Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Molecules ; 28(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37570864

RESUMO

Natural bentonite clay (BE) underwent modification steps that involved the exfoliation of its layers into separated nanosheets (EXBE) and further functionalization of these sheets with methanol, forming methoxy-exfoliated bentonite (Mth/EXBE). The synthetically modified products were investigated as enhanced carriers of 5-fluorouracil as compared to raw bentonite. The modification process strongly induced loading properties that increased to 214.4 mg/g (EXBE) and 282.6 mg/g (Mth/EXBE) instead of 124.9 mg/g for bentonite. The loading behaviors were illustrated based on the kinetic (pseudo-first-order model), classic isotherm (Langmuir model), and advanced isotherm modeling (monolayer model of one energy). The Mth/EBE carrier displays significantly higher loading site density (95.9 mg/g) as compared to EXBE (66.2 mg/g) and BE (44.9 mg/g). The loading numbers of 5-Fu in each site of BE, EXBE, and Mth/EXBE (>1) reflect the vertical orientation of these loaded ions involving multi-molecular processes. The loading processes that occurred appeared to be controlled by complex physical and weak chemical mechanisms, considering both Gaussian energy (<8 KJ/mol) as well as loading energy (<40 KJ/mol). The releasing patterns of EXBE and Mth/EXBE exhibit prolonged and continuous properties up to 100 h, with Mth/EXBE displaying much faster behaviors. Based on the release kinetic modeling, the release reactions exhibit non-Fickian transport release properties, validating cooperative diffusion and erosion release mechanisms. The cytotoxicity of 5-Fu is also significantly enhanced by these carriers: 5-Fu/BE (8.6% cell viability), 5-Fu/EXBE (2.21% cell viability), and 5-Fu/Mth/EXBE (0.73% cell viability).


Assuntos
Bentonita , Fluoruracila , Fluoruracila/farmacologia , Fluoruracila/química , Bentonita/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Íons
2.
Molecules ; 28(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446820

RESUMO

Natural kaolinite underwent advanced morphological-modification processes that involved exfoliation of its layers into separated single nanosheets (KNs) and scrolled nanoparticles as nanotubes (KNTs). Synthetic nanostructures have been characterized as advanced and effective oxaliplatin-medication (OXAP) delivery systems. The morphological-transformation processes resulted in a remarkable enhancement in the loading capacity to 304.9 mg/g (KNs) and 473 mg/g (KNTs) instead of 29.6 mg/g for raw kaolinite. The loading reactions that occurred by KNs and KNTs displayed classic pseudo-first-order kinetics (R2 > 0.90) and conventional Langmuir isotherms (R2 = 0.99). KNTs exhibit a higher active site density (80.8 mg/g) in comparison to KNs (66.3 mg/g) and raw kaolinite (6.5 mg/g). Furthermore, compared to KNs and raw kaolinite, each site on the surface of KNTs may hold up to six molecules of OXAP (n = 5.8), in comparison with five molecules for KNs. This was accomplished by multi-molecular processes, including physical mechanisms considering both the Gaussian energy (<8 KJ/mol) and the loading energy (<40 KJ/mol). The release activity of OXAP from KNs and KNTs exhibits continuous and regulated profiles up to 100 h, either by KNs or KNTs, with substantially faster characteristics for KNTs. Based on the release kinetic investigations, the release processes have non-Fickian transport-release features, indicating cooperative-diffusion and erosion-release mechanisms. The synthesized structures have a significant cytotoxicity impact on HCT-116 cancer cell lines (KNs (71.4% cell viability and 143.6 g/mL IC-50); KNTs (11.3% cell viability and 114.3 g/mL IC-50). Additionally, these carriers dramatically increase OXAP's cytotoxicity (2.04% cell viability, 15.4 g/mL IC-50 (OXAP/KNs); 0.6% cell viability, 4.5 g/mL IC-50 (OXAP/KNTs)).


Assuntos
Caulim , Nanotubos , Caulim/farmacologia , Caulim/química , Oxaliplatina/farmacologia , Cinética , Preparações Farmacêuticas
3.
Molecules ; 28(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37513298

RESUMO

Synthetic zeolite-A (ZA) was hybridized with two different biopolymers (chitosan and ß-cyclodextrin) producing biocompatible chitosan/zeolite-A (CS/ZA) and ß-cyclodextrin/zeolite-A (CD/ZA) biocomposites. The synthetic composites were assessed as bio-carriers of the 5-fluorouracil drug (5-Fu) with enhanced properties, highlighting the impact of the polymer type. The hybridization by the two biopolymers resulted in notable increases in the 5-Fu loading capacities, to 218.2 mg/g (CS/ZA) and 291.3 mg/g (CD/ZA), as compared to ZA (134.2 mg/g). The loading behaviors using ZA as well as CS/ZA and CD/ZA were illustrated based on the classic kinetics properties of pseudo-first-order kinetics (R2 > 0.95) and the traditional Langmuir isotherm (R2 = 0.99). CD/ZA shows a significantly higher active site density (102.7 mg/g) in comparison to CS/ZA (64 mg/g) and ZA (35.8 mg/g). The number of loaded 5-Fu per site of ZA, CS/ZA, and CD/ZA (>1) validates the vertical ordering of the loaded drug ions by multi-molecular processes. These processes are mainly physical mechanisms based on the determined Gaussian energy (<8 kJ/mol) and loading energy (<40 kJ/mol). Both the CS/ZA and CD/ZA 5-Fu release activities display continuous and controlled profiles up to 80 h, with CD/ZA exhibiting much faster release. According to the release kinetics studies, the release processes contain non-Fickian transport release properties, suggesting cooperative diffusion and erosion release mechanisms. The cytotoxicity of 5-Fu is also significantly enhanced by these carriers: 5-Fu/ZA (11.72% cell viability), 5-Fu/CS/ZA (5.43% cell viability), and 5-Fu/CD/ZA (1.83% cell viability).


Assuntos
Antineoplásicos , Quitosana , Zeolitas , beta-Ciclodextrinas , Fluoruracila/farmacologia , Fluoruracila/química , Quitosana/química , Cinética , Portadores de Fármacos/química , beta-Ciclodextrinas/química
4.
IUBMB Life ; 72(9): 1843-1855, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32472959

RESUMO

Age-related cognitive failure is a main devastating incident affecting even healthy people. Alzheimer's disease (AD) is the utmost common form of dementia among the geriatric community. In the pathogenesis of AD, cerebrovascular dysfunction is revealed before the beginning of the cognitive decline. Mounting proof shows a precarious impact of cerebrovascular dysregulation in the development of AD pathology. Recent studies document that the mammalian target of rapamycin (mTOR) acts as a crucial effector of cerebrovascular dysregulation in AD. The mTOR contributes to brain vascular dysfunction and subsequence cerebral blood flow deficits as well as cognitive impairment. Furthermore, mTOR causes the blood-brain barrier (BBB) breakdown in AD models. Inhibition of mTOR hyperactivity protects the BBB integrity in AD. Furthermore, mTOR drives cognitive defect and cerebrovascular dysfunction, which are greatly prevalent in AD, but the central molecular mechanisms underlying these alterations are obscure. This review represents the crucial and current research findings regarding the role of mTOR signaling in cognitive aging and cerebrovascular dysfunction in the pathogenesis of AD.


Assuntos
Doença de Alzheimer/complicações , Doenças Arteriais Cerebrais/patologia , Circulação Cerebrovascular , Envelhecimento Cognitivo , Disfunção Cognitiva/patologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Doenças Arteriais Cerebrais/etiologia , Doenças Arteriais Cerebrais/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Humanos
5.
Int J Mol Sci ; 21(9)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380758

RESUMO

Alzheimer's disease (AD) is the leading cause of dementia worldwide. Even though the number of AD patients is rapidly growing, there is no effective treatment for this neurodegenerative disorder. At present, implementation of effective treatment approaches for AD is vital to meet clinical needs. In AD research, priorities concern the development of disease-modifying therapeutic agents to be used in the early phases of AD and the optimization of the symptomatic treatments predominantly dedicated to the more advanced AD stages. Until now, available therapeutic agents for AD treatment only provide symptomatic treatment. Since AD pathogenesis is multifactorial, use of a multimodal therapeutic intervention addressing several molecular targets of AD-related pathological processes seems to be the most practical approach to modify the course of AD progression. It has been demonstrated through numerous studies, that the clinical efficacy of combination therapy (CT) is higher than that of monotherapy. In case of AD, CT is more effective, mostly when started early, at slowing the rate of cognitive impairment. In this review, we have covered the major studies regarding CT to combat AD pathogenesis. Moreover, we have also highlighted the safety, tolerability, and efficacy of CT in the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/etiologia , Animais , Biomarcadores , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Ensaios Clínicos como Assunto , Gerenciamento Clínico , Suscetibilidade a Doenças , Dopaminérgicos/química , Dopaminérgicos/farmacologia , Dopaminérgicos/uso terapêutico , Quimioterapia Combinada/efeitos adversos , Quimioterapia Combinada/métodos , Galantamina/farmacologia , Galantamina/uso terapêutico , Humanos , Memantina/química , Memantina/farmacologia , Memantina/uso terapêutico
6.
Int J Mol Sci ; 21(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32824102

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder related to age, characterized by the cerebral deposition of fibrils, which are made from the amyloid-ß (Aß), a peptide of 40-42 amino acids. The conversion of Aß into neurotoxic oligomeric, fibrillar, and protofibrillar assemblies is supposed to be the main pathological event in AD. After Aß accumulation, the clinical symptoms fall out predominantly due to the deficient brain clearance of the peptide. For several years, researchers have attempted to decline the Aß monomer, oligomer, and aggregate levels, as well as plaques, employing agents that facilitate the reduction of Aß and antagonize Aß aggregation, or raise Aß clearance from brain. Unluckily, broad clinical trials with mild to moderate AD participants have shown that these approaches were unsuccessful. Several clinical trials are running involving patients whose disease is at an early stage, but the preliminary outcomes are not clinically impressive. Many studies have been conducted against oligomers of Aß which are the utmost neurotoxic molecular species. Trials with monoclonal antibodies directed against Aß oligomers have exhibited exciting findings. Nevertheless, Aß oligomers maintain equivalent states in both monomeric and aggregation forms; so, previously administered drugs that precisely decrease Aß monomer or Aß plaques ought to have displayed valuable clinical benefits. In this article, Aß-based therapeutic strategies are discussed and several promising new ways to fight against AD are appraised.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Amiloide/metabolismo , Modelos Biológicos , Peptídeos beta-Amiloides/metabolismo , Animais , Biomarcadores/metabolismo , Humanos , Proteínas tau/metabolismo
7.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2335-2345, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37819390

RESUMO

Cadmium (Cd) is a hazardous heavy metal extensively employed in manufacturing polyvinyl chloride, batteries, and other industries. Acute lung injury has been directly connected to Cd exposure. Agomelatine (AGM), a melatonin analog, is a drug licensed for treating severe depression. This study evaluated the effect of AGM against Cd-induced lung injury in rats. AGM was administered in a dose of 25 mg/kg/day orally, while cadmium chloride (CdCl2) was injected intraperitoneally in a dose of 1.2 mg/kg to induce lung injury. Pre-treatment with AGM remarkably ameliorated Cd-induced lung histopathological abrasions. AGM decreased reactive oxygen species (ROS) production, lipid peroxidation, suppressed NDAPH oxidase, and boosted the antioxidants. AGM increased Nrf2, GCLC, HO-1, and TNXRD1 mRNA, as well as HO-1 activity and downregulated Keap1. AGM downregulated Bax and caspase-3 and upregulated Bcl-2, SIRT1, and FOXO3 expression levels in the lung. In conclusion, AGM has a protective effect against Cd-induced lung injury via its antioxidant and anti-apoptotic effects mediated via regulating Nrf2/HO-1 and SIRT1/FOXO3 signaling.


Assuntos
Lesão Pulmonar , Melatonina , Ratos , Animais , Cádmio , Fator 2 Relacionado a NF-E2/metabolismo , Melatonina/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Sirtuína 1/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Apoptose
8.
Int J Biol Macromol ; 277(Pt 3): 134169, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39097057

RESUMO

The uncontrolled administration of the cisplatin drug (CPTN) resulted in numerous drawbacks. Therefore, effective, affordable, and biocompatible delivery systems were suggested to regulate the loading, release, and therapeutic effect of CPTN. Zinc phosphate/hydroxyapatite hybrid form (ZP/HP) and core-shell nano-rod morphology, as well as its functionalized derivative with cellulose (CF@ZP/HP), were synthesized by the facile dissolution precipitation method followed by mixing with cellulose fibers, respectively. The developed CF@ZP/HP displayed remarkable enhanced CPTN loading properties (418.2 mg/g) as compared to ZP/HP (259.8 mg/g). The CPTN loading behaviors into CF@ZP/HP follow the Langmuir isotherm properties (R2 > 0.98) in addition to the kinetic activities of the pseudo-first-order model (R2 > 0.96). The steric assessment validates the notable increase in the existing loading receptors after the functionalization of ZP/HP with CF from 57.7 mg/g (ZP/HP) to 90.5 mg/g. The functionalization also impacted the capacity of each existing receptor to be able to ensure 5 CPTN molecules. This, in addition to the loading energies (<40 kJ/mol), donates the loading of CPTN by physical multi-molecular processes and in vertical orientation. The CPTN releasing patterns of CF@ZP/HP exhibit slow and controlled properties (95.7 % after 200 h at pH 7.4 and 100 % after 120 h at pH 5.5), but faster than the properties of ZP/HP. The kinetic modeling of the release activities together with the diffusion exponent (>0.45) reflected the release of CPTN according to both erosion and diffusion mechanisms. The loading of CPTN into both ZP/HP and CF@ZP/HP also resulted in a marked enhancement in the anticancer activity of CPTN against human cervical epithelial malignancies (HeLa) (cell viability = 5.6 % (CPTN), 3.2 % (CPTN loaded ZP/HP), and 1.12 % (CPTN loaded CF@ZP/HP)).


Assuntos
Celulose , Cisplatino , Portadores de Fármacos , Liberação Controlada de Fármacos , Durapatita , Fosfatos , Compostos de Zinco , Celulose/química , Durapatita/química , Durapatita/farmacologia , Cisplatino/farmacologia , Cisplatino/química , Humanos , Portadores de Fármacos/química , Compostos de Zinco/química , Fosfatos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Cinética , Sobrevivência Celular/efeitos dos fármacos
9.
RSC Adv ; 14(24): 16991-17007, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38799215

RESUMO

An advanced form of magnesium-rich hydroxyapatite (Mg·HAP) was modified with two types of biopolymers, namely chitosan (CH/Mg·HAP) and ß-cyclodextrin (CD/Mg·HAP), producing two types of bio-composites. The synthesized materials were developed as enhanced carriers for levofloxacin to control its loading, release, and anti-inflammatory properties. The polymeric modification significantly improved the loading efficiency to 281.4 mg g-1 for CH/Mg·HAP and 332.4 mg g-1 for CD/Mg·HAP compared with 218.3 mg g-1 for Mg·HAP. The loading behaviors were determined using conventional kinetic and isotherm models and mathematical parameters of new equilibrium models (the monolayer model of one energy). The estimated density of effective loading sites (Nm (LVX) = 88.03 mg g-1 (Mg·HAP), 115.8 mg g-1 (CH/Mg·HAP), and 138.5 mg g-1 (CD/Mg·HAP)) illustrates the markedly higher loading performance of the modified forms of Mg·HAP. Moreover, the loading energies (<40 kJ mol-1) in conjunction with the capacity of each loading site (n > 1) and Gaussian energies (<8 kJ mol-1) signify the physical trapping of LVX molecules in vertical orientation. The addressed materials validate prolonged and continuous release behaviors. These behaviors accelerated after the modification procedures, as the complete release was identified after 160 h (CH/Mg·HAP) and 200 h (CD/Mg·HAP). The releasing behaviors are regulated by both diffusion and erosion mechanisms, according to the kinetic investigations and diffusion exponent analysis (>0.45). The entrapping of LVX into Mg·HAP induces its anti-inflammatory properties against the generation of cytokines (IL-6 and IL-8) in human bronchial epithelia cells (NL20), and this effect displays further enhancement after the integration of chitosan and ß-cyclodextrin.

11.
Front Chem ; 12: 1456057, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39324064

RESUMO

Zinc-phosphate/hydroxyapatite hybrid form (ZP/HP) in core-shell nanostructure was developed and functionalized with both chitosan (CS@ZP/HP) and ß-cyclodextrin (CD@ZP/HP) as bio-composite of enhanced physicochemical and biological properties. These structures were assessed as potential deliveries of 5-fluorouracil, exhibiting enhanced loading, release, and anti-cancer behaviors. The functionalization strongly prompted the loading effectiveness to be 301.3 mg/g (CS@ZP/HP) and 342.8 mg/g (CD@ZP/HP) instead of 238.9 mg/g for ZP/HP. The loading activities were assessed based on the hypotheses of traditional kinetic and isotherm models, alongside the computational variables of the monolayer model with a single energetic site as an advanced isotherm model. The functionalized versions exhibit much greater loading efficacy compared to ZP/HP as a result of the increment in the density of the existing loading sites [Nm(5-Fu) = 78.85 mg/g (ZP/HP), 93.87 mg/g (CS@ZP/HP), and 117.8 mg/g (CD@ZP/HP)]. Furthermore, the loading energies of approximately 40 kJ/mol, together with the loading potential of each receptor (n > 1) and Gaussian energies of approximately 8 kJ/mol, indicate the physical entrapment of 5-Fu molecules according to a vertical orientation. The materials mentioned verify long-term and continuous release characteristics. Following the modification processes, this behavior became faster as both CS@ZP/HP and CD@ZP/HP displayed complete release within 120 h at pH 1.2. The kinetic studies and diffusing exponent (>0.45) indicate that release characteristics are controlled by both diffusion and erosion processes. These carriers also markedly increase the cytotoxicity of 5-Fu against HCT-116 colorectal cancer cell lines: 5-Fu-ZP/HP (3.2% cell viability), 5-Fu-CS@ZP/HP (1.12% cell viability), and 5-Fu-CD@ZP/HP (0.63% cell viability).

12.
Food Chem Toxicol ; 180: 114055, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37739054

RESUMO

Cardiotoxicity is one of the hazardous effects of the exposure to the heavy metal cadmium (Cd). Inflammation and oxidative injury are implicated in the cardiotoxic mechanism of Cd. The melatonin receptor agonist agomelatine (AGM) showed promising effects against oxidative and inflammatory responses. This study evaluated the effect of AGM on Cd-induced cardiotoxicity in rats, pointing to its modulatory effect on TLR-4/NF-kB pathway and HSP70. Rats received AGM for 14 days and a single dose of Cd on day 7 and blood and heart samples were collected for analyses. Cd increased serum CK-MB, AST and LDH and caused cardiac tissue injury. Cardiac malondialdehyde (MDA), nitric oxide (NO) and MPO were elevated and GSH, SOD and GST decreased in Cd-administered rats. AGM ameliorated serum CK-MB, AST and LDH and cardiac MDA, NO and MPO, prevented tissue injury and enhanced antioxidants. AGM downregulated serum CRP and cardiac TLR-4, NF-kB, iNOS, IL-6, TNF-α and COX-2 in Cd-administered rats. HSP70 was upregulated in the heart of Cd-challenged rats treated with AGM. In silico findings revealed the binding affinity of AGM with TLR-4 and NF-kB. In conclusion, AGM protected against Cd cardiotoxicity by preventing myocardial injury and oxidative stress and modulating HSP70 and TLR-4/NF-kB pathway.

13.
Plants (Basel) ; 12(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299074

RESUMO

BACKGROUND: Artemisia sieberi (mugwort) is a member of the daisy family Asteraceae and is widely propagated in Saudi Arabia. A. sieberi has historical medical importance in traditional societies. The current study aimed to assess the antibacterial and antifungal characteristics of the aqueous and ethanolic extracts of A. sieberi. In addition, the study investigated the effect of silver nanoparticles (AgNPs) synthesized from the A. sieberi extract. METHODS: The ethanolic and aqueous extracts and AgNPs were prepared from the shoots of A. sieberi. The characteristics of AgNPs were assessed by UV-visible spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS). The antibacterial experiments were performed against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The fungal species used were Candida parapsilosis, Candida krusei, Candida famata, Candida rhodotorula, and Candida albicans. The antibacterial and antifungal characteristics were evaluated by measuring the diameter of growing organisms in Petri dishes treated with different concentrations of either extracts or AgNPs compared to the untreated controls. Furthermore, TEM imaging was used to investigate any ultrastructure changes in the microbes treated with crude extracts and AgNO3. RESULTS: The ethanolic and aqueous extracts significantly decreased the growth of E. coli, S. aureus, and B. subtilis (p < 0.001), while P. aeruginosa was not affected. Unlike crude extracts, AgNPs had more substantial antibacterial effects against all species. In addition, the mycelial growth of C. famata was reduced by the treatment of both extracts. C. krusei mycelial growth was decreased by the aqueous extract, while the growth of C. parapsilosis was affected by the ethanolic extract and AgNPs (p < 0.001). None of the treatments affected the growth of C. albicans or C. rhodotorula. TEM analysis showed cellular ultrastructure changes in the treated S. aureus and C. famata compared to the control. CONCLUSION: The biosynthesized AgNPs and extracts of A. sieberi have a potential antimicrobial characteristic against pathogenic bacterial and fungal strains and nullified resistance behavior.

14.
ACS Omega ; 8(41): 38330-38344, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867674

RESUMO

The current work involves the modification of diatomite's biosiliceous frustules employing chitosan polymer chains (CS/Di) to serve as low-cost, biocompatible, multifunctional, and enhanced pharmaceutical delivery systems for 5-fluorouracil (5-Fu) together with oxaliplatin (OXPL). The CS/Di carrier displayed strong loading characteristics, notably at saturation (249.17 mg/g (OXPL) and 267.6 mg/g (5-Fu)), demonstrating a substantial 5-Fu affinity. The loading of the two types of medications onto CS/Di was conducted based on the kinetic behaviors of the conventional pseudo-first-order theory (R2 > 0.90). However, while the loading of OXPL follows the isotherm assumptions of the classic Langmuir model (R2 = 0.99), the loading of 5-Fu displays Fruendlich isotherm properties. Therefore, the 5-Fu loading displayed physical, heterogeneous, and multilayer loading properties, whereas the loading of OXPL occurred in homogeneous and monolayer form. The densities of occupied active sites of CS/Di were 37.19 and 32.8 mg/g for the sequestrations of OXPL and 5-Fu, respectively. Furthermore, by means of multimolecular processes, each loading site of CS/Di can bind up to 8 molecules of OXPL and 9 molecules of 5-Fu in a vertical orientation. This observation explains the higher loading capacities of 5-Fu in comparison to OXPL. The loading energies, which exhibit values <40 kJ/mol, provide confirmation of the dominant and significant consequences of physical processes as the regulating mechanisms. The release patterns of OXPL and 5-Fu demonstrate prolonged features over a duration of up to 120 h. The release kinetic simulation and diffusion exponents which are more than 0.45 provide evidence of the release of OXP and 5-Fu via non-Fickian transportation characteristics and the erosion/diffusion mechanism. The CS/Di carrier exhibited a substantial enhancement in the cytotoxicity of OXPL and 5-Fu against HCT-116 carcinoma cell lines, resulting in a reduction in cell viability by 4.61 and 2.26% respectively.

15.
Materials (Basel) ; 16(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37512232

RESUMO

Natural kaolinite was subjected to a successful exfoliation process into separated kaolinite nanosheets (KNs), followed by hybridization with ß-cyclodextrin biopolymer (ß-CD), forming an advanced bio-nanocomposite (ß-CD/KNs). The synthetic products were evaluated as enhanced delivery structures for oxaliplatin chemotherapy (OXAPN). The hybridization of KNs with ß-CD polymer notably enhanced the loading capacity to 355.3 mg/g (ß-CD/KNs) as compared to 304.9 mg/g for KNs. The loading of OXAPN into both KNs and ß-CD/KNs displayed traditional pseudo-first-order kinetics (R2 > 0.85) and a conventional Langmuir isotherm (R2 = 0.99). The synthetic ß-CD/KNs validates a greater occupied effective site density (98.7 mg/g) than KNs (66.3 mg/g). Furthermore, the values of the n steric parameter (4.7 (KNs) and 3.6 (ß-CD/KNs)) reveal the vertical orientation of the loaded molecules and the loading of them by multi-molecular mechanisms. These mechanisms are mainly physical processes based on the obtained Gaussian energy (<8 KJ/mol) and loading energy (<40 KJ/mol). The release profiles of both KNs and ß-CD/KNs extend for about 120 h, with remarkably faster rates for ß-CD/KNs. According to the release kinetic findings, the release of OXAPN displays non-Fickian transport behavior involving the cooperation of diffusion and erosion mechanisms. The KNs and ß-CD/KNs as free particles showed considerable cytotoxicity and anticancer properties against HCT-116 cancer cell lines (71.4% cell viability (KNs) and 58.83% cell viability (ß-CD/KNs)). Additionally, both KNs and ß-CD/KNs significantly enhanced the OXAPN's cytotoxicity (2.04% cell viability (OXAPN/KNs) and 0.86% cell viability (OXAPN/ß-CD/KNs).

16.
Mol Neurobiol ; 58(1): 281-303, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32935230

RESUMO

Alzheimer's disease (AD) is one of the most common forms of dementia among elder people, which is a progressive neurodegenerative disease that results from a chronic loss of cognitive activities. It has been observed that AD is multifactorial, hence diverse pharmacological targets that could be followed for the treatment of AD. The Food and Drug Administration has approved two types of medications for AD treatment such as cholinesterase inhibitors (ChEIs) and N-methyl-D-aspartic acid receptor (NMDAR) antagonists. Rivastigmine, donepezil, and galantamine are the ChEIs that have been approved to treat AD. On the other hand, memantine is the only non-competitive NMDAR antagonist approved in AD treatment. As compared with placebo, it has been revealed through clinical studies that many single-target therapies are unsuccessful to treat multifactorial Alzheimer's symptoms or disease progression. Therefore, due to the complex nature of AD pathophysiology, diverse pharmacological targets can be hunted. In this article, based on the entwined link of acetylcholinesterase (AChE) and NMDAR, we represent several multifunctional compounds in the rational design of new potential AD medications. This review focus on the significance of privileged scaffolds in the generation of the multi-target lead compound for treating AD, investigating the idea and challenges of multi-target drug design. Furthermore, the most auspicious elementary units for designing as well as synthesizing hybrid drugs are demonstrated as pharmacological probes in the rational design of new potential AD therapeutics.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Terapia de Alvo Molecular , Herança Multifatorial , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Doença de Alzheimer/patologia , Animais , Aprovação de Drogas , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo
17.
Saudi J Biol Sci ; 28(5): 2772-2782, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34012318

RESUMO

This study investigated the anti-remodeling and anti-fibrotic and effect of quercetin (QUR) in the remote non-infarcted of rats after myocardial infarction (MI). Rats were divided as control, control + QUR, MI, and MI + QUR. MI was introduced to the rats by ligating the eft anterior descending (LAD) coronary artery. All treatments were given for 30 days, daily. QUR persevered the LV hemodynamic parameters and prevented remote myocardium damage and fibrosis. Also, QUR supressed the generation of ROS, increased the nuclear levels of Nrf2, and enhanced SOD and GSH levels in the LVs of the control and MI model rats. It also reduced angiotensin II, nuclear level/activity of the nuclear factor NF-κß p65, and protein expression of TGF-ß1, α-SMA, and total/phospho-smad3 in the LVs of both groups. Concomitantly, QUR upregulated LV smad7 and BMP7. In conclusion, QUR prevents MI-induced LV remodeling by antioxidant, anti-inflammatory, and anti-fibroticα effects mediated by ROS scavenging, suppressing NF-κß, and stimulating Nrf-2, Smad7, and BMP7.

18.
Mol Neurobiol ; 58(1): 1-20, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32889653

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, which is progressively affecting elderly people. The dyshomeostasis of biometals and accumulation of toxic metals are usually observed in numerous neurodegenerative diseases including AD. In the central nervous system, metal imbalance-caused neurotoxic activities are usually linked with decreased enzymatic activities, increased aggregation of proteins, and oxidative stress, where a series of processes can result in neurodegeneration and cell death. Even though the relations between neurodegenerative diseases and biometal imbalance are still elusive, there is a growing interest in a group of major endogenous proteins that are associated with the transports of metals. Aberrant expression of these endogenous proteins is associated with the biometal imbalance and AD pathogenesis. Indeed, heavy metals are extremely toxic to the nervous system. Various studies have demonstrated that the toxic effects of heavy metals can result in amyloid beta (Aß) aggregation, neurofibrillary tangles, and even loss of neurons. In this article, we have focused on the molecular processes through which exposure to biometals and toxic metals can play roles in AD pathogenesis.


Assuntos
Doença de Alzheimer/etiologia , Metais/toxicidade , Humanos , Modelos Biológicos
19.
Mol Neurobiol ; 58(5): 1917-1931, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33404977

RESUMO

The new coronavirus (CoV), called novel coronavirus disease 2019 (COVID-19), belongs to the Coronaviridae family which was originated from the sea market in Wuhan city in China, at the end of the year 2019. COVID-19 and severe acute respiratory syndrome (SARS) are belonging to the same family (Coronaviridae). The current outbreak of COVID-19 creates public concern and threats all over the world and now it spreads out to more than 250 countries and territories. The researchers and scientists from all over the world are trying to find out the therapeutic strategies to abate the morbidity and mortality rate of the COVID-19 pandemic. The replication, spreading, and severity of SARS-CoV2 depend on environmental settings. Noteworthy, meteorological parameters are considered as crucial factors that affect respiratory infectious disorders, although the controversial effect of the meteorological parameter is exposed against COVID-19. Besides, COVID-19 accelerates the pathogenesis of the neurological disorders. However, the pathogenic mechanisms between COVID-19 and neurological disorders are still unclear. Hence, this review is focused on the genomics and ecology of SARS-CoV2 and elucidated the effects of climatic factors on the progression of COVID-19. This review also critically finds out the vulnerability between COVID-19 and neurological disorders based on the latest research data.


Assuntos
COVID-19/epidemiologia , Variação Genética , Doenças do Sistema Nervoso/epidemiologia , SARS-CoV-2/genética , COVID-19/genética , Comorbidade , Humanos , Doenças do Sistema Nervoso/genética , Pandemias
20.
Environ Sci Pollut Res Int ; 28(21): 26653-26663, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33492591

RESUMO

Acrylamide (AA) is a hazardous chemical that is widely used in industrial practices. Spirulina platensis (SP) is a blue green alga that is rich in bioactive compounds with many medicinal benefits. The aim of the present study was to evaluate the ameliorative effect of SP against AA toxicity in rats. Animals were divided into six groups: Group (1) was normal rats, groups (2) and (3) received SP at 500 and 1000 mg/kg BW orally respectively for 21 days, group (4) was administered 20 mg/kg BW AA daily for 14 days, while groups (5) and (6) were given orally SP at the same doses of groups (2) and (3), then AA at similar dose of group (4). Rats that received AA alone displayed markedly increased serum levels of liver enzymes (ALT, AST, and ALP), kidney function parameters (urea and creatinine), DNA damage marker (8-OHdG), and proinflammatory cytokines (IL-1ß, IL-6, and TNF-α), compared to control rats. Furthermore, tissue analysis revealed marked increases in hepatic, renal, and brain MDA and NO, as well as marked reductions in the antioxidant biomarkers (GSH, GSH-Px, SOD, and CAT) in acrylamide-intoxicated rats. Spirulina ameliorated the alterations in serum biochemical parameters and reduced MDA and NO, as well as improved antioxidant biomarkers in AA-intoxicated rats in a dose-dependent manner. Our results show that SP has a powerful protective effect on serum biochemistry and liver, kidney, and brain antioxidant machinery in AA-intoxicated rats.


Assuntos
Spirulina , Acrilamida/metabolismo , Acrilamida/toxicidade , Animais , Antioxidantes/metabolismo , Encéfalo , Rim/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA