Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34493582

RESUMO

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing cost. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Engenharia de Proteínas/métodos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais , Sítios de Ligação , COVID-19/virologia , Vacinas contra COVID-19/economia , Humanos , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Saccharomycetales/metabolismo , Vacinas de Subunidades Antigênicas
2.
Biotechnol Bioeng ; 119(1): 59-71, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596238

RESUMO

Developing media to sustain cell growth and production is an essential and ongoing activity in bioprocess development. Modifications to media can often address host or product-specific challenges, such as low productivity or poor product quality. For other applications, systematic design of new media can facilitate the adoption of new industrially relevant alternative hosts. Despite manifold existing methods, common approaches for optimization often remain time and labor-intensive. We present here a novel approach to conventional media blending that leverages stable, simple, concentrated stock solutions to enable rapid improvement of measurable phenotypes of interest. We applied this modular methodology to generate high-performing media for two phenotypes of interest: biomass accumulation and heterologous protein production, using high-throughput, milliliter-scale batch fermentations of Pichia pastoris as a model system. In addition to these examples, we also created a flexible open-source package for modular blending automation on a low-cost liquid handling system to facilitate wide use of this method. Our modular blending method enables rapid, flexible media development, requiring minimal labor investment and prior knowledge of the host organism, and should enable developing improved media for other hosts and phenotypes of interest.


Assuntos
Automação Laboratorial/métodos , Reatores Biológicos , Meios de Cultura , Fermentação/fisiologia , Biomassa , Meios de Cultura/análise , Meios de Cultura/química , Meios de Cultura/metabolismo , Pichia/genética , Pichia/metabolismo
3.
Biotechnol Bioeng ; 119(2): 657-662, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34780057

RESUMO

Prevention of COVID-19 on a global scale will require the continued development of high-volume, low-cost platforms for the manufacturing of vaccines to supply ongoing demand. Vaccine candidates based on recombinant protein subunits remain important because they can be manufactured at low costs in existing large-scale production facilities that use microbial hosts like Komagataella phaffii (Pichia pastoris). Here, we report an improved and scalable manufacturing approach for the SARS-CoV-2 spike protein receptor-binding domain (RBD); this protein is a key antigen for several reported vaccine candidates. We genetically engineered a manufacturing strain of K. phaffii to obviate the requirement for methanol induction of the recombinant gene. Methanol-free production improved the secreted titer of the RBD protein by >5X by alleviating protein folding stress. Removal of methanol from the production process enabled to scale up to a 1200 L pre-existing production facility. This engineered strain is now used to produce an RBD-based vaccine antigen that is currently in clinical trials and could be used to produce other variants of RBD as needed for future vaccines.

4.
Microb Cell Fact ; 20(1): 94, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933073

RESUMO

BACKGROUND: Vaccines comprising recombinant subunit proteins are well-suited to low-cost and high-volume production for global use. The design of manufacturing processes to produce subunit vaccines depends, however, on the inherent biophysical traits presented by an individual antigen of interest. New candidate antigens typically require developing custom processes for each one and may require unique steps to ensure sufficient yields without product-related variants. RESULTS: We describe a holistic approach for the molecular design of recombinant protein antigens-considering both their manufacturability and antigenicity-informed by bioinformatic analyses such as RNA-seq, ribosome profiling, and sequence-based prediction tools. We demonstrate this approach by engineering the product sequences of a trivalent non-replicating rotavirus vaccine (NRRV) candidate to improve titers and mitigate product variants caused by N-terminal truncation, hypermannosylation, and aggregation. The three engineered NRRV antigens retained their original antigenicity and immunogenicity, while their improved manufacturability enabled concomitant production and purification of all three serotypes in a single, end-to-end perfusion-based process using the biotechnical yeast Komagataella phaffii. CONCLUSIONS: This study demonstrates that molecular engineering of subunit antigens using advanced genomic methods can facilitate their manufacturing in continuous production. Such capabilities have potential to lower the cost and volumetric requirements in manufacturing vaccines based on recombinant protein subunits.


Assuntos
Antígenos Virais/genética , Engenharia Genética/métodos , Vacinas contra Rotavirus/genética , Rotavirus/imunologia , Saccharomycetales/genética , Antígenos Virais/imunologia , Biologia Computacional , Genômica/métodos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Rotavirus/genética , Vacinas contra Rotavirus/imunologia , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia
5.
ACS Synth Biol ; 11(1): 497-501, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34882409

RESUMO

Genetic engineering of industrial cell lines often requires knockout of multiple endogenous genes. Tools like CRISPR-Cas9 have enabled serial or parallelized gene disruption in a wide range of industrial organisms, but common practices for the screening and validation of genome edits are lacking. For gene disruption, DNA repair by homologous recombination offers several advantages over nonhomologous end joining, including more efficient screening for knockout clones and improved genomic stability. Here we designed and characterized a knockout fragment intended to repair Cas9-induced gene disruptions by homologous recombination. We identified knockout clones of Komagataella phaffii with high fidelity by PCR, removing the need for Sanger sequencing. Short overlap sequences for homologous recombination (30 bp) enabled the generation of gene-specific knockout fragments by PCR, removing the need for subcloning. Finally, we demonstrated that the genotype conferred by the knockout fragment is stable under common cultivation conditions.


Assuntos
Sistemas CRISPR-Cas , Recombinação Homóloga , Sistemas CRISPR-Cas/genética , Reparo do DNA por Junção de Extremidades/genética , Edição de Genes , Técnicas de Inativação de Genes , Engenharia Genética , Recombinação Homóloga/genética
6.
bioRxiv ; 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33880471

RESUMO

Prevention of COVID-19 on a global scale will require the continued development of high-volume, low-cost platforms for the manufacturing of vaccines to supply on-going demand. Vaccine candidates based on recombinant protein subunits remain important because they can be manufactured at low costs in existing large-scale production facilities that use microbial hosts like Komagataella phaffii ( Pichia pastoris ). Here, we report an improved and scalable manufacturing approach for the SARS-CoV-2 spike protein receptor binding domain (RBD); this protein is a key antigen for several reported vaccine candidates. We genetically engineered a manufacturing strain of K. phaffii to obviate the requirement for methanol-induction of the recombinant gene. Methanol-free production improved the secreted titer of the RBD protein by >5x by alleviating protein folding stress. Removal of methanol from the production process enabled scale up to a 1,200 L pre-existing production facility. This engineered strain is now used to produce an RBD-based vaccine antigen that is currently in clinical trials and could be used to produce other variants of RBD as needed for future vaccines.

7.
bioRxiv ; 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33688647

RESUMO

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs).1 Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access.2 Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing costs.3 These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples.4-6 Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2.7,8 Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA