Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613717

RESUMO

The incidence of sudden cardiac death (SCD) in people living with HIV infection (PLWH), especially those with inadequate viral suppression, is high and the reasons for this remain incompletely characterized. The timely opening and closing of type 2 ryanodine receptor (RyR2) is critical for ensuring rhythmic cardiac contraction-relaxation cycles, and the disruption of these processes can elicit Ca2+ waves, ventricular arrhythmias, and SCD. Herein, we show that the HIV protein Tat (HIV-Tat: 0-52 ng/mL) and therapeutic levels of the antiretroviral drugs atazanavir (ATV: 0-25,344 ng/mL), efavirenz (EFV: 0-11,376 ng/mL), and ritonavir (RTV: 0-25,956 ng/mL) bind to and modulate the opening and closing of RyR2. Abacavir (0-14,315 ng/mL), bictegravir (0-22,469 ng/mL), Rilpivirine (0-14,360 ng/mL), and tenofovir disoproxil fumarate (0-18,321 ng/mL) did not alter [3H]ryanodine binding to RyR2. Pretreating RyR2 with low HIV-Tat (14 ng/mL) potentiated the abilities of ATV and RTV to bind to open RyR2 and enhanced their ability to bind to EFV to close RyR2. In silico molecular docking using a Schrodinger Prime protein-protein docking algorithm identified three thermodynamically favored interacting sites for HIV-Tat on RyR2. The most favored site resides between amino acids (AA) 1702-1963; the second favored site resides between AA 467-1465, and the third site resides between AA 201-1816. Collectively, these new data show that HIV-Tat, ATV, EFV, and RTV can bind to and modulate the activity of RyR2 and that HIV-Tat can exacerbate the actions of ATV, EFV, and RTV on RyR2. Whether the modulation of RyR2 by these agents increases the risk of arrhythmias and SCD remains to be explored.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , Sulfato de Atazanavir/farmacologia , Sulfato de Atazanavir/uso terapêutico , Ritonavir/farmacologia , Ritonavir/uso terapêutico , Canal de Liberação de Cálcio do Receptor de Rianodina , Infecções por HIV/tratamento farmacológico , Fármacos Anti-HIV/efeitos adversos , Simulação de Acoplamento Molecular , Oligopeptídeos/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico
2.
J Biol Chem ; 289(3): 1662-74, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24302734

RESUMO

Methylglyoxal is a cytotoxic reactive carbonyl compound produced by central metabolism. Dedicated glyoxalases convert methylglyoxal to d-lactate using multiple catalytic strategies. In this study, the DJ-1 superfamily member ORF 19.251/GLX3 from Candida albicans is shown to possess glyoxalase activity, making this the first demonstrated glutathione-independent glyoxalase in fungi. The crystal structure of Glx3p indicates that the protein is a monomer containing the catalytic triad Cys(136)-His(137)-Glu(168). Purified Glx3p has an in vitro methylglyoxalase activity (Km = 5.5 mM and kcat = 7.8 s(-1)) that is significantly greater than that of more distantly related members of the DJ-1 superfamily. A close Glx3p homolog from Saccharomyces cerevisiae (YDR533C/Hsp31) also has glyoxalase activity, suggesting that fungal members of the Hsp31 clade of the DJ-1 superfamily are all probable glutathione-independent glyoxalases. A homozygous glx3 null mutant in C. albicans strain SC5314 displays greater sensitivity to millimolar levels of exogenous methylglyoxal, elevated levels of intracellular methylglyoxal, and carbon source-dependent growth defects, especially when grown on glycerol. These phenotypic defects are complemented by restoration of the wild-type GLX3 locus. The growth defect of Glx3-deficient cells in glycerol is also partially complemented by added inorganic phosphate, which is not observed for wild-type or glucose-grown cells. Therefore, C. albicans Glx3 and its fungal homologs are physiologically relevant glutathione-independent glyoxalases that are not redundant with the previously characterized glutathione-dependent GLO1/GLO2 system. In addition to its role in detoxifying glyoxals, Glx3 and its close homologs may have other important roles in stress response.


Assuntos
Aldeído Oxirredutases/metabolismo , Candida albicans/enzimologia , Aldeído Pirúvico/metabolismo , Estresse Fisiológico/fisiologia , Aldeído Oxirredutases/genética , Candida albicans/genética , Crioprotetores/farmacologia , Loci Gênicos/fisiologia , Glicerol/farmacocinética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mutação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Estresse Fisiológico/efeitos dos fármacos
3.
Biochim Biophys Acta ; 1842(9): 1794-805, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24997453

RESUMO

Cataract-induced by sodium selenite in suckling rats is one of the suitable animal models to study the basic mechanism of human cataract formation. The aim of this present investigation is to study the endoplasmic reticulum (ER) stress-mediated activation of unfolded protein response (UPR), overproduction of reactive oxygen species (ROS), and suppression of Nrf2/Keap1-dependent antioxidant protection through endoplasmic reticulum-associated degradation (ERAD) pathway and Keap1 promoter DNA demethylation in human lens epithelial cells (HLECs) treated with sodium selenite. Lenses enucleated from sodium selenite injected rats generated overproduction of ROS in lens epithelial cells and newly formed lens fiber cells resulting in massive lens epithelial cells death after 1-5days. All these lenses developed nuclear cataracts after 4-5days. Sodium selenite treated HLECs induced ER stress and activated the UPR leading to release of Ca(2+) from ER, ROS overproduction and finally HLECs death. Sodium selenite also activated the mRNA expressions of passive DNA demethylation pathway enzymes such as Dnmt1, Dnmt3a, and Dnmt3b, and active DNA demethylation pathway enzyme, Tet1 leading to DNA demethylation in the Keap1 promoter of HLECs. This demethylated Keap1 promoter results in overexpression of Keap1 mRNA and protein. Overexpression Keap1 protein suppresses the Nrf2 protein through ERAD leading to suppression of Nrf2/Keap1 dependent antioxidant protection in the HLECs treated with sodium selenite. As an outcome, the cellular redox status is altered towards lens oxidation and results in cataract formation.


Assuntos
Apoptose , Catarata/patologia , Células Epiteliais/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cristalino/patologia , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Selenito de Sódio/farmacologia , Animais , Western Blotting , Catarata/induzido quimicamente , Catarata/metabolismo , Proliferação de Células , Células Cultivadas , Metilação de DNA/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Cristalino/efeitos dos fármacos , Cristalino/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Oligoelementos/farmacologia , Resposta a Proteínas não Dobradas
4.
Heart Fail Rev ; 19(1): 101-12, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23430128

RESUMO

Efficient and rhythmic cardiac contractions depend critically on the adequate and synchronized release of Ca(2+) from the sarcoplasmic reticulum (SR) via ryanodine receptor Ca(2+) release channels (RyR2) and its reuptake via sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a). It is well established that this orchestrated process becomes compromised in diabetes. What remain incompletely defined are the molecular mechanisms responsible for the dysregulation of RyR2 and SERCA2a in diabetes. Earlier, we found elevated levels of carbonyl adducts on RyR2 and SERCA2a isolated from hearts of type 1 diabetic rats and showed the presence of these posttranslational modifications compromised their functions. We also showed that these mono- and di-carbonyl reactive carbonyl species (RCS) do not indiscriminately react with all basic amino acid residues on RyR2 and SERCA2a; some residues are more susceptible to carbonylation (modification by RCS) than others. A key unresolved question in the field is which of the many RCS that are upregulated in the heart in diabetes chemically react with RyR2 and SERCA2a? This brief review introduces readers to the field of RCS and their roles in perturbing SR Ca(2+) cycling in diabetes. It also provides new experimental evidence that not all RCS that are upregulated in the heart in diabetes chemically react with RyR2 and SERCA2a, methylglyoxal and glyoxal preferentially do.


Assuntos
Cardiomiopatias Diabéticas , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Humanos , Miocárdio/patologia , Carbonilação Proteica
5.
Heart Fail Rev ; 19(1): 65-74, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23430124

RESUMO

Heart failure in chronic type 2 diabetes mellitus is partly attributable to adverse structural remodelling of the left ventricle (LV), but the contribution of hyperglycaemia (HG) per se in remodelling processes is debated. In this study, we examined the molecular signature of LV remodelling in 18-month-old spontaneously diabetic male Goto-Kakizaki (GK) rats that represent a long-term mildly diabetic phenotype, using histological, immunoblotting and quantitative gene expression approaches. Relative to age-matched Wistar controls, mildly diabetic GK rats presented with LV hypertrophy, increased expression of natriuretic peptides and phosphorylation of pro-hypertrophic Akt. Fibrosis proliferation in the GK LV paralleled increased transcriptional and biologically active pro-fibrogenic transforming growth factor-ß1 (TGFß1) in the LV with upregulated mRNA abundance for key extracellular matrix (ECM) components such as fibronectin, collagen type(s) 1 and 3α and regulators including matrix metalloproteinases 2 and 9, and their tissue inhibitor (TIMP) 4, connexin 43 and α5-integrin. GK rats also presented with altered mRNA expression for cardiac sarcoplasmic reticulum Ca(2+)ATPase, Na(+)/Ca(2+) exchanger and the L-type Ca(2+) channels which may contribute to the altered Ca(2+) transient kinetics previously observed in this model at 18 months of age (t test, p < 0.05 vs. age-matched Wistar control for all parameters). The results indicate that chronic mild HG can produce the molecular and structural correlates of a hypertrophic myopathy. Diffuse ECM proliferation in this model is possibly a product of HG-induced TGFß1 upregulation and altered transcriptional profile of the ECM.


Assuntos
Diabetes Mellitus Tipo 2/genética , Regulação da Expressão Gênica , Hiperglicemia/genética , Ativação Transcricional , Fator de Crescimento Transformador beta1/genética , Disfunção Ventricular Esquerda/genética , Remodelação Ventricular , Animais , Doença Crônica , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Seguimentos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/fisiopatologia , Imuno-Histoquímica , Masculino , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Índice de Gravidade de Doença , Fatores de Tempo , Fator de Crescimento Transformador beta1/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda/fisiologia
6.
Exp Eye Res ; 121: 26-34, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24525405

RESUMO

Recent epidemiological studies confirm the prevalence of cataract in epileptic patients. Similarly, the drugs used to treat epilepsy also show the connection with increased cataract formation. In this present study, we investigated the suppression of Nrf2/Keap1 dependent antioxidant protection through induction of endoplasmic (ER) stress and Keap1 promoter DNA demethylation in human lens epithelial cells (HLECs) treated with valproic acid (VPA), an antiepileptic drug. 20 mM VPA induces ER stress and activates the unfolded protein response (UPR) within 4 h by activating the ER stress sensor proteins, such as PERK, IRE1α, and ATF6 in HLECs. Consequently, the integrated ER stress signals, such as eIF2α, ATF4, BiP, and CHOP are altered accordingly to induce ER-Ca2+ release, reactive oxygen species (ROS) overproduction, and cell death in HLECs treated with VPA. VPA also suppresses the Nrf2, catalase, and glutathione reductase expressions with significant increases in Keap1 protein. Bisulphite genomic DNA sequencing reveals the promoter DNA demethylation in the Keap1 promoter, which results in the overexpression of Keap1 mRNA and protein in HLECs treated with 20 mM VPA. VPA also alters the expression profiles of passive DNA demethylation pathway enzymes such Dnmt1, Dnmt3a, Dnmt3b, and active DNA demethylation pathway enzyme, TET1 leading to DNA demethylation in the Keap1 promoter of HLECs. Overexpressed Keap1 decreases the Nrf2 level, thereby abolishing the Nrf2 dependent antioxidant protection. This might be responsible for lenticular proteins oxidation and cataract formation.


Assuntos
Anticonvulsivantes/farmacologia , Metilação de DNA , Retículo Endoplasmático/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cristalino/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Ácido Valproico/farmacologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Cálcio/metabolismo , Catalase/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Glutationa Redutase/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Cristalino/citologia , Fator 2 Relacionado a NF-E2/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
7.
Mol Cell Biochem ; 387(1-2): 251-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24234422

RESUMO

Type 2 diabetic (T2DM) patients are immune-compromised having a higher susceptibility to infections and long-term complications in different parts of the body contributing to increased morbidity and mortality. A derangement in the homeostasis of intracellular free calcium concentration [Ca²âº](i) is known to be associated with several diseases in the body including T2DM. Both neutrophils and lymphocytes play active protective roles in host immune response to infection showing impairment in microbicidal functions including phagocytosis and chemotaxis which are calcium-dependent processes. This study evaluated the process of [Ca²âº]i mobilization from both neutrophils and lymphocytes taken from blood of both T2DM patients and healthy age-matched control subjects investigating the effect of N-formyl-methionyl-leucyl-phenylalanine (fMLP), thapsigargin (TG), and hydrogen peroxide (H2O2) on [Ca²âº](i) homeostasis. This study employed isolated peripheral blood neutrophils and lymphocytes from 24 T2DM patients and 24 healthy volunteers. Either neutrophils or lymphocytes were stimulated separately with fMLP, TG, or H2O2. Induced changes in [Ca²âº] in both neutrophils and lymphocytes were evaluated using spectrofluorometric methods. Stimulation of human neutrophils and lymphocytes with fMLP, TG, or H2O2 in the presence of [Ca²âº]o resulted in significant decreases in [Ca²âº](i) mobilization from T2DM patients compared with healthy controls. These data indicate that neutrophils and lymphocytes from T2DM patients are less responsive to calcium mobilizing agents compared with granulocytes from healthy controls and this is possibly due to the hyperglycemia. The results suggest that agonist-evoked decrease in [Ca²âº](i) in immune cells might be one of the possible mechanisms of impaired immunity in diabetic patients.


Assuntos
Cálcio/metabolismo , Diabetes Mellitus Tipo 2/imunologia , Peróxido de Hidrogênio/farmacologia , Linfócitos/metabolismo , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Neutrófilos/metabolismo , Tapsigargina/farmacologia , Adulto , Sinalização do Cálcio/efeitos dos fármacos , Estudos de Casos e Controles , Células Cultivadas , Homeostase , Humanos , Linfócitos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos
8.
Echocardiography ; 31(2): 179-87, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23895571

RESUMO

AIMS: The aim of this study was to investigate the left ventricular (LV) myocardial contractility index-Emax using transesophageal real time three-dimensional echocardiography (RT3DE) combined with catheterization. METHODS: Transesophageal RT3DE (single beat, X7-2 × matrix, iE33, Philips) was used to obtain real time LV volumes in pigs. Volumes were integrated with LV pressures from conductance catheterization (CC) to create RT3DE pressure-volume relations. At the same time, CC was used for measuring conventional pressure-volume relations that served as reference. The slope Emax was determined from RT3DE and CC end-systolic pressure-volume relations. All measurements were made at rest and during dobutamine infusion. RESULTS: In six pigs, the mean ± SD (mmHg/mL) values were Emax-CC 1.86 ± 1.1 and Emax-RT3DE 1.78 ± 1.2 (P = 0.502) at baseline. On dobutamine, mean Emax-CC was 3.43 ± 1.5 and Emax-RT3DE 3.60 ± 1.23 (P = 0.171). Bland-Altman analysis showed good agreements between the RT3DE- and CC-derived Emax for measurements performed at baseline and on dobutamine. CONCLUSIONS: Emax can be determined from RT3DE integrated with catheterization-derived pressures. RT3DE is a promising method for enhancing clinical applicability of pressure-volume relations for assessment of myocardial contractility.


Assuntos
Determinação da Pressão Arterial/métodos , Cateterismo Cardíaco/métodos , Ventrículos do Coração/diagnóstico por imagem , Contração Miocárdica/fisiologia , Volume Sistólico , Função Ventricular Esquerda/fisiologia , Animais , Pressão Sanguínea , Sistemas Computacionais , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos , Ultrassonografia
9.
Am J Physiol Heart Circ Physiol ; 304(10): H1352-60, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23504177

RESUMO

Oxidative stress plays a major role in the pathogenesis of heart failure, where the contractile response to ß-adrenergic stimulation is profoundly depressed. This condition involves L-type Ca(2+) channels, but the mechanisms underlying their impaired adrenergic regulation are unclear. Thus the present study explored the basis for impaired adrenergic control of Ca(2+) channels in a rat infarction model of heart failure. Patch-clamp recordings of L-type Ca(2+) current (I(Ca,L)) from ventricular myocytes isolated from infarcted hearts showed a blunted response to intracellular cAMP that was reversed by treatment with exogenous pyruvate. Biochemical studies showed that basal and cAMP-stimulated protein kinase A activities were similar in infarcted and sham-operated hearts, whereas molecular analysis also found that binding of protein kinase A to the α(1C) subunit of voltage-gated Ca(2+) channel isoform 1.2 was not different between groups. By contrast, protein phosphatase 2A (PP2A) activity and binding to α(1C) were significantly less in infarcted hearts. The PP2A inhibitor okadaic acid markedly increased I(Ca,L) in sham-operated myocytes, but this response was significantly less in myocytes from infarcted hearts. However, pyruvate normalized I(Ca,L) stimulation by okadaic acid, and this effect was blocked by inhibitors of thioredoxin reductase, implicating a functional role for the redox-active thioredoxin system. Our data suggest that blunted ß-adrenergic stimulation of I(CaL) in failing hearts results from hyperphosphorylation of Ca(2+) channels secondary to oxidation-induced impairment of PP2A function. We propose that the redox state of Ca(2+) channels or PP2A is controlled by the thioredoxin system which plays a key role in Ca(2+) channel remodeling of the failing heart.


Assuntos
Canais de Cálcio Tipo L/efeitos dos fármacos , Insuficiência Cardíaca/metabolismo , Coração/efeitos dos fármacos , Fosfoproteínas Fosfatases/fisiologia , Ácido Pirúvico/farmacologia , Receptores Adrenérgicos beta/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica/fisiologia , Imunoprecipitação , Masculino , Células Musculares/efeitos dos fármacos , Infarto do Miocárdio/patologia , Oxirredução , Fosforilação , Proteína Fosfatase 2/metabolismo , Ratos , Ratos Sprague-Dawley , Tiorredoxinas/metabolismo , Tiorredoxinas/fisiologia
10.
Exp Physiol ; 98(6): 1092-101, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23435903

RESUMO

The admittance and Wei's equation is a new technique for ventricular volumetry to determine pressure-volume relations that addresses traditional conductance-related issues of parallel conductance and field correction factor. These issues with conductance have prevented researchers from obtaining real-time absolute ventricular volumes. Moreover, the time-consuming steps involved in processing conductance catheter data warrant the need for a better catheter-based technique for ventricular volumetry. We aimed to compare the accuracy of left ventricular (LV) volumetry between the new admittance catheterization technique and transoesophageal real-time three-dimensional echocardiography (RT3DE) in a large-animal model. Eight anaesthetized pigs were used. A 7 French admittance catheter was positioned in the LV via the right carotid artery. The catheter was connected to an admittance control unit (ADVantage; Transonic Scisense Inc.), and data were recorded on a four-channel acquisition system (FA404; iWorx Systems). Admittance catheterization data and transoesophageal RT3DE (X7-2; Philips) data were simultaneously obtained with the animal ventilated, under neuromuscular blockade and monitored in baseline conditions and during dobutamine infusion. Left ventricular volumes measured from admittance catheterization (Labscribe; iWorx Systems) and RT3DE (Qlab; Philips) were compared. In a subset of four animals, admittance volumes were compared with those obtained from traditional conductance catheterization (MPVS Ultra; Millar Instruments). Of 37 sets of measurements compared, admittance- and RT3DE-derived LV volumes and ejection fractions at baseline and in the presence of dobutamine exhibited general agreement, with mean percentage intermethod differences of 10% for end-diastolic volumes, 14% for end-systolic volumes and 9% for ejection fraction; the respective intermethod differences between admittance and conductance in eight data sets compared were 11, 11 and 12%. Admittance volumes were generally higher than those obtained by RT3DE, especially among the larger ventricles. It is concluded that it is feasible to derive pressure-volume relations using admittance catheterization in large animals. This study demonstrated agreements between admittance and RT3DE to within 10-14% mean intermethod difference in the estimation of LV volumes. Further investigation will be required to examine the accuracy of volumes in largest ventricles, where intermethod divergence is greatest.


Assuntos
Volume Cardíaco/fisiologia , Cateterismo/métodos , Ecocardiografia Tridimensional/métodos , Coração/fisiopatologia , Função Ventricular Esquerda/fisiologia , Animais , Volume Cardíaco/efeitos dos fármacos , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/fisiologia , Catéteres , Dobutamina/farmacologia , Coração/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Suínos , Função Ventricular Esquerda/efeitos dos fármacos
11.
Mol Cell Biochem ; 376(1-2): 121-35, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23354458

RESUMO

Recently, we reported an elevated level of glucose-generated carbonyl adducts on cardiac ryanodine receptor (RyR2) and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2) in hearts of streptozotocin(STZ)-induced diabetic rats. We also showed these adduct impaired RyR2 and SERCA2 activities, and altered evoked Ca(2+) transients. What is less clear is if lipid-derived malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE) also chemically react with and impair RyR2 and SERCA2 activities in diabetes? This study used western blot assays with adduct-specific antibodies and confocal microscopy to assess levels of MDA, 4-HNE, N (ε)-carboxy(methyl)lysine (CML), pentosidine, and pyrraline adducts on RyR2 and SERCA2 and evoked intracellular transient Ca(2+) kinetics in myocytes from control, diabetic, and treated-diabetic rats. MDA and 4-HNE adducts were not detected on RyR2 and SERCA2 from either control or 8 weeks diabetic rats with altered evoked Ca(2+) transients. However, CML, pentosidine, and pyrraline adducts were elevated three- to five-fold (p < 0.05). Treating diabetic rats with pyridoxamine (a scavenger of reactive carbonyl species, RCS) or aminoguanidine (a mixed reactive oxygen species-RCS scavenger) reduced CML, pentosidine, and pyrraline adducts on RyR2 and SERCA2 and blunted SR Ca(2+) cycling changes. Treating diabetic rats with the superoxide dismutase mimetic tempol had no impact on MDA and 4-HNE adducts on RyR2 and SERCA2, and on SR Ca(2+) cycling. From these data we conclude that lipid-derived MDA and 4-HNE adducts are not formed on RyR2 and SERCA2 in this model of diabetes, and are therefore unlikely to be directly contributing to the SR Ca(2+) dysregulation.


Assuntos
Aldeídos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Malondialdeído/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Aldeídos/química , Animais , Arginina/análogos & derivados , Arginina/química , Arginina/metabolismo , Cálcio/metabolismo , Óxidos N-Cíclicos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/fisiopatologia , Cardiomiopatias Diabéticas/metabolismo , Ecocardiografia/métodos , Guanidinas/farmacologia , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Masculino , Malondialdeído/química , Miócitos Cardíacos/efeitos dos fármacos , Norleucina/análogos & derivados , Norleucina/química , Norleucina/metabolismo , Carbonilação Proteica , Piridoxamina/farmacologia , Pirróis/química , Pirróis/metabolismo , Ratos , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Marcadores de Spin
12.
Front Endocrinol (Lausanne) ; 14: 1068018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817609

RESUMO

Background: The lockdown at the start of coronavirus disease 2019 (COVID-19) pandemic in Saudi Arabia (March 2020 to June 2020) shifted routine in-person care for patients with type 2 diabetes mellitus (T2DM) to telemedicine. The aim of this study was to investigate the impact telemedicine had during this period on glycemic control (HbA1c) in patients with T2DM. Methods: 4,266 patients with T2DM were screened from five Ministry of National Guard Health Affairs hospitals in the Kingdom of Saudi Arabia. Age, gender, body mass index (BMI), HbA1c (before and after the COVID-19 lockdown), duration of T2DM, comorbidities and antidiabetic medications data were obtained. Mean and standard deviation of differences in HbA1c were calculated to assess the impact of telemedicine intervention. Correlations between clinically significant variances (when change in the level is ≥0.5%) in HbA1c with demographics and clinical characteristic data were determined using chi square test. Results: Most of the participants were Saudis (97.7%) with 59.7% female and 56.4% ≥60 years of age. Obesity was 63.8%, dyslipidemia 91%, and hypertension 70%. Mean HbA1c of all patients slightly rose from 8.52% ± 1.5% before lockdown to 8.68% ± 1.6% after lockdown. There were n=1,064 patients (24.9%) whose HbA1c decreased by ≥0.5%, n =1,574 patients whose HbA1c increased by ≥0.5% (36.9%), and n =1,628 patients whose HbA1c changed by <0.5% in either direction (38.2%). More males had significant improvements in glycemia compared to females (28.1% vs 22.8%, p<0.0001), as were individuals below the age of 60 years (28.1% vs 22.5%, p<0.0001). Hypertensive individuals were less likely than non-hypertensive to have glycemic improvement (23.7% vs 27.9%, p=0.015). More patients on sulfonylureas had improvements in HbA1c (42.3% vs 37.9%, p=0.032), whereas patients on insulin had higher HbA1c (62.7% vs 56.2%, p=0.001). HbA1c changes were independent of BMI, duration of disease, hyperlipidemia, heart and kidney diseases. Conclusion: Telemedicine was helpful in delivering care to T2DM patients during COVID-19 lockdown, with 63.1% of patients maintaining HbA1c and improving glycemia. More males than females showed improvements. However, the HbA1c levels in this cohort of patients pre- and post-lockdown were unsatisfactorily high, and may be due to in part lifestyle, age, education, and hypertension.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Hipertensão , Telemedicina , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hemoglobinas Glicadas , Glicemia , Controle Glicêmico , Controle de Doenças Transmissíveis
13.
Mol Pharmacol ; 82(3): 383-99, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22648972

RESUMO

Heart failure and arrhythmias occur at 3 to 5 times higher rates among individuals with diabetes mellitus, compared with age-matched, healthy individuals. Studies attribute these defects in part to alterations in the function of cardiac type 2 ryanodine receptors (RyR2s), the principal Ca(2+)-release channels on the internal sarcoplasmic reticulum (SR). To date, mechanisms underlying RyR2 dysregulation in diabetes remain poorly defined. A rat model of type 1 diabetes, in combination with echocardiography, in vivo and ex vivo hemodynamic studies, confocal microscopy, Western blotting, mass spectrometry, site-directed mutagenesis, and [(3)H]ryanodine binding, lipid bilayer, and transfection assays, was used to determine whether post-translational modification by reactive carbonyl species (RCS) represented a contributing cause. After 8 weeks of diabetes, spontaneous Ca(2+) release in ventricular myocytes increased ~5-fold. Evoked Ca(2+) release from the SR was nonuniform (dyssynchronous). Total RyR2 protein levels remained unchanged, but the ability to bind the Ca(2+)-dependent ligand [(3)H]ryanodine was significantly reduced. Western blotting and mass spectrometry revealed RCS adducts on select basic residues. Mutation of residues to delineate the physiochemical impact of carbonylation yielded channels with enhanced or reduced cytoplasmic Ca(2+) responsiveness. The prototype RCS methylglyoxal increased and then decreased the RyR2 open probability. Methylglyoxal also increased spontaneous Ca(2+) release and induced Ca(2+) waves in healthy myocytes. Treatment of diabetic rats with RCS scavengers normalized spontaneous and evoked Ca(2+) release from the SR, reduced carbonylation of RyR2s, and increased binding of [(3)H]ryanodine to RyR2s. From these data, we conclude that post-translational modification by RCS contributes to the heterogeneity in RyR2 activity that is seen in experimental diabetes.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Miócitos Cardíacos/fisiologia , Carbonilação Proteica/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/genética , Ecocardiografia/métodos , Células HEK293 , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Miócitos Cardíacos/metabolismo , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Superóxidos/metabolismo
14.
Sci Rep ; 12(1): 9510, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680931

RESUMO

Biomarkers to identify ICU COVID-19 patients at high risk for mortality are urgently needed for therapeutic care and management. Here we found plasma levels of the glycolysis byproduct methylglyoxal (MG) were 4.4-fold higher in ICU patients upon admission that later died (n = 33), and 1.7-fold higher in ICU patients that survived (n = 32),compared to uninfected controls (n = 30). The increased MG in patients that died correlated inversely with the levels of the MG-degrading enzyme glyoxalase-1 (r2 = - 0.50), and its co-factor glutathione (r2 = - 0.63), and positively with monocytes (r2 = 0.29). The inflammation markers, SSAO (r2 = 0.52), TNF-α (r2 = 0.41), IL-1ß (r2 = 0.25), CRP (r2 = 0.26) also correlated positively with MG. Logistic regression analysis provides evidence of a significant relationship between the elevated MG upon admission into ICU and death (P < 0.0001), with 42% of the death variability explained. From these data we conclude that elevated plasma MG on admission is a novel independent biomarker that predicts mortality in ICU COVID-19 patients.


Assuntos
COVID-19 , Unidades de Terapia Intensiva , Biomarcadores , Glicólise , Humanos , Aldeído Pirúvico
15.
Am J Physiol Regul Integr Comp Physiol ; 300(2): R311-20, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21084672

RESUMO

Studies have shown that the superoxide mechanism is involved in angiotensin II (ANG II) signaling in the central nervous system. We hypothesized that ANG II activates sympathetic outflow by stimulation of superoxide anion in the paraventricular nucleus (PVN) of streptozotocin (STZ)-induced diabetic rats. In α-chloralose- and urethane-anesthetized rats, microinjection of ANG II into the PVN (50, 100, and 200 pmol) produced dose-dependent increases in renal sympathetic nerve activity (RSNA), arterial pressure (AP), and heart rate (HR) in control and STZ-induced diabetic rats. There was a potentiation of the increase in RSNA (35.0 ± 5.0 vs. 23.0 ± 4.3%, P < 0.05), AP, and HR due to ANG II type I (AT(1)) receptor activation in diabetic rats compared with control rats. Blocking endogenous AT(1) receptors within the PVN with AT(1) receptor antagonist losartan produced significantly greater decreases in RSNA, AP, and HR in diabetic rats compared with control rats. Concomitantly, there were significant increases in mRNA and protein expression of AT(1) receptor with increased superoxide levels and expression of NAD(P)H oxidase subunits p22(phox), p47(phox), and p67(phox) in the PVN of rats with diabetes. Pretreatment with losartan (10 mg·kg(-1)·day(-1) in drinking water for 3 wk) significantly reduced protein expression of NAD(P)H oxidase subunits (p22(phox) and p47(phox)) in the PVN of diabetic rats. Pretreatment with adenoviral vector-mediated overexpression of human cytoplasmic superoxide dismutase (AdCuZnSOD) within the PVN attenuated the increased central responses to ANG II in diabetes (RSNA: 20.4 ± 0.7 vs. 27.7 ± 2.1%, n = 6, P < 0.05). These data support the concept that superoxide anion contributes to an enhanced ANG II-mediated signaling in the PVN involved with the exaggerated sympathoexcitation in diabetes.


Assuntos
Angiotensina II/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Superóxidos/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Adenoviridae/genética , Angiotensina II/administração & dosagem , Animais , Pressão Sanguínea/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Frequência Cardíaca/efeitos dos fármacos , Rim/inervação , Rim/fisiopatologia , Losartan/farmacologia , Masculino , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxidos/antagonistas & inibidores , Sistema Nervoso Simpático/efeitos dos fármacos , Transdução Genética
16.
Exp Physiol ; 96(9): 875-88, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21622965

RESUMO

This study tested the hypothesis that experimental prediabetes can elicit structural remodelling in the left ventricle (LV). Left ventricles isolated from 8-week-old male Goto-Kakizaki (GK) rats and age-matched male Wistar control rats were used to assess remodelling changes and underlying transforming growth factor ß1 (TGFß1) activity, prohypertrophic Akt-p70S6K1 signalling and gene expression profile of the extracellular matrix (ECM) using histological, immunohistochemical, immunoblotting and quantitative gene expression analyses. Prediabetes in GK rats was confirmed by impaired glucose tolerance and modestly elevated fasting blood glucose. Left ventricle remodelling in the GK rat presented with marked hypertrophy of cardiomyocytes and increased ECM deposition that together translated into increased heart size in the absence of ultrastructural changes or fibre disarray. Molecular derangements underlying this phenotype included recapitulation of the fetal gene phenotype markers B-type natriuretic peptide and α-skeletal muscle actin, activation of the Akt-p70S6K1 pathway and altered gene expression profile of key components (collagen 1α and fibronectin) and modulators of the ECM (matrix metalloproteinases 2 and 9 and connective tissue growth factor). These changes were correlated with parallel findings of increased TGFß1 transcription and activation in the LV and elevated active TGFß1 in plasma of GK rats compared with control animals (Student's t test, P < 0.05 versus age-matched Wistar control animals for all parameters). This is the first report to describe LV structural remodelling in experimental prediabetes. The results suggest that ventricular decompensation pathognomonic of advanced diabetic cardiomyopathy may have possible origins in profibrotic and prohypertrophic mechanisms triggered before the onset of type 2 diabetes mellitus.


Assuntos
Estado Pré-Diabético/fisiopatologia , Fator de Crescimento Transformador beta1/metabolismo , Remodelação Ventricular , Animais , Cardiomegalia/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Proteínas da Matriz Extracelular/metabolismo , Ventrículos do Coração/metabolismo , Masculino , Peptídeo Natriurético Encefálico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Endogâmicos , Ratos Wistar , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/fisiologia
17.
Antiviral Res ; 187: 104975, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450312

RESUMO

While muscle fatigue, pain and weakness are common co-morbidities in HIV-1 infected people, their underlying cause remain poorly defined. To this end, we evaluated whether the common antiretroviral drugs efavirenz (EFV), atazanavir (ATV) and ritonavir (RTV) could be a contributing factor by pertubating sarcoplasmic reticulum (SR) Ca2+ cycling. In live-cell imaging, EFV (6.0 µM), ATV (6.0 µM), and RTV (3.0 µM) elicited Ca2+ transients and blebbing of the plasma membranes of C2C12 skeletal muscle myotubes. Pretreating C2C12 skeletal muscle myotubes with the SR Ca2+ release channel blocker ryanodine (50 µM), slowed the rate and amplitude of Ca2+ release from and reuptake of Ca2+ into the SR. EFV, ATV and RTV (1 nM - 20 µM) potentiated and then displaced [3H] ryanodine binding to rabbit skeletal muscle ryanodine receptor Ca2+ release channel (RyR1). These drugs at concentrations 0.25-31.2 µM also increased and or decreased the open probability of RyR1 by altering its gating and conductance. ATV (≤5 µM) potentiated and >5µM inhibited the ability of sarco (endo)plasmic reticulum Ca2+-ATPase (SERCA1) to hydrolyze ATP and transport Ca2+. RTV (2.5-31.5 µM) dose-dependently inhibited SERCA1-mediated, ATP-dependent Ca2+ transport. EFV (0.25-31.5 µM) had no measurable effect on SERCA1's ability to hydrolyze ATP and transport Ca2+. These data support the notion that EFV, ATV and RTV could be contributing to skeletal muscle co-morbidities in PLWH by modulating SR Ca2+ homeostasis.


Assuntos
Fármacos Anti-HIV/efeitos adversos , Cálcio/metabolismo , Músculo Esquelético/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Alcinos/efeitos adversos , Animais , Sulfato de Atazanavir/efeitos adversos , Benzoxazinas/efeitos adversos , Linhagem Celular , Ciclopropanos/efeitos adversos , Homeostase , Camundongos , Mioblastos/efeitos dos fármacos , Coelhos , Ritonavir/efeitos adversos , Rianodina/farmacologia , Retículo Sarcoplasmático/metabolismo , Imagem com Lapso de Tempo
18.
Front Cardiovasc Med ; 8: 792180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970611

RESUMO

Early-onset heart failure (HF) continues to be a major cause of morbidity and mortality in people living with human immunodeficiency virus type one (HIV-1) infection (PLWH), yet the molecular causes for this remain poorly understood. Herein NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ humanized mice (Hu-mice), plasma from PLWH, and autopsied cardiac tissues from deceased HIV seropositive individuals were used to assess if there is a link between the glycolysis byproduct methylglyoxal (MG) and HF in the setting of HIV-1 infection. At five weeks post HIV infection, Hu-mice developed grade III-IV diastolic dysfunction (DD) with an associated two-fold increase in plasma MG. At sixteen-seventeen weeks post infection, cardiac ejection fraction and fractional shortening also declined by 26 and 35%, and plasma MG increased to four-fold higher than uninfected controls. Histopathological and biochemical analyses of cardiac tissues from Hu-mice 17 weeks post-infection affirmed MG increase with a concomitant decrease in expression of the MG-degrading enzyme glyoxalase-1 (Glo1). The endothelial cell marker CD31 was found to be lower, and coronary microvascular leakage and myocardial fibrosis were prominent. Increasing expression of Glo1 in Hu-mice five weeks post-infection using a single dose of an engineered AAV2/9 (1.7 × 1012 virion particles/kg), attenuated the increases in plasma and cardiac MG levels. Increasing Glo1 also blunted microvascular leakage, fibrosis, and HF seen at sixteen weeks post-infection, without changes in plasma viral loads. In plasma from virally suppressed PLWH, MG was also 3.7-fold higher. In autopsied cardiac tissues from seropositive, HIV individuals with low viral log, MG was 4.2-fold higher and Glo1 was 50% lower compared to uninfected controls. These data show for the first time a causal link between accumulation of MG and HF in the setting of HIV infection.

19.
Antioxidants (Basel) ; 9(7)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640624

RESUMO

Accumulation of methylglyoxal (MG) arising from downregulation of its primary degrading enzyme glyoxalase-1 (Glo1) is an underlying cause of diabetic cardiomyopathy (DC). This study investigated if expressing Glo1 in rat hearts shortly after the onset of Type 1 diabetes mellitus (T1DM) would blunt the development of DC employing the streptozotocin-induced T1DM rat model, an adeno-associated virus containing Glo1 driven by the endothelin-1 promoter (AAV2/9-Endo-Glo1), echocardiography, video edge, confocal imaging, and biochemical/histopathological assays. After eight weeks of T1DM, rats developed DC characterized by a decreased E:A ratio, fractional shortening, and ejection fraction, and increased isovolumetric relaxation time, E: e' ratio, and circumferential and longitudinal strains. Evoked Ca2+ transients and contractile kinetics were also impaired in ventricular myocytes. Hearts from eight weeks T1DM rats had lower Glo1 and GSH levels, elevated carbonyl/oxidative stress, microvascular leakage, inflammation, and fibrosis. A single injection of AAV2/9 Endo-Glo1 (1.7 × 1012 viron particles/kg) one week after onset of T1DM, potentiated GSH, and blunted MG accumulation, carbonyl/oxidative stress, microvascular leakage, inflammation, fibrosis, and impairments in cardiac and myocyte functions that develop after eight weeks of T1DM. These new data indicate that preventing Glo1 downregulation by administering AAV2/9-Endo-Glo1 to rats one week after the onset of T1DM, blunted the DC that develops after eight weeks of diabetes by attenuating carbonyl/oxidative stresses, microvascular leakage, inflammation, and fibrosis.

20.
Sci Rep ; 10(1): 9746, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546795

RESUMO

The molecular cause(s) for early onset heart failure in people living with HIV-1 infection (PLWH) remains poorly defined. Herein, longitudinal echocardiography was used to assess whether NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice reconstituted with human hematopoietic stem cells (Hu-NSG mice) and infected with HIV-1ADA can recapitulate the salient features of this progressive human disease. Four weeks post infection, Hu-NSG mice of both sexes developed left ventricular (LV) diastolic dysfunction (DD), with 25% exhibiting grade III/IV restrictive DD with mitral regurgitation. Increases in global longitudinal and circumferential strains and declines in LV ejection fraction and fractional shortening were observed eight weeks post infection. After twelve weeks of infection, 33% of Hu-NSG mice exhibited LV dyskinesia and dyssynchrony. Histopathological analyses of hearts seventeen weeks post infection revealed coronary microvascular leakage, fibrosis and immune cell infiltration into the myocardium. These data show for the first time that HIV-1ADA-infected Hu-NSG mice can recapitulate key left ventricular cardiac deficits and pathophysiological changes reported in humans with progressive HIV-1 infection. The results also suggest that HIV-1 infected Hu-NSG mice may be a useful model to screen for pharmacological agents to blunt LV dysfunction and associated pathophysiologic causes reported in PLWH.


Assuntos
Infecções por HIV/fisiopatologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/virologia , Animais , Modelos Animais de Doenças , Ecocardiografia/métodos , Feminino , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Soropositividade para HIV , HIV-1/metabolismo , HIV-1/patogenicidade , Cardiopatias , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA