Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Clin Pharmacol ; 90(6): 1418-1427, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450797

RESUMO

AIMS: Little is known about the population pharmacokinetics (PPK) of vancomycin in neonates with perinatal asphyxia treated with therapeutic hypothermia (TH). We aimed to describe the PPK of vancomycin and propose an initial dosing regimen for the first 48 h of treatment with pharmacokinetic/pharmacodynamic target attainment. METHODS: Neonates with perinatal asphyxia treated with TH were included from birth until Day 6 in a multicentre prospective cohort study. A vancomycin PPK model was constructed using nonlinear mixed-effects modelling. The model was used to evaluate published dosing guidelines with regard to pharmacokinetic/pharmacodynamic target attainment. The area under the curve/minimal inhibitory concentration ratio of 400-600 mg*h/L was used as target range. RESULTS: Sixteen patients received vancomycin (median gestational age: 41 [range: 38-42] weeks, postnatal age: 4.4 [2.5-5.5] days, birth weight: 3.5 [2.3-4.7] kg), and 112 vancomycin plasma concentrations were available. Most samples (79%) were collected during the rewarming and normothermic phase, as vancomycin was rarely initiated during the hypothermic phase due to its nonempirical use. An allometrically scaled 1-compartment model showed the best fit. Vancomycin clearance was 0.17 L/h, lower than literature values for term neonates of 3.5 kg without perinatal asphyxia (range: 0.20-0.32 L/h). Volume of distribution was similar. Published dosing regimens led to overexposure within 24 h of treatment. A loading dose of 10 mg/kg followed by 24 mg/kg/day in 4 doses resulted in target attainment. CONCLUSION: Results of this study suggest that vancomycin clearance is reduced in term neonates with perinatal asphyxia treated with TH. Lower dosing regimens should be considered followed by model-informed precision dosing.


Assuntos
Antibacterianos , Asfixia Neonatal , Hipotermia Induzida , Modelos Biológicos , Vancomicina , Humanos , Recém-Nascido , Vancomicina/farmacocinética , Vancomicina/administração & dosagem , Hipotermia Induzida/métodos , Asfixia Neonatal/terapia , Asfixia Neonatal/tratamento farmacológico , Estudos Prospectivos , Masculino , Feminino , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Área Sob a Curva , Idade Gestacional , Relação Dose-Resposta a Droga
2.
Ther Drug Monit ; 46(3): 376-383, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38287875

RESUMO

BACKGROUND: Model validation procedures are crucial when population pharmacokinetic (PK) models are used to develop dosing algorithms and to perform model-informed precision dosing. We have previously published a population PK model describing the PK of gentamicin in term neonates with perinatal asphyxia during controlled therapeutic hypothermia (TH), which showed altered gentamicin clearance during the hypothermic phase dependent on gestational age and weight. In this study, the predictive performance and generalizability of this model were assessed using an independent data set of neonates with perinatal asphyxia undergoing controlled TH. METHODS: The external data set contained a subset of neonates included in the prospective observational multicenter PharmaCool Study. Predictive performance was assessed by visually inspecting observed-versus-predicted concentration plots and calculating bias and precision. In addition, simulation-based diagnostics, model refitting, and bootstrap analyses were performed. RESULTS: The external data set included 323 gentamicin concentrations of 39 neonates. Both the model-building and external data set included neonates from multiple centers. The original gentamicin PK model predicted the observed gentamicin concentrations with adequate accuracy and precision during all phases of controlled TH. Model appropriateness was confirmed with prediction-corrected visual predictive checks and normalized prediction distribution error analyses. Model refitting to the merged data set (n = 86 neonates with 935 samples) showed accurate estimation of PK parameters. CONCLUSIONS: The results of this external validation study justify the generalizability of the gentamicin dosing recommendations made in the original study for neonates with perinatal asphyxia undergoing controlled TH (5 mg/kg every 36 or 24 h with gestational age 36-41 and 42 wk, respectively) and its applicability in model-informed precision dosing.


Assuntos
Antibacterianos , Asfixia Neonatal , Gentamicinas , Hipotermia Induzida , Modelos Biológicos , Humanos , Gentamicinas/farmacocinética , Gentamicinas/uso terapêutico , Recém-Nascido , Hipotermia Induzida/métodos , Asfixia Neonatal/terapia , Estudos Prospectivos , Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Masculino , Feminino , Idade Gestacional
3.
Biomed Chromatogr ; : e5956, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090778

RESUMO

Monitoring antibiotic plasma levels is critical in populations with altered pharmacokinetics, such as critically ill patients in neonatal or adult intensive care units. This study aimed to develop and validate a rapid, reproducible and sensitive liquid chromatography-tandem mass spectrometry assay (LC-MS/MS) for measuring total and unbound concentrations of amoxicillin, ampicillin, ceftazidime, ceftriaxone, ertapenem, fosfomycin and penicillin G in human plasma. The method required 20 and 250 µl sample volumes for measuring total and unbound concentrations, respectively. Sample preparation involved protein precipitation and the addition of an internal standard. Ultrafiltration separated unbound drugs. Method validation covered selectivity, carryover, linearity, accuracy, precision, dilution effects, matrix effects and stability. The LC-MS/MS was performed within a run time of 7.5 min. Calibration curves were linear for ceftazidime and ertapenem (ranges 0.1-50 and 0.05-100 mg/l, respectively) and quadratic for other analytes (0.1-50 mg/l, except for ampicillin: 0.1-20 mg/l; R2 > 0.990). Accuracy was within ±15% of the nominal concentration, and precision did not exceed ±15% (relative standard deviation). Samples showed no significant degradation at the tested temperatures and time points. Clinical applicability was demonstrated in a critically ill neonate. This method with minimal sample volume and short analysis time enables the measurement of total and unbound concentrations of selected antibiotics, and is suitable for routine clinical care and studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA