biochemical signal that triggers biological and mechanical responses. This process, called mechanotransduction, controls essential cellular functions such as proliferation and migration. The cellular response to an external mechanical stimulation has been investigated with various static and dynamic systems, so far limited to global deformations or to local stimulation through discrete substrates. To apply local and dynamic mechanical constraints at the single cell scale through a continuous surface, we have developed and modelled magneto-active substrates made of magnetic micro-pillars embedded in an elastomer. Constrained and unconstrained substrates are analysed to map surface stress resulting from the magnetic actuation of the micro-pillars and the adherent cells. These substrates have a rigidity in the range of cell matrices, and the magnetic micro-pillars generate local forces in the range of cellular forces, both in traction and compression. As an application, we followed the protrusive activity of cells subjected to dynamic stimulations. Our magneto-active substrates thus represent a new tool to study mechanotransduction in single cells, and complement existing techniques by exerting a local and dynamic stimulation, traction and compression, through a continuous soft substrate.


Assuntos
Ferro/farmacologia , Mecanotransdução Celular , Análise de Célula Única/métodos , Estresse Mecânico , Animais , Adesão Celular , Movimento Celular , Proliferação de Células , Fenômenos Magnéticos , Camundongos , Células NIH 3T3 , Propriedades de Superfície
15.
Acta Biomater ; 60: 64-80, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28736221

RESUMO

A myriad of shapes are found in biological tissues, often naturally evolved to fulfill a particular function. In the field of tissue engineering, substrate geometry influences cell behavior and tissue formation in vitro, yet little is known how this translates to an in vivo scenario. Here we investigate scaffold curvature-induced tissue growth, without additional growth factors or cells, in an ovine animal model. We show that soft tissue formation follows a curvature-driven tissue growth model. The highly organized endogenous soft matrix, potentially under mechanical strain, leads to a non-standard form of biomineralization, whereby the pre-existing organic matrix is mineralized without collagen remodeling and without an intermediate cartilage ossification phase. Micro- and nanoscale characterization of the tissue microstructure using histology, backscattered electron (BSE) and second-harmonic generation (SHG) imaging and synchrotron small angle X-ray scattering (SAXS) revealed (i) continuous collagen fibers across the soft-hard tissue interface on the tip of mineralized cones, and (ii) bone remodeling by basic multicellular units (BMUs) in regions adjacent to the native cortical bone. Thus, features of soft tissue-to-bone interface resembling the insertion sites of ligaments and tendons into bone were created, using a scaffold that did not mimic the structural or biological gradients across such a complex interface at its mature state. This study provides fundamental knowledge for biomimetic scaffold design in the fields of bone regeneration and soft tissue-to-bone interface tissue engineering. STATEMENT OF SIGNIFICANCE: Geometry influences cell behavior and tissue formation in vitro. However, little is known how this translates to an in vivo scenario. Here we investigate the influence of scaffold mean surface curvature on in vivo tissue growth using an ovine animal model. Based on a multiscale tissue microstructure characterization, we show a seamless integration of soft tissue into newly formed bone, resembling the insertion sites of ligaments and tendons into bone. This interface was created using a scaffold without additional growth factors or cells that did not recapitulate the structural or biological gradients across such a complex tissue interface at its mature state. These findings have important implications for biomimetic scaffold design for bone regeneration and soft tissue-to-bone interface tissue engineering.


Assuntos
Calcificação Fisiológica , Cartilagem/metabolismo , Osteogênese , Estresse Mecânico , Alicerces Teciduais/química , Animais , Cartilagem/patologia , Ovinos
16.
Front Physiol ; 7: 657, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28101062

RESUMO

Background: COPD is a progressive lung disease characterized by emphysema and enhanced bronchoconstriction. Current treatments focused on bronchodilation can delay disease progression to some extent, but recovery or normalization of loss of lung function is impossible. Therefore, novel therapeutic targets are needed. The importance of the parenchyma in airway narrowing is increasingly recognized. In COPD, the parenchyma and extracellular matrix are altered, possibly affecting airway mechanics and enhancing bronchoconstriction. Our aim was to set up a comprehensive ex vivo Precision Cut Lung Slice (PCLS) model with a pathophysiology resembling that of COPD and integrate multiple readouts in order to study the relationship between parenchyma, airway functionality, and lung repair processes. Methods: Lungs of C57Bl/6J mice were sliced and treated ex vivo with elastase (2.5 µg/ml) or H2O2 (200 µM) for 16 h. Following treatment, parenchymal structure, airway narrowing, and gene expression levels of alveolar Type I and II cell repair were assessed. Results: Following elastase, but not H2O2 treatment, slices showed a significant increase in mean linear intercept (Lmi), reflective of emphysema. Only elastase-treated slices showed disorganization of elastin and collagen fibers. In addition, elastase treatment lowered both alveolar Type I and II marker expression, whereas H2O2 stimulation lowered alveolar Type I marker expression only. Furthermore, elastase-treated slices showed enhanced methacholine-induced airway narrowing as reflected by increased pEC50 (5.87 at basal vs. 6.50 after elastase treatment) and Emax values (47.96 vs. 67.30%), and impaired chloroquine-induced airway opening. The increase in pEC50 correlated with an increase in mean Lmi. Conclusion: Using this model, we show that structural disruption of elastin fibers leads to impaired alveolar repair, disruption of the parenchymal compartment, and altered airway biomechanics, enhancing airway contraction. This finding may have implications for COPD, as the amount of elastin fiber and parenchymal tissue disruption is associated with disease severity. Therefore, we suggest that PCLS can be used to model certain aspects of COPD pathophysiology and that the parenchymal tissue damage observed in COPD contributes to lung function decline by disrupting airway biomechanics. Targeting the parenchymal compartment may therefore be a promising therapeutic target in the treatment of COPD.

17.
J R Soc Interface ; 13(118)2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27194484

RESUMO

The complex arrangement of the extracellular matrix (ECM) produced by cells during tissue growth, healing and remodelling is fundamental to tissue function. In connective tissues, it is still unclear how both cells and the ECM become and remain organized over length scales much larger than the distance between neighbouring cells. While cytoskeletal forces are essential for assembly and organization of the early ECM, how these processes lead to a highly organized ECM in tissues such as osteoid is not clear. To clarify the role of cellular tension for the development of these ordered fibril architectures, we used an in vitro model system, where pre-osteoblastic cells produced ECM-rich tissue inside channels with millimetre-sized triangular cross sections in ceramic scaffolds. Our results suggest a mechanical handshake between actively contracting cells and ECM fibrils: the build-up of a long-range organization of cells and the ECM enables a gradual conversion of cell-generated tension to pre-straining the ECM fibrils, which reduces the work cells have to generate to keep mature tissue under tension.


Assuntos
Citoesqueleto/metabolismo , Matriz Extracelular/química , Osteoblastos/metabolismo , Estresse Fisiológico , Alicerces Teciduais/química , Animais , Linhagem Celular , Cerâmica , Camundongos
18.
Front Physiol ; 7: 309, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27559314

RESUMO

The precision-cut lung slice (PCLS) is a powerful tool for studying airway reactivity, but biomechanical measurements to date have largely focused on changes in airway caliber. Here we describe an image processing tool that reveals the associated spatio-temporal changes in airway and parenchymal strains. Displacements of sub-regions within the PCLS are tracked in phase-contrast movies acquired after addition of contractile and relaxing drugs. From displacement maps, strains are determined across the entire PCLS or along user-specified directions. In a representative mouse PCLS challenged with 10(-4)M methacholine, as lumen area decreased, compressive circumferential strains were highest in the 50 µm closest to the airway lumen while expansive radial strains were highest in the region 50-100 µm from the lumen. However, at any given distance from the airway the strain distribution varied substantially in the vicinity of neighboring small airways and blood vessels. Upon challenge with the relaxant agonist chloroquine, although most strains disappeared, residual positive strains remained a long time after addition of chloroquine, predominantly in the radial direction. Taken together, these findings establish strain mapping as a new tool to elucidate local dynamic mechanical events within the constricting airway and its supporting parenchyma.

19.
Front Physiol ; 6: 346, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26696894

RESUMO

Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases worldwide, and is characterized by airflow obstruction that is not fully reversible with treatment. Even though airflow obstruction is caused by airway smooth muscle contraction, the extent of airway narrowing depends on a range of other structural and functional determinants that impact on active and passive tissue mechanics. Cells and extracellular matrix in the airway and parenchymal compartments respond both passively and actively to the mechanical stimulation induced by smooth muscle contraction. In this review, we summarize the factors that regulate airway narrowing and provide insight into the relative contributions of different constituents of the extracellular matrix and their biomechanical impact on airway obstruction. We then review the changes in extracellular matrix composition in the airway and parenchymal compartments at different stages of COPD, and finally discuss how these changes impact airway narrowing and the development of airway hyperresponsiveness. Finally, we position these data in the context of therapeutic research focused on defective tissue repair. As a conclusion, we propose that future works should primarily target mild or early COPD, prior to the widespread structural changes in the alveolar compartment that are more characteristic of severe COPD.

20.
Biomaterials ; 60: 121-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25988727

RESUMO

To explore the space-filling growth of adherent mesenchymal stem cells (MSC) into tissue-like structures in vitro, human bone marrow derived MSC were exposed to fibronectin-coated, millimeter-sized, triangular channels casted in poly(dimethyl siloxane) carriers. The results revealed that the three dimensional (3D) growth of MSC differs in dependence on differentiation status and availability of extracellular matrix (ECM) proteins: Massive 3D structure formation was observed for MSC under pro-osteogenic stimulation but not for undifferentiated MSC nor for MSC under pro-adipogenic stimulation; boosting cellular matrix secretion and addition of soluble ECM proteins caused extensive 3D tissue formation of undifferentiated MSC. The reported findings may contribute to bridge the gap between in vitro and in vivo analyses and guide the application of MSC in tissue replacement approaches.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual , Actinas/metabolismo , Adipogenia , Adulto , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Desenho de Equipamento , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Humanos , Proteínas Imobilizadas/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA