Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(39): e2204396119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122218

RESUMO

Membrane contact sites (MCS), close membrane apposition between organelles, are platforms for interorganellar transfer of lipids including cholesterol, regulation of lipid homeostasis, and co-ordination of endocytic trafficking. Sphingosine kinases (SphKs), two isoenzymes that phosphorylate sphingosine to the bioactive sphingosine-1-phosphate (S1P), have been implicated in endocytic trafficking. However, the physiological functions of SphKs in regulation of membrane dynamics, lipid trafficking and MCS are not known. Here, we report that deletion of SphKs decreased S1P with concomitant increases in its precursors sphingosine and ceramide, and markedly reduced endoplasmic reticulum (ER) contacts with late endocytic organelles. Expression of enzymatically active SphK1, but not catalytically inactive, rescued the deficit of these MCS. Although free cholesterol accumulated in late endocytic organelles in SphK null cells, surprisingly however, cholesterol transport to the ER was not reduced. Importantly, deletion of SphKs promoted recruitment of the ER-resident cholesterol transfer protein Aster-B (also called GRAMD1B) to the plasma membrane (PM), consistent with higher accessible cholesterol and ceramide at the PM, to facilitate cholesterol transfer from the PM to the ER. In addition, ceramide enhanced in vitro binding of the Aster-B GRAM domain to phosphatidylserine and cholesterol liposomes. Our study revealed a previously unknown role for SphKs and sphingolipid metabolites in governing diverse MCS between the ER network and late endocytic organelles versus the PM to control the movement of cholesterol between distinct cell membranes.


Assuntos
Fosfatidilserinas , Esfingosina , Ceramidas/metabolismo , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Isoenzimas/metabolismo , Lipossomos/metabolismo , Lisofosfolipídeos , Fosfatidilserinas/metabolismo , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
2.
Neurobiol Dis ; 184: 106213, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37364689

RESUMO

Female biased pathology and cognitive decline in Alzheimer's disease (AD) have been consistently observed with unclear underlying mechanisms. Although brain sphingolipid ceramide is elevated in AD patients, whether and how ceramide may contribute to sex-specific differences in amyloid pathology is unknown. Here we investigated the sex-specific impact of chronic pharmacological inhibition of neutral sphingomyelinase (nSMase), a key enzyme responsible for ceramide metabolism, on in vivo neuron-derived exosome dynamics, Aß plaque load, and cognitive function in the APPNL-F/NL-F knock-in (APP NL-F) AD mouse model. Our results found sex-specific increase of cortical C20:0 ceramide and brain exosome levels only in APP NL-F but not in age-matched WT mice. Although nSMase inhibition similarly blocks exosome spreading in male and female mice, significantly reduced amyloid pathology was mostly observed in cortex and hippocampus of female APP NL-F mice with only modest effect found on male APP NL-F mice. Consistently, T maze test to examine spatial working memory revealed a female-specific reduction in spontaneous alternation rate in APP NL-F mice, which was fully reversed with chronic nSMase inhibition. Together, our results suggest that disease induced changes in ceramide and exosome pathways contribute to the progression of female-specific amyloid pathology in APP NL-F AD models.


Assuntos
Doença de Alzheimer , Exossomos , Camundongos , Masculino , Feminino , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Exossomos/metabolismo , Camundongos Transgênicos , Placa Amiloide/metabolismo , Proteínas Amiloidogênicas , Neurônios/metabolismo , Modelos Animais de Doenças
3.
Proc Natl Acad Sci U S A ; 117(3): 1700-1710, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31896578

RESUMO

Human noroviruses (HuNoVs) cause sporadic and epidemic outbreaks of gastroenteritis in all age groups worldwide. We previously reported that stem cell-derived human intestinal enteroid (HIE) cultures support replication of multiple HuNoV strains and that some strains (e.g., GII.3) replicate only in the presence of bile. Heat- and trypsin-treatment of bile did not reduce GII.3 replication, indicating a nonproteinaceous component in bile functions as an active factor. Here we show that bile acids (BAs) are critical for GII.3 replication and replication correlates with BA hydrophobicity. Using the highly effective BA, glycochenodeoxycholic acid (GCDCA), we show BAs act during the early stage of infection, BA-dependent replication in HIEs is not mediated by detergent effects or classic farnesoid X receptor or Takeda G protein-coupled receptor 5 signaling but involves another G protein-coupled receptor, sphingosine-1-phosphate receptor 2, and BA treatment of HIEs increases particle uptake. We also demonstrate that GCDCA induces multiple cellular responses that promote GII.3 replication in HIEs, including enhancement of 1) endosomal uptake, 2) endosomal acidification and subsequent activity of endosomal/lysosomal enzyme acid sphingomyelinase (ASM), and 3) ceramide levels on the apical membrane. Inhibitors of endosomal acidification or ASM reduce GII.3 infection and exogenous addition of ceramide alone permits infection. Furthermore, inhibition of lysosomal exocytosis of ASM, which is required for ceramide production at the apical surface, decreases GII.3 infection. Together, our results support a model where GII.3 exploits rapid BA-mediated cellular endolysosomal dynamic changes and cellular ceramide to enter and replicate in jejunal HIEs.


Assuntos
Ácidos e Sais Biliares/metabolismo , Ceramidas/metabolismo , Intestinos/virologia , Norovirus/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Ácidos e Sais Biliares/farmacologia , Ceramidas/farmacologia , Ácido Glicoquenodesoxicólico , Humanos , Receptores Acoplados a Proteínas G , Esfingomielina Fosfodiesterase/metabolismo , Receptores de Esfingosina-1-Fosfato
4.
Pharmacol Res ; 175: 105980, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863822

RESUMO

Exosomes are nano-sized lipid vesicles that are produced by all eukaryotic cells, and they typically range in size from 30 to 150 nm. Exosomes were discovered almost 40 years ago; however, the last two decades have attracted considerable attention due to exosomes' inherent abilities to shuttle nucleic acids, lipids and proteins between cells, along with their natural affinity to exosome target cells. From a pharmaceutical perspective, exosomes are regarded as naturally produced nanoparticle drug delivery vehicles. The application of exosomes as a means of drug delivery offers critical advantages compared to other nanoparticulate drug delivery systems, such as liposomes and polymeric nanoparticles. These advantages are due to the exosomes' intrinsic features, such as low immunogenicity, biocompatibility, stability, and their ability to overcome biological barriers. Herein, we outline the structure and origin of exosomes, as well as their biological functions. We also touch upon recent advances in exosome labeling, imaging and drug loading. Finally, we discuss exosomes in targeted drug delivery and clinical trial development.


Assuntos
Vesículas Extracelulares , Animais , Técnicas e Procedimentos Diagnósticos , Sistemas de Liberação de Medicamentos , Tratamento Farmacológico , Vesículas Extracelulares/metabolismo , Humanos , Distribuição Tecidual
5.
J Allergy Clin Immunol ; 147(5): 1936-1948.e9, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33130063

RESUMO

BACKGROUND: Nothing is known about the mechanisms by which increased ceramide levels in the lung contribute to allergic responses and asthma severity. OBJECTIVE: We sought to investigate the functional role of ceramide in mouse models of allergic airway disease that recapitulate the cardinal clinical features of human allergic asthma. METHODS: Allergic airway disease was induced in mice by repeated intranasal administration of house dust mite or the fungal allergen Alternaria alternata. Processes that can be regulated by ceramide and are important for severity of allergic asthma were correlated with ceramide levels measured by mass spectrometry. RESULTS: Both allergens induced massive pulmonary apoptosis and also significantly increased reactive oxygen species in the lung. Prevention of increases in lung ceramide levels mitigated allergen-induced apoptosis, reactive oxygen species, and neutrophil infiltration. In contrast, dietary supplementation of the antioxidant α-tocopherol decreased reactive oxygen species but had no significant effects on elevation of ceramide level or apoptosis, indicating that the increases in lung ceramide levels in allergen-challenged mice are not mediated by oxidative stress. Moreover, specific ceramide species were altered in bronchoalveolar lavage fluid from patients with severe asthma compared with in bronchoalveolar lavage fluid from individuals without asthma. CONCLUSION: Our data suggest that elevation of ceramide level after allergen challenge contributes to the apoptosis, reactive oxygen species generation, and neutrophilic infiltrate that characterize the severe asthmatic phenotype. Ceramide might be the trigger of formation of Creola bodies found in the sputum of patients with severe asthma and could be a biomarker to optimize diagnosis and to monitor and improve clinical outcomes in this disease.


Assuntos
Asma/imunologia , Ceramidas/imunologia , Pulmão/imunologia , Estresse Oxidativo , Adulto , Alérgenos/imunologia , Alternaria/imunologia , Animais , Apoptose , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/imunologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Pyroglyphidae/imunologia , Espécies Reativas de Oxigênio/imunologia , Adulto Jovem
6.
J Lipid Res ; 62: 100021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33380429

RESUMO

Microtubules are polymers composed of αß-tubulin subunits that provide structure to cells and play a crucial role in in the development and function of neuronal processes and cilia, microtubule-driven extensions of the plasma membrane that have sensory (primary cilia) or motor (motile cilia) functions. To stabilize microtubules in neuronal processes and cilia, α tubulin is modified by the posttranslational addition of an acetyl group, or acetylation. We discovered that acetylated tubulin in microtubules interacts with the membrane sphingolipid, ceramide. However, the molecular mechanism and function of this interaction are not understood. Here, we show that in human induced pluripotent stem cell-derived neurons, ceramide stabilizes microtubules, which indicates a similar function in cilia. Using proximity ligation assays, we detected complex formation of ceramide with acetylated tubulin in Chlamydomonas reinhardtii flagella and cilia of human embryonic kidney (HEK293T) cells, primary cultured mouse astrocytes, and ependymal cells. Using incorporation of palmitic azide and click chemistry-mediated addition of fluorophores, we show that a portion of acetylated tubulin is S-palmitoylated. S-palmitoylated acetylated tubulin is colocalized with ceramide-rich platforms in the ciliary membrane, and it is coimmunoprecipitated with Arl13b, a GTPase that mediates transport of proteins into cilia. Inhibition of S-palmitoylation with 2-bromo palmitic acid or inhibition of ceramide biosynthesis with fumonisin B1 reduces formation of the Arl13b-acetylated tubulin complex and its transport into cilia, concurrent with impairment of ciliogenesis. Together, these data show, for the first time, that ceramide-rich platforms mediate membrane anchoring and interaction of S-palmitoylated proteins that are critical for cilium formation, stabilization, and function.


Assuntos
Tubulina (Proteína)
7.
J Biol Chem ; 294(2): 502-519, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30420430

RESUMO

Formation of membrane pores/channels regulates various cellular processes, such as necroptosis or stem cell niche signaling. However, the roles of membrane lipids in the formation of pores and their biological functions are largely unknown. Here, using the cellular stress model evoked by the sphingolipid analog drug FTY720, we show that formation of ceramide-enriched membrane pores, referred to here as ceramidosomes, is initiated by a receptor-interacting Ser/Thr kinase 1 (RIPK1)-ceramide complex transported to the plasma membrane by nonmuscle myosin IIA-dependent trafficking in human lung cancer cells. Molecular modeling/simulation coupled with site-directed mutagenesis revealed that Asp147 or Asn169 of RIPK1 are key for ceramide binding and that Arg258 or Leu293 residues are involved in the myosin IIA interaction, leading to ceramidosome formation and necroptosis. Moreover, generation of ceramidosomes independently of any external drug/stress stimuli was also detected in the plasma membrane of germ line stem cells in ovaries during the early stages of oogenesis in Drosophila melanogaster Inhibition of ceramidosome formation via myosin IIA silencing limited germ line stem cell signaling and abrogated oogenesis. In conclusion, our findings indicate that the RIPK1-ceramide complex forms large membrane pores we named ceramidosomes. They further suggest that, in addition to their roles in stress-mediated necroptosis, these ceramide-enriched pores also regulate membrane integrity and signaling and might also play a role in D. melanogaster ovary development.


Assuntos
Membrana Celular/metabolismo , Ceramidas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Motores Moleculares/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Necrose/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Células A549 , Animais , Linhagem Celular , Membrana Celular/patologia , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Humanos , Neoplasias Pulmonares/patologia , Simulação de Acoplamento Molecular , Necrose/patologia , Oogênese , Ovário/crescimento & desenvolvimento
8.
J Neurochem ; 154(6): 662-672, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32058598

RESUMO

A major dose-limiting side effect of docetaxel chemotherapy is peripheral neuropathy. Patients' symptoms include pain, numbness, tingling and burning sensations, and motor weakness in the extremities. The molecular mechanism is currently not understood, and there are no treatments available. Previously, we have shown an association between neuropathy symptoms of patients treated with paclitaxel and the plasma levels of neurotoxic sphingolipids, the 1-deoxysphingolipids (1-deoxySL) (Kramer et al, FASEB J, 2015). 1-DeoxySL are produced when the first enzyme of the sphingolipid biosynthetic pathway, serine palmitoyltransferase (SPT), uses L-alanine as a substrate instead of its canonical amino acid substrate, L-serine. In the current investigation, we tested whether 1-deoxySL accumulate in the nervous system following systemic docetaxel treatment in mice. In dorsal root ganglia (DRG), we observed that docetaxel (45 mg/kg cumulative dose) significantly elevated the levels of 1-deoxySL and L-serine-derived ceramides, but not sphingosine-1-phosphate (S1P). S1P is a bioactive sphingolipid and a ligand for specific G-protein-coupled receptors. In the sciatic nerve, docetaxel decreased 1-deoxySL and ceramides. Moreover, we show that in primary DRG cultures, 1-deoxysphingosine produced neurite swellings that could be reversed with S1P. Our results demonstrate that docetaxel chemotherapy up-regulates sphingolipid metabolism in sensory neurons, leading to the accumulation of neurotoxic 1-deoxySL. We suggest that the neurotoxic effects of 1-deoxySL on axons can be reversed with S1P.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Docetaxel/toxicidade , Síndromes Neurotóxicas/prevenção & controle , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Esfingolipídeos/toxicidade , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Ceramidas/metabolismo , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Lipídeos/farmacologia , Lisofosfolipídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Serina/metabolismo , Serina C-Palmitoiltransferase/genética , Esfingosina/análogos & derivados , Esfingosina/farmacologia
9.
Glia ; 67(3): 498-511, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30484906

RESUMO

Accumulating evidence indicates that neuroinflammation contributes to the pathogenesis and exacerbation of neurodegenerative disorders, such as Alzheimer's disease (AD). Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid that regulates many pathophysiological processes including inflammation. We present evidence here that the spinster homolog 2 (Spns2), a S1P transporter, promotes microglia pro-inflammatory activation in vitro and in vivo. Spns2 knockout (Spns2KO) in primary cultured microglia resulted in significantly reduced levels of pro-inflammatory cytokines induced by lipopolysaccharide (LPS) and amyloid-beta peptide 1-42 oligomers (Aß42) when compared with littermate controls. Fingolimod (FTY720), a S1P receptor 1 (S1PR1) functional antagonist and FDA approved drug for relapsing-remitting multiple sclerosis, partially blunted Aß42-induced pro-inflammatory cytokine generation, suggesting that Spns2 promotes microglia pro-inflammatory activation through S1P-signaling. Spns2KO significantly reduced Aß42-induced nuclear factor kappa B (NFκB) activity. S1P increased, while FTY720 dampened, Aß42-induced NFκB activity, suggesting that Spns2 activates microglia inflammation through, at least partially, NFκB pathway. Spns2KO mouse brains showed significantly reduced Aß42-induced microglia activation/accumulation and reduced levels of pro-inflammatory cytokines when compared with age-matched controls. More interestingly, Spns2KO ameliorated Aß42-induced working memory deficit detected by Y-Maze. In summary, these results suggest that Spns2 promotes pro-inflammatory polarization of microglia and may play a crucial role in AD pathogenesis.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Proteínas de Transporte de Ânions/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Citocinas/metabolismo , Cloridrato de Fingolimode/farmacologia , Lipopolissacarídeos/farmacologia , Lisofosfolipídeos/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Knockout , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(21): 5928-33, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27162368

RESUMO

Sphingolipids exhibit extreme functional and chemical diversity that is in part determined by their hydrophobic moiety, ceramide. In mammals, the fatty acyl chain length variation of ceramides is determined by six (dihydro)ceramide synthase (CerS) isoforms. Previously, we and others showed that mutations in the major neuron-specific CerS1, which synthesizes 18-carbon fatty acyl (C18) ceramide, cause elevation of long-chain base (LCB) substrates and decrease in C18 ceramide and derivatives in the brain, leading to neurodegeneration in mice and myoclonus epilepsy with dementia in humans. Whether LCB elevation or C18 ceramide reduction leads to neurodegeneration is unclear. Here, we ectopically expressed CerS2, a nonneuronal CerS producing C22-C24 ceramides, in neurons of Cers1-deficient mice. Surprisingly, the Cers1 mutant pathology was almost completely suppressed. Because CerS2 cannot replenish C18 ceramide, the rescue is likely a result of LCB reduction. Consistent with this hypothesis, we found that only LCBs, the substrates common for all of the CerS isoforms, but not ceramides and complex sphingolipids, were restored to the wild-type levels in the Cers2-rescued Cers1 mutant mouse brains. Furthermore, LCBs induced neurite fragmentation in cultured neurons at concentrations corresponding to the elevated levels in the CerS1-deficient brain. The strong association of LCB levels with neuronal survival both in vivo and in vitro suggests high-level accumulation of LCBs is a possible underlying cause of the CerS1 deficiency-induced neuronal death.


Assuntos
Encéfalo/metabolismo , Ceramidas , Expressão Gênica , Proteínas de Membrana/deficiência , Neuritos , Doenças Neurodegenerativas , Esfingosina N-Aciltransferase/biossíntese , Esfingosina N-Aciltransferase/deficiência , Animais , Encéfalo/patologia , Sobrevivência Celular , Ceramidas/biossíntese , Ceramidas/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Mutantes , Neuritos/metabolismo , Neuritos/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Esfingolipídeos/biossíntese , Esfingolipídeos/genética , Esfingosina N-Aciltransferase/genética
11.
J Lipid Res ; 59(3): 488-506, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29321137

RESUMO

We reported that amyloid ß peptide (Aß42) activated neutral SMase 2 (nSMase2), thereby increasing the concentration of the sphingolipid ceramide in astrocytes. Here, we show that Aß42 induced mitochondrial fragmentation in wild-type astrocytes, but not in nSMase2-deficient cells or astrocytes treated with fumonisin B1 (FB1), an inhibitor of ceramide synthases. Unexpectedly, ceramide depletion was concurrent with rapid movements of mitochondria, indicating an unknown function of ceramide for mitochondria. Using immunocytochemistry and super-resolution microscopy, we detected ceramide-enriched and mitochondria-associated membranes (CEMAMs) that were codistributed with microtubules. Interaction of ceramide with tubulin was confirmed by cross-linking to N-[9-(3-pent-4-ynyl-3-H-diazirine-3-yl)-nonanoyl]-D-erythro-sphingosine (pacFACer), a bifunctional ceramide analog, and binding of tubulin to ceramide-linked agarose beads. Ceramide-associated tubulin (CAT) translocated from the perinuclear region to peripheral CEMAMs and mitochondria, which was prevented in nSMase2-deficient or FB1-treated astrocytes. Proximity ligation and coimmunoprecipitation assays showed that ceramide depletion reduced association of tubulin with voltage-dependent anion channel 1 (VDAC1), an interaction known to block mitochondrial ADP/ATP transport. Ceramide-depleted astrocytes contained higher levels of ATP, suggesting that ceramide-induced CAT formation leads to VDAC1 closure, thereby reducing mitochondrial ATP release, and potentially motility and resistance to Aß42 Our data also indicate that inhibiting ceramide generation may protect mitochondria in Alzheimer's disease.


Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/citologia , Astrócitos/metabolismo , Ceramidas/metabolismo , Mitocôndrias/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Membranas Mitocondriais/metabolismo , Tubulina (Proteína)/metabolismo
12.
J Lipid Res ; 59(5): 795-804, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29567647

RESUMO

Sphingolipids are key signaling lipids in cancer. Genome-wide studies have identified neutral SMase-2 (nSMase2), an enzyme generating ceramide from SM, as a potential repressor for hepatocellular carcinoma. However, little is known about the sphingolipids regulated by nSMase2 and their roles in liver tumor development. We discovered growth of spontaneous liver tumors in 27.3% (9 of 33) of aged male nSMase2-deficient (fro/fro) mice. Lipidomics analysis showed a marked increase of SM in the tumor. Unexpectedly, tumor tissues presented with more than a 7-fold increase of C16-ceramide, concurrent with upregulation of ceramide synthase 5. The fro/fro liver tumor, but not adjacent tissue, exhibited substantial accumulation of lipid droplets, suggesting that nSMase2 deficiency is associated with tumor growth and increased neutral lipid generation in the tumor. Tumor tissue expressed significantly increased levels of CD133 and EpCAM mRNA, two markers of liver cancer stem-like cells (CSCs) and higher levels of phosphorylated signal transducer and activator of transcription 3, an essential regulator of stemness. CD133(+) cells showed strong labeling for SM and ceramide. In conclusion, these results suggest that SMase-2 deficiency plays a role in the survival or proliferation of CSCs, leading to spontaneous tumors, which is associated with tumor-specific effects on lipid homeostasis.


Assuntos
Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Esfingomielina Fosfodiesterase/deficiência , Animais , Proliferação de Células , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Knockout , Esfingomielina Fosfodiesterase/genética
13.
J Neurosci ; 36(33): 8653-67, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27535912

RESUMO

UNLABELLED: Recent evidence implicates exosomes in the aggregation of Aß and spreading of tau in Alzheimer's disease. In neural cells, exosome formation can be blocked by inhibition or silencing of neutral sphingomyelinase-2 (nSMase2). We generated genetically nSMase2-deficient 5XFAD mice (fro;5XFAD) to assess AD-related pathology in a mouse model with consistently reduced ceramide generation. We conducted in vitro assays to assess Aß42 aggregation and glial clearance with and without exosomes isolated by ultracentrifugation and determined exosome-induced amyloid aggregation by particle counting. We analyzed brain exosome content, amyloid plaque formation, neuronal degeneration, sphingolipid, Aß42 and phospho-tau levels, and memory-related behaviors in 5XFAD versus fro;5XFAD mice using contextual and cued fear conditioning. Astrocyte-derived exosomes accelerated aggregation of Aß42 and blocked glial clearance of Aß42 in vitro Aß42 aggregates were colocalized with extracellular ceramide in vitro using a bifunctional ceramide analog preloaded into exosomes and in vivo using anticeramide IgG, implicating ceramide-enriched exosomes in plaque formation. Compared with 5XFAD mice, the fro;5XFAD mice had reduced brain exosomes, ceramide levels, serum anticeramide IgG, glial activation, total Aß42 and plaque burden, tau phosphorylation, and improved cognition in a fear-conditioned learning task. Ceramide-enriched exosomes appear to exacerbate AD-related brain pathology by promoting the aggregation of Aß. Reduction of exosome secretion by nSMase2 loss of function improves pathology and cognition in the 5XFAD mouse model. SIGNIFICANCE STATEMENT: We present for the first time evidence, using Alzheimer's disease (AD) model mice deficient in neural exosome secretion due to lack of neutral sphingomyelinase-2 function, that ceramide-enriched exosomes exacerbate AD-related pathologies and cognitive deficits. Our results provide rationale to pursue a means of inhibiting exosome secretion as a potential therapy for individuals at risk for developing AD.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Regulação da Expressão Gênica/genética , Esfingomielina Fosfodiesterase/deficiência , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Recém-Nascidos , Antígeno CD11b/metabolismo , Células Cultivadas , Transtornos Cognitivos/terapia , Modelos Animais de Doenças , Exossomos/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Neuroglia/metabolismo , Neuroglia/ultraestrutura , Presenilina-1/genética , Esfingomielina Fosfodiesterase/genética
14.
J Physiol ; 595(15): 5265-5284, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28555839

RESUMO

KEY POINTS: At rat calyx of Held terminals, ATP was required not only for slow endocytosis, but also for rapid phase of compensatory endocytosis. An ATP-independent form of endocytosis was recruited to accelerate membrane retrieval at increased activity and temperature. ATP-independent endocytosis primarily involved retrieval of pre-existing membrane, which depended on Ca2+ and the activity of neutral sphingomyelinase but not clathrin-coated pit maturation. ATP-independent endocytosis represents a non-canonical mechanism that can efficiently retrieve membrane at physiological conditions without competing for the limited ATP at elevated neuronal activity. ABSTRACT: Neurotransmission relies on membrane endocytosis to maintain vesicle supply and membrane stability. Endocytosis has been generally recognized as a major ATP-dependent function, which efficiently retrieves more membrane at elevated neuronal activity when ATP consumption within nerve terminals increases drastically. This paradox raises the interesting question of whether increased activity recruits ATP-independent mechanism(s) to accelerate endocytosis at the same time as preserving ATP availability for other tasks. To address this issue, we studied ATP requirement in three typical forms of endocytosis at rat calyx of Held terminals by whole-cell membrane capacitance measurements. At room temperature, blocking ATP hydrolysis effectively abolished slow endocytosis and rapid endocytosis but only partially inhibited excess endocytosis following intense stimulation. The ATP-independent endocytosis occurred at calyces from postnatal days 8-15, suggesting its existence before and after hearing onset. This endocytosis was not affected by a reduction of exocytosis using the light chain of botulinum toxin C, nor by block of clathrin-coat maturation. It was abolished by EGTA, which preferentially blocked endocytosis of retrievable membrane pre-existing at the surface, and was impaired by oxidation of cholesterol and inhibition of neutral sphingomyelinase. ATP-independent endocytosis became more significant at 34-35°C, and recovered membrane by an amount that, on average, was close to exocytosis. The results of the present study suggest that activity and temperature recruit ATP-independent endocytosis of pre-existing membrane (in addition to ATP-dependent endocytosis) to efficiently retrieve membrane at nerve terminals. This less understood endocytosis represents a non-canonical mechanism regulated by lipids such as cholesterol and sphingomyelinase.


Assuntos
Trifosfato de Adenosina/fisiologia , Tronco Encefálico/fisiologia , Endocitose/fisiologia , Animais , Membrana Celular/fisiologia , Capacitância Elétrica , Feminino , Masculino , Ratos Sprague-Dawley , Esfingomielina Fosfodiesterase/fisiologia
15.
Angew Chem Int Ed Engl ; 56(22): 6131-6135, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28379629

RESUMO

The sphingolipid ceramide regulates cellular processes such as differentiation, proliferation, growth arrest, and apoptosis. Ceramide-rich membrane areas promote structural changes within the plasma membrane that segregate membrane receptors and affect membrane curvature and vesicle formation, fusion, and trafficking. Ceramides were labeled by immunocytochemistry to visualize their distribution on the plasma membrane of different cells with virtually molecular resolution by direct stochastic optical reconstruction microscopy (dSTORM). Super-resolution images show that independent of labeling conditions and cell type 50-60 % of all membrane ceramides are located in ceramide-rich platforms (CRPs) with a size of about 75 nm that are composed of at least about 20 ceramides. Treatment of cells with Bacillus cereus sphingomyelinase (bSMase) increases the overall ceramide concentration in the plasma membrane, the quantity of CRPs, and their size. Simultaneously, the ceramide concentration in CRPs increases approximately twofold.


Assuntos
Ceramidas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Humanos , Processos Estocásticos
16.
J Neurosci Res ; 94(11): 974-81, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27638582

RESUMO

Until recently, lipids were considered inert building blocks of cellular membranes. This changed three decades ago when lipids were found to regulate cell polarity and vesicle transport, and the "lipid raft" concept took shape. The lipid-driven membrane anisotropy in form of "rafts" that associate with proteins led to the view that organized complexes of lipids and proteins regulate various cell functions. Disturbance of this organization can lead to cellular, tissue, and organ malfunction. Sphingolipidoses, lysosomal storage diseases that are caused by enzyme deficiencies in the sphingolipid degradation pathway, were found to be particularly detrimental to the brain. These enzyme deficiencies result in accumulation of sphingolipid metabolites in lysosomes, although it is not yet clear how this accumulation affects the organization of lipids in cellular membranes. Krabbe's disease (KD), or globoid cell leukodystrophy, was one of the first sphingolipidosis for which the raft concept offered a potential mechanism. KD is caused by mutations in the enzyme ß-galactocerebrosidase; however, elevation of its substrate, galactosylceramide, is not observed or considered detrimental. Instead, it was found that a byproduct of galactosylceramide metabolism, the lysosphingolipid psychosine, is accumulated. The "psychosine hypothesis" has been refined by showing that psychosine disrupts lipid rafts and vesicular transport critical for the function of glia and neurons. The role of psychosine in KD is an example of how the disruption of sphingolipid metabolism can lead to elevation of a toxic lysosphingolipid, resulting in disruption of cellular membrane organization and neurotoxicity. © 2016 Wiley Periodicals, Inc.


Assuntos
Glicosídeo Hidrolases/genética , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Mutação/genética , Psicosina/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Glicosídeo Hidrolases/deficiência , Humanos , Leucodistrofia de Células Globoides/patologia , Microdomínios da Membrana/genética , Microdomínios da Membrana/metabolismo , Psicosina/genética
17.
J Biol Chem ; 289(30): 21082-97, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24876379

RESUMO

The ceramide-sphingosine 1-phosphate (S1P) rheostat is important in regulating cell fate. Several chemotherapeutic agents, including paclitaxel (Taxol), involve pro-apoptotic ceramide in their anticancer effects. The ceramide-to-S1P pathway is also implicated in the development of pain, raising the intriguing possibility that these sphingolipids may contribute to chemotherapy- induced painful peripheral neuropathy, which can be a critical dose-limiting side effect of many widely used chemotherapeutic agents.We demonstrate that the development of paclitaxel-induced neuropathic pain was associated with ceramide and S1P formation in the spinal dorsal horn that corresponded with the engagement of S1P receptor subtype 1 (S1PR(1))- dependent neuroinflammatory processes as follows: activation of redox-sensitive transcription factors (NFκB) and MAPKs (ERK and p38) as well as enhanced formation of pro-inflammatory and neuroexcitatory cytokines (TNF-α and IL-1ß). Intrathecal delivery of the S1PR1 antagonist W146 reduced these neuroinflammatory processes but increased IL-10 and IL-4, potent anti-inflammatory/ neuroprotective cytokines. Additionally, spinal W146 reversed established neuropathic pain. Noteworthy, systemic administration of the S1PR1 modulator FTY720 (Food and Drug Administration- approved for multiple sclerosis) attenuated the activation of these neuroinflammatory processes and abrogated neuropathic pain without altering anticancer properties of paclitaxel and with beneficial effects extended to oxaliplatin. Similar effects were observed with other structurally and chemically unrelated S1PR1 modulators (ponesimod and CYM-5442) and S1PR1 antagonists (NIBR-14/15) but not S1PR1 agonists (SEW2871). Our findings identify for the first time the S1P/S1PR1 axis as a promising molecular and therapeutic target in chemotherapy-induced painful peripheral neuropathy, establish a mechanistic insight into the biomolecular signaling pathways, and provide the rationale for the clinical evaluation of FTY720 in chronic pain patients.


Assuntos
Antineoplásicos Fitogênicos/efeitos adversos , Neuralgia/induzido quimicamente , Neuralgia/enzimologia , Paclitaxel/efeitos adversos , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Anilidas/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Cloridrato de Fingolimode , Humanos , Imunossupressores/farmacologia , Indanos/farmacologia , Lisofosfolipídeos/metabolismo , Masculino , Neuralgia/tratamento farmacológico , Organofosfonatos/farmacologia , Oxidiazóis/farmacologia , Paclitaxel/farmacologia , Propilenoglicóis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacologia , Receptores de Esfingosina-1-Fosfato , Tiazóis/farmacologia , Tiofenos/farmacologia
18.
Int J Cancer ; 137(7): 1610-20, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25833198

RESUMO

Many breast cancer cells acquire multidrug resistance (MDR) mediated by ABC transporters such as breast cancer resistance protein (BCRP/ABCG2). Here we show that incubation of human breast cancer MDA-MB-231 cells with farnesoid X receptor antagonist guggulsterone (gug) and retinoid X receptor agonist bexarotene (bex) elevated ceramide, a sphingolipid known to induce exosome secretion. The gug+bex combination reduced cellular levels of BCRP to 20% of control cells by inducing its association and secretion with exosomes. Exogenous C6 ceramide also induced secretion of BCRP-associated exosomes, while siRNA-mediated knockdown or GW4869-mediated inhibition of neutral sphingomyelinase 2 (nSMase2), an enzyme generating ceramide, restored cellular BCRP. Immunocytochemistry showed that ceramide elevation and concurrent loss of cellular BCRP was prominent in Aldefluor-labeled breast cancer stem-like cells. These cells no longer excluded the BCRP substrate Hoechst 33342 and showed caspase activation and apoptosis induction. Consistent with reduced BCRP, ABC transporter assays showed that gug+bex increased doxorubicin retention and that the combination of gug+bex with doxorubicin enhanced cell death by more than fivefold. Taken together, our results suggest a novel mechanism by which ceramide induces BCRP secretion and reduces MDR, which may be useful as adjuvant drug treatment for sensitizing breast cancer cells and cancer stem cells to chemotherapy.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Proteínas de Neoplasias/metabolismo , Pregnenodionas/farmacologia , Tetra-Hidronaftalenos/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Bexaroteno , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ceramidas/biossíntese , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Humanos
19.
BMC Cancer ; 14: 24, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24422988

RESUMO

BACKGROUND: Ceramide is a bioeffector that mediates various cellular processes, including apoptosis. However, the mechanism underlying ceramide function in apoptosis is apparently cell type-dependent and is not well-understood. We aimed at identifying molecular targets of ceramide in metastatic human colon and breast cancer cells, and determining the efficacy of ceramide analog in suppression of colon and breast cancer metastasis. METHODS: The activity of and mechanism underlying ceramide as a cytotoxic agent, and as a sensitizer for Fas-mediated apoptosis was analyzed in human cell lines established from primary or metastatic colon and breast cancers. The efficacy of ceramide analog LCL85 in suppression of metastasis was examined in preclinical mouse tumor models. RESULTS: Exposure of human colon carcinoma cells to ceramide analog LCL85 results in apoptosis in a dose-dependent manner. Interestingly, a sublethal dose of LCL85 increased C16 ceramide content and overcame tumor cell resistance to Fas-mediated apoptosis. Subsequently, treatment of tumor cells with exogenous C16 ceramide resulted in increased tumor cell sensitivity to Fas-mediated apoptosis. LCL85 resembles Smac mimetic BV6 in sensitization of colon carcinoma cells to Fas-mediated apoptosis by inducing proteasomal degradation of cIAP1 and xIAP proteins. LCL85 also decreased xIAP1 and cIAP1 protein levels and sensitized metastatic human breast cancer cells to Fas-mediated apoptosis. Silencing xIAP and cIAP1 with specific siRNAs significantly increased the metastatic human colon carcinoma cell sensitivity to Fas-mediated apoptosis, suggesting that IAP proteins mediate apoptosis resistance in metastatic human colon carcinoma cells and ceramide induces IAP protein degradation to sensitize the tumor cells to apoptosis induction. Consistent with its apoptosis sensitization activity, subtoxic doses of LCL85 suppressed colon carcinoma cell metastatic potential in an experimental lung metastasis mouse model, as well as breast cancer growth and spontaneous lung metastasis in an orthotopic breast cancer mouse model. CONCLUSION: We have identified xIAP and cIAP1 as molecular targets of ceramide and determined that ceramide analog LCL85 is an effective sensitizer in overcoming resistance of human cell lines established from metastatic colon and breast cancers to apoptosis induction to suppress metastasis in vivo.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Ceramidas/farmacologia , Neoplasias do Colo/tratamento farmacológico , Proteínas Inibidoras de Apoptose/metabolismo , Propanolaminas/farmacologia , Compostos de Piridínio/farmacologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/secundário , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/secundário , Progressão da Doença , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Proteínas Inibidoras de Apoptose/genética , Camundongos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Transfecção , Ubiquitina-Proteína Ligases , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor fas/metabolismo
20.
J Biol Chem ; 287(25): 21384-95, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22532571

RESUMO

Amyloid protein is well known to induce neuronal cell death, whereas only little is known about its effect on astrocytes. We found that amyloid peptides activated caspase 3 and induced apoptosis in primary cultured astrocytes, which was prevented by caspase 3 inhibition. Apoptosis was also prevented by shRNA-mediated down-regulation of PAR-4, a protein sensitizing cells to the sphingolipid ceramide. Consistent with a potentially proapoptotic effect of PAR-4 and ceramide, astrocytes surrounding amyloid plaques in brain sections of the 5xFAD mouse (and Alzheimer disease patient brain) showed caspase 3 activation and were apoptotic when co-expressing PAR-4 and ceramide. Apoptosis was not observed in astrocytes with deficient neutral sphingomyelinase 2 (nSMase2), indicating that ceramide generated by nSMase2 is critical for amyloid-induced apoptosis. Antibodies against PAR-4 and ceramide prevented amyloid-induced apoptosis in vitro and in vivo, suggesting that apoptosis was mediated by exogenous PAR-4 and ceramide, potentially associated with secreted lipid vesicles. This was confirmed by the analysis of lipid vesicles from conditioned medium showing that amyloid peptide induced the secretion of PAR-4 and C18 ceramide-enriched exosomes. Exosomes were not secreted by nSMase2-deficient astrocytes, indicating that ceramide generated by nSMase2 is critical for exosome secretion. Consistent with the ceramide composition in amyloid-induced exosomes, exogenously added C18 ceramide restored PAR-4-containing exosome secretion in nSMase2-deficient astrocytes. Moreover, isolated PAR-4/ceramide-enriched exosomes were taken up by astrocytes and induced apoptosis in the absence of amyloid peptide. Taken together, we report a novel mechanism of apoptosis induction by PAR-4/ceramide-enriched exosomes, which may critically contribute to Alzheimer disease.


Assuntos
Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Astrócitos/metabolismo , Ceramidas/metabolismo , Exossomos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Amiloide/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Astrócitos/patologia , Caspase 3/genética , Caspase 3/metabolismo , Células Cultivadas , Ceramidas/genética , Ativação Enzimática/genética , Exossomos/genética , Feminino , Humanos , Masculino , Camundongos , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA