Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941703

RESUMO

Stable carbon and nitrogen isotope analyses are widely used to infer diet and mobility in ancient and modern human populations, potentially providing a means to situate humans in global food webs. We collated 13,666 globally distributed analyses of ancient and modern human collagen and keratin samples. We converted all data to a common "Modern Diet Equivalent" reference frame to enable direct comparison among modern human diets, human diets prior to the advent of industrial agriculture, and the natural environment. This approach reveals a broad diet prior to industrialized agriculture and continued in modern subsistence populations, consistent with the human ability to consume opportunistically as extreme omnivores within complex natural food webs and across multiple trophic levels in every terrestrial and many marine ecosystems on the planet. In stark contrast, isotope dietary breadth across modern nonsubsistence populations has compressed by two-thirds as a result of the rise of industrialized agriculture and animal husbandry practices and the globalization of food distribution networks.


Assuntos
Isótopos de Carbono/análise , Dieta/história , Saúde Global/estatística & dados numéricos , Isótopos de Nitrogênio/análise , Algoritmos , Osso e Ossos/química , Colágeno/análise , Geografia , Cabelo/química , História do Século XX , História do Século XXI , História Antiga , Humanos , Queratinas/análise , Unhas/química
2.
Proc Natl Acad Sci U S A ; 117(8): 3996-4006, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32047039

RESUMO

The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea Embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice-climate feedbacks that further amplify warming.

3.
Glob Chang Biol ; 26(10): 5899-5913, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32686242

RESUMO

The magnitude of the terrestrial carbon (C) sink may be overestimated globally due to the difficulty of accounting for all C losses across heterogeneous landscapes. More complete assessments of net landscape C balances (NLCB) are needed that integrate both emissions by fire and transfer to aquatic systems, two key loss pathways of terrestrial C. These pathways can be particularly significant in the wet-dry tropics, where fire plays a fundamental part in ecosystems and where intense rainfall and seasonal flooding can result in considerable aquatic C export (ΣFaq ). Here, we determined the NLCB of a lowland catchment (~140 km2 ) in tropical Australia over 2 years by evaluating net terrestrial productivity (NEP), fire-related C emissions and ΣFaq (comprising both downstream transport and gaseous evasion) for the two main landscape components, that is, savanna woodland and seasonal wetlands. We found that the catchment was a large C sink (NLCB 334 Mg C km-2  year-1 ), and that savanna and wetland areas contributed 84% and 16% to this sink, respectively. Annually, fire emissions (-56 Mg C km-2  year-1 ) and ΣFaq (-28 Mg C km-2  year-1 ) reduced NEP by 13% and 7%, respectively. Savanna burning shifted the catchment to a net C source for several months during the dry season, while ΣFaq significantly offset NEP during the wet season, with a disproportionate contribution by single major monsoonal events-up to 39% of annual ΣFaq was exported in one event. We hypothesize that wetter and hotter conditions in the wet-dry tropics in the future will increase ΣFaq and fire emissions, potentially further reducing the current C sink in the region. More long-term studies are needed to upscale this first NLCB estimate to less productive, yet hydrologically dynamic regions of the wet-dry tropics where our result indicating a significant C sink may not hold.


Assuntos
Carbono , Ecossistema , Austrália , Carbono/análise , Dióxido de Carbono/análise , Pradaria
4.
Ecol Appl ; 30(8): e02192, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32510803

RESUMO

As tropical savannas are undergoing rapid conversion to other land uses, native C3 -C4 vegetation mixtures are often transformed to C3 - or C4 -dominant systems, resulting in poorly understood changes to the soil carbon (C) cycle. Conventional models of the soil C cycle are based on assumptions that more labile components of the heterogenous soil organic C (SOC) pool decompose at faster rates. Meanwhile, previous work has suggested that the C4 -derived component of SOC is more labile than C3 -derived SOC. Here we report on long-term (18 months) soil incubations from native and transformed tropical savannas of northern Australia. We test the hypothesis that, regardless of the type of land conversion, the C4 component of SOC will be preferentially decomposed. We measured changes in the SOC and pyrogenic carbon (PyC) pools, as well as the carbon isotope composition of SOC, PyC and respired CO2 , from 63 soil cores collected intact from different land use change scenarios. Our results show that land use change had no consistent effect on the size of the SOC pool, but strong effects on SOC decomposition rates, with slower decomposition rates at C4 -invaded sites. While we confirm that native savanna soils preferentially decomposed C4 -derived SOC, we also show that transformed savanna soils preferentially decomposed the newly added pool of labile SOC, regardless of whether it was C4 -derived (grass) or C3 -derived (forestry) biomass. Furthermore, we provide evidence that in these fire-prone landscapes, the nature of the PyC pool can shed light on past vegetation composition: while the PyC pool in C4 -dominant sites was mainly derived from C3 biomass, PyC in C3-dominant sites and native savannas was mainly derived from C4 biomass. We develop a framework to systematically assess the effects of recent land use change vs. prior vegetation composition.


Assuntos
Pradaria , Solo , Austrália , Biomassa , Carbono/análise
5.
Rapid Commun Mass Spectrom ; 34(10): e8737, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31981268

RESUMO

RATIONALE: Rapid, reliable isolation of pyrogenic carbon (PyC; also known as char, soot, black carbon, or biochar) for the determination of stable carbon isotope (δ13 C) composition and radiocarbon (14 C) dating is needed across multiple fields of research in geoscience, environmental science and archaeology. Many current techniques do not provide reliable isolation from contaminating organics and/or are relatively time-consuming. Hydrogen pyrolysis (HyPy) does provide reliable isolation of PyC, but the current methodology is time consuming. METHODS: We explored the potential for subjecting multiple samples to HyPy analysis by placing up to nine individual samples in custom-designed borosilicate sample vessels in a single reactor run. We tested for cross-contamination between samples in the same run using materials with highly divergent radiocarbon activities (~0.04-116.3 pMC), δ13 C values (-11.9 to -26.5‰) and labile carbon content. We determined 14 C/13 C using accelerator mass spectrometry and δ13 C values using an elemental analyser coupled to a continuous flow isotope ratio mass spectrometer. RESULTS: Very small but measurable transfer between samples of highly divergent isotope composition was detectable. For samples having a similar composition, this cross-contamination is considered negligible with respect to measurement uncertainty. For samples having divergent composition, we found that placing a sample vessel loaded with silica mesh adsorbent between samples eliminated measurable cross-contamination in all cases for both 14 C/13 C and δ13 C values. CONCLUSIONS: It is possible to subject up to seven samples to HyPy in the same reactor run for the determination of radiocarbon content and δ13 C value without diminishing the precision or accuracy of the results. This approach enables an increase in sample throughput of 300-600%. HyPy process background values are consistently lower than the nominal laboratory process background for quartz tube combustion in the NERC Radiocarbon Laboratory, indicating that HyPy may also be advantageous as a relatively 'clean' radiocarbon pre-treatment method.

6.
Proc Natl Acad Sci U S A ; 113(41): 11477-11482, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27671630

RESUMO

The Pleistocene global dispersal of modern humans required the transit of arid and semiarid regions where the distribution of potable water provided a primary constraint on dispersal pathways. Here, we provide a spatially explicit continental-scale assessment of the opportunities for Pleistocene human occupation of Australia, the driest inhabited continent on Earth. We establish the location and connectedness of persistent water in the landscape using the Australian Water Observations from Space dataset combined with the distribution of small permanent water bodies (springs, gnammas, native wells, waterholes, and rockholes). Results demonstrate a high degree of directed landscape connectivity during wet periods and a high density of permanent water points widely but unevenly distributed across the continental interior. A connected network representing the least-cost distance between water bodies and graded according to terrain cost shows that 84% of archaeological sites >30,000 y old are within 20 km of modern permanent water. We further show that multiple, well-watered routes into the semiarid and arid continental interior were available throughout the period of early human occupation. Depletion of high-ranked resources over time in these paleohydrological corridors potentially drove a wave of dispersal farther along well-watered routes to patches with higher foraging returns.


Assuntos
Migração Humana , Água , Arqueologia , Austrália , Geografia , Humanos , Modelos Teóricos , Recursos Hídricos
7.
Rapid Commun Mass Spectrom ; 32(12): 1008-1014, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-29603458

RESUMO

RATIONALE: Continuous measurement of stable O and H isotope compositions in water vapour requires automated calibration for remote field deployments. We developed a new low-cost device for calibration of both water vapour mole fraction and isotope composition. METHODS: We coupled a commercially available dew point generator (DPG) to a laser spectrometer and developed hardware for water and air handling along with software for automated operation and data processing. We characterised isotopic fractionation in the DPG, conducted a field test and assessed the influence of critical parameters on the performance of the device. RESULTS: An analysis time of 1 hour was sufficient to achieve memory-free analysis of two water vapour standards and the δ18 O and δ2 H values were found to be independent of water vapour concentration over a range of ≈20,000-33,000 ppm. The reproducibility of the standard vapours over a 10-day period was better than 0.14 ‰ and 0.75 ‰ for δ18 O and δ2 H values, respectively (1 σ, n = 11) prior to drift correction and calibration. The analytical accuracy was confirmed by the analysis of a third independent vapour standard. The DPG distillation process requires that isotope calibration takes account of DPG temperature, analysis time, injected water volume and air flow rate. CONCLUSIONS: The automated calibration system provides high accuracy and precision and is a robust, cost-effective option for long-term field measurements of water vapour isotopes. The necessary modifications to the DPG are minor and easily reversible.

8.
Glob Chang Biol ; 23(11): 4873-4883, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28560838

RESUMO

Our ability to model global carbon fluxes depends on understanding how terrestrial carbon stocks respond to varying environmental conditions. Tropical forests contain the bulk of the biosphere's carbon. However, there is a lack of consensus as to how gradients in environmental conditions affect tropical forest carbon. Papua New Guinea (PNG) lies within one of the largest areas of contiguous tropical forest and is characterized by environmental gradients driven by altitude; yet, the region has been grossly understudied. Here, we present the first field assessment of aboveground biomass (AGB) across three main forest types of PNG using 193 plots stratified across 3,100-m elevation gradient. Unexpectedly, AGB had no direct relationship to rainfall, temperature, soil, or topography. Instead, natural disturbances explained most variation in AGB. While large trees (diameter at breast height > 50 cm) drove altitudinal patterns of AGB, resulting in a major peak in AGB (2,200-3,100 m) and some of the most carbon-rich forests at these altitudes anywhere. Large trees were correlated to a set of climatic variables following a hump-shaped curve. The set of "optimal" climatic conditions found in montane cloud forests is similar to that of maritime temperate areas that harbor the largest trees in the world: high ratio of precipitation to evapotranspiration (2.8), moderate mean annual temperature (13.7°C), and low intra-annual temperature range (7.5°C). At extreme altitudes (2,800-3,100 m), where tree diversity elsewhere is usually low and large trees are generally rare or absent, specimens from 18 families had girths >70 cm diameter and maximum heights 20-41 m. These findings indicate that simple AGB-climate-edaphic models may not be suitable for estimating carbon storage in forests where optimal climate niches exist. Our study, conducted in a very remote area, suggests that tropical montane forests may contain greater AGB than previously thought and the importance of securing their future under a changing climate is therefore enhanced.


Assuntos
Altitude , Biomassa , Clima , Florestas , Árvores/fisiologia , Mudança Climática , Papua Nova Guiné
9.
Nature ; 476(7358): 51-6, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21814275

RESUMO

The role of African savannahs in the evolution of early hominins has been debated for nearly a century. Resolution of this issue has been hindered by difficulty in quantifying the fraction of woody cover in the fossil record. Here we show that the fraction of woody cover in tropical ecosystems can be quantified using stable carbon isotopes in soils. Furthermore, we use fossil soils from hominin sites in the Awash and Omo-Turkana basins in eastern Africa to reconstruct the fraction of woody cover since the Late Miocene epoch (about 7 million years ago). (13)C/(12)C ratio data from 1,300 palaeosols at or adjacent to hominin sites dating to at least 6 million years ago show that woody cover was predominantly less than ∼40% at most sites. These data point to the prevalence of open environments at the majority of hominin fossil sites in eastern Africa over the past 6 million years.


Assuntos
Evolução Biológica , Ecossistema , Hominidae/fisiologia , Árvores , África Oriental , Animais , Calibragem , Isótopos de Carbono/análise , Fósseis , Marcha/fisiologia , Hominidae/anatomia & histologia , Paleontologia , Folhas de Planta/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Dinâmica Populacional , Solo/química , Árvores/crescimento & desenvolvimento , Clima Tropical , Meio Selvagem , Madeira
10.
J Environ Manage ; 153: 25-32, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25646673

RESUMO

Macroalgae are a productive resource that can be cultured in metal-contaminated waste water for bioremediation but there have been no demonstrations of this biotechnology integrated with industry. Coal-fired power production is a water-limited industry that requires novel approaches to waste water treatment and recycling. In this study, a freshwater macroalga (genus Oedogonium) was cultivated in contaminated ash water amended with flue gas (containing 20% CO2) at an Australian coal-fired power station. The continuous process of macroalgal growth and intracellular metal sequestration reduced the concentrations of all metals in the treated ash water. Predictive modelling shows that the power station could feasibly achieve zero discharge of most regulated metals (Al, As, Cd, Cr, Cu, Ni, and Zn) in waste water by using the ash water dam for bioremediation with algal cultivation ponds rather than storage of ash water. Slow pyrolysis of the cultivated algae immobilised the accumulated metals in a recalcitrant C-rich biochar. While the algal biochar had higher total metal concentrations than the algae feedstock, the biochar had very low concentrations of leachable metals and therefore has potential for use as an ameliorant for low-fertility soils. This study demonstrates a bioremediation technology at a large scale for a water-limited industry that could be implemented at new or existing power stations, or during the decommissioning of older power stations.


Assuntos
Carvão Vegetal/análise , Clorófitas/química , Recuperação e Remediação Ambiental/métodos , Centrais Elétricas , Alga Marinha/química , Biodegradação Ambiental , Biomassa , Carvão Mineral , Queensland
11.
Rapid Commun Mass Spectrom ; 28(20): 2151-61, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25178719

RESUMO

RATIONALE: Traditionally, stable isotope analysis of plant and soil water has been a technically challenging, labour-intensive and time-consuming process. Here we describe a rapid single-step technique which combines Microwave Extraction with Isotope Ratio Infrared Spectroscopy (ME-IRIS). METHODS: Plant, soil and insect water is extracted into a dry air stream by microwave irradiation within a sealed vessel. The water vapor thus produced is carried to a cooled condensation chamber, which controls the water vapor concentration and flow rate to the spectrometer. Integration of the isotope signals over the whole analytical cycle provides quantitative δ(18)O and δ(2) H values for the initial liquid water contained in the sample. Calibration is carried out by the analysis of water standards using the same apparatus. Analysis of leaf and soil water by cryogenic vacuum distillation and IRMS was used to validate the ME-IRIS data. RESULTS: Comparison with data obtained by cryogenic distillation and IRMS shows that the new technique provides accurate water isotope data for leaves from a range of field-grown tropical plant species. However, two exotic nursery plants were found to suffer from spectral interferences from co-extracted organic compounds. The precision for extracted leaf, stem, soil and insect water was typically better than ±0.3 ‰ for δ(18)O and ±2 ‰ for δ(2) H values, and better than ±0.1 ‰ for δ(18)O and ±1 ‰ for δ(2) H values when analyzing water standards. The effects of sample size, microwave power and duration and sample-to-sample memory on isotope values were assessed. CONCLUSIONS: ME-IRIS provides rapid and low-cost extraction and analysis of δ(18)O and δ(2) H values in plant, soil and insect water (≈10-15 min for samples yielding ≈ 0.3 mL of water). The technique can accommodate whole leaves of many plant species.


Assuntos
Formigas/química , Deutério/análise , Isótopos de Oxigênio/análise , Plantas/química , Solo/química , Espectrofotometria Infravermelho/métodos , Animais , Deutério/isolamento & purificação , Micro-Ondas , Isótopos de Oxigênio/isolamento & purificação , Reprodutibilidade dos Testes , Temperatura , Água/química
13.
Proc Natl Acad Sci U S A ; 107(35): 15508-11, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20660748

RESUMO

Today, insular Southeast Asia is important for both its remarkably rich biodiversity and globally significant roles in atmospheric and oceanic circulation. Despite the fundamental importance of environmental history for diversity and conservation, there is little primary evidence concerning the nature of vegetation in north equatorial Southeast Asia during the Last Glacial Period (LGP). As a result, even the general distribution of vegetation during the Last Glacial Maximum is debated. Here we show, using the stable carbon isotope composition of ancient cave guano profiles, that there was a substantial forest contraction during the LGP on both peninsular Malaysia and Palawan, while rainforest was maintained in northern Borneo. These results directly support rainforest "refugia" hypotheses and provide evidence that environmental barriers likely reduced genetic mixing between Borneo and Sumatra flora and fauna. Moreover, it sheds light on possible early human dispersal events.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Árvores/crescimento & desenvolvimento , Alcanos/metabolismo , Animais , Bornéu , Isótopos de Carbono/metabolismo , Clima , Geografia , Atividades Humanas , Humanos , Camada de Gelo , Indonésia , Insetos/fisiologia , Malásia , Oceanos e Mares , Dinâmica Populacional , Fatores de Tempo , Árvores/metabolismo , Árvores/parasitologia
14.
Rapid Commun Mass Spectrom ; 26(6): 639-44, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22328217

RESUMO

RATIONALE: Quantifying the processes that control dissolved inorganic carbon (DIC) dynamics in aquatic systems is essential for progress in ecosystem carbon budgeting. The development of a methodology that allows high-resolution temporal data collection over prolonged periods is essential and is described in this study. METHODS: A novel sampling instrument that sequentially acidifies aliquots of water and utilises gas-permeable ePTFE tubing to measure the dissolved inorganic carbon (DIC) concentration and δ(13)C(DIC) values at sub-hourly intervals by Cavity Ring-down spectrometry (CRDS) is described. RESULTS: The minimum sensitivity of the isotopic, continuous, automated dissolved inorganic carbon analyser (ISO-CADICA) system is 0.01 mM with an accuracy of 0.008 mM. The analytical uncertainty in δ(13)C(DIC) values is proportional to the concentration of DIC in the sample. Where the DIC concentration is greater than 0.3 mM the analytical uncertainty is ±0.1‰ and below 0.2 mM stability is < ± 0.3‰. The isotopic effects of air temperature, water temperature and CO(2) concentrations were found to either be negligible or correctable. Field trials measuring diel variation in δ(13)C(DIC) values of coral reef associated sea water revealed significant, short-term temporal changes and illustrated the necessity of this technique. CONCLUSIONS: Currently, collecting and analysing large numbers of samples for δ(13)C(DIC) measurements is not trivial, but essential for accurate carbon models, particularly on small scales. The ISO-CADICA enables on-site, high-resolution determination of DIC concentration and δ(13)C(DIC) values with no need for sample storage and laboratory analysis. The initial tests indicate that this system can offer accuracy approaching that of traditional IRMS analysis.

15.
Rapid Commun Mass Spectrom ; 26(23): 2690-6, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23124659

RESUMO

RATIONALE: Pyrogenic carbon (C(P)) is an important component of the global carbon budget. Accurate determination of the abundance and stable isotope composition of C(P) in soils and sediments is crucial for understanding the dynamics of the C(P) cycle and interpreting records of biomass burning, climate and vegetation change in the past. Here we test hydrogen pyrolysis (hypy) as a new technique potentially capable of eliminating labile organic carbon (C(L)) from total organic carbon (C(T)) in a range of matrices in order to enable reliable quantification of both the C(P) component of C(T) and the stable carbon isotope composition of C(P) (δ(13)C(P)). METHODS: We mixed C(P) at a range of concentrations with common C(P)-free matrices (C(L) = cellulose, chitin, keratin, decomposed wood, leaf litter, grass and algae) and determined the amount of residual carbon not removed by hydrogen pyrolysis (C(R)) as a ratio of C(T) (C(R)/C(T)). Mixing C(P) with a unique δ(13)C value provided a natural abundance isotope label from which to precisely determine the ratio of C(P) to residual C(L) remaining after hypy. RESULTS: All C(P)-free matrices contained trace carbon after hypy, indicating that hypy does not remove all the C(L). However, there was a strong correlation between C(R)/C(T) and C(P)/C(T), viz. C(R)/C(T)= 1.02(C(P)/C(T)) + 4.0 × 10(-3), r(2) = 0.99, p <0.001, suggesting that only a small and reasonably constant fraction of C(L) remains after hypy. Uncertainties associated with the correction for contamination of C(R) by residual C(L) are minimal allowing for reliable determinations of both C(P) and δ(13)C(P) in many cases. CONCLUSIONS: Hydrogen pyrolysis appears to be a robust technique for estimating C(P) abundance and δ(13)C(P) across a range of materials. Nevertheless, caution is required in interpreting δ(13)C(P) values when C(P)/C(T) is low, with C(P)/C(T)>4% being required for the determination of the δ(13)C(P) values within an interpretable error under our experimental conditions.

16.
Rapid Commun Mass Spectrom ; 25(24): 3706-12, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22468325

RESUMO

A novel sampling device suitable for continuous, unattended field monitoring of rapid isotopic changes in environmental waters is described. The device utilises diffusion through porous PTFE tubing to deliver water vapour continuously from a liquid water source for analysis of δ¹8O and δD values by Cavity Ring-Down Spectrometry (CRDS). Separation of the analysed water vapour from non-volatile dissolved and particulate contaminants in the liquid sample minimises spectral interferences associated with CRDS analyses of many aqueous samples. Comparison of isotopic data for a range of water samples analysed by Diffusion Sampling-CRDS (DS-CRDS) and Isotope Ratio Mass Spectrometry (IRMS) shows significant linear correlations between the two methods allowing for accurate standardisation of DS-CRDS data. The internal precision for an integration period of 3 min (standard deviation (SD) = 0.1‰ and 0.3‰ for δ¹8O and δD values, respectively) is similar to analysis of water by CRDS using an autosampler to inject and evaporate discrete water samples. The isotopic effects of variable air temperature, water vapour concentration, water pumping rate and dissolved organic content were found to be either negligible or correctable by analysis of water standards. The DS-CRDS system was used to analyse the O and H isotope composition in short-lived rain events. Other applications where finely time resolved water isotope data may be of benefit include recharge/discharge in groundwater/river systems and infiltration-related changes in cave drip water.

17.
Sci Rep ; 11(1): 23157, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848788

RESUMO

Fire is an essential component of tropical savannas, driving key ecological feedbacks and functions. Indigenous manipulation of fire has been practiced for tens of millennia in Australian savannas, and there is a renewed interest in understanding the effects of anthropogenic burning on savanna systems. However, separating the impacts of natural and human fire regimes on millennial timescales remains difficult. Here we show using palynological and isotope geochemical proxy records from a rare permanent water body in Northern Australia that vegetation, climate, and fire dynamics were intimately linked over the early to mid-Holocene. As the El Niño/Southern Oscillation (ENSO) intensified during the late Holocene, a decoupling occurred between fire intensity and frequency, landscape vegetation, and the source of vegetation burnt. We infer from this decoupling, that indigenous fire management began or intensified at around 3 cal kyr BP, possibly as a response to ENSO related climate variability. Indigenous fire management reduced fire intensity and targeted understory tropical grasses, enabling woody thickening to continue in a drying climate.

18.
Nat Hum Behav ; 5(10): 1303-1313, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33927367

RESUMO

Archaeological data and demographic modelling suggest that the peopling of Sahul required substantial populations, occurred rapidly within a few thousand years and encompassed environments ranging from hyper-arid deserts to temperate uplands and tropical rainforests. How this migration occurred and how humans responded to the physical environments they encountered have, however, remained largely speculative. By constructing a high-resolution digital elevation model for Sahul and coupling it with fine-scale viewshed analysis of landscape prominence, least-cost pedestrian travel modelling and high-performance computing, we create over 125 billion potential migratory pathways, whereby the most parsimonious routes traversed emerge. Our analysis revealed several major pathways-superhighways-transecting the continent, that we evaluated using archaeological data. These results suggest that the earliest Australian ancestors adopted a set of fundamental rules shaped by physiological capacity, attraction to visually prominent landscape features and freshwater distribution to maximize survival, even without previous experience of the landscapes they encountered.


Assuntos
Migração Humana/tendências , Dinâmica Populacional/tendências , Antropologia Física , Arqueologia , Austrália , Indicadores Ambientais , Geografia , Humanos , Sociobiologia
19.
Nat Commun ; 12(1): 2440, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927195

RESUMO

The peopling of Sahul (the combined continent of Australia and New Guinea) represents the earliest continental migration and settlement event of solely anatomically modern humans, but its patterns and ecological drivers remain largely conceptual in the current literature. We present an advanced stochastic-ecological model to test the relative support for scenarios describing where and when the first humans entered Sahul, and their most probable routes of early settlement. The model supports a dominant entry via the northwest Sahul Shelf first, potentially followed by a second entry through New Guinea, with initial entry most consistent with 50,000 or 75,000 years ago based on comparison with bias-corrected archaeological map layers. The model's emergent properties predict that peopling of the entire continent occurred rapidly across all ecological environments within 156-208 human generations (4368-5599 years) and at a plausible rate of 0.71-0.92 km year-1. More broadly, our methods and approaches can readily inform other global migration debates, with results supporting an exit of anatomically modern humans from Africa 63,000-90,000 years ago, and the peopling of Eurasia in as little as 12,000-15,000 years via inland routes.

20.
Sci Rep ; 10(1): 4267, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32123272

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA