Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Public Health ; 19(Suppl 3): 465, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32326940

RESUMO

More than 75% of emerging infectious diseases are zoonotic in origin and a transdisciplinary, multi-sectoral One Health approach is a key strategy for their effective prevention and control. In 2004, US Centers for Disease Control and Prevention office in Kenya (CDC Kenya) established the Global Disease Detection Division of which one core component was to support, with other partners, the One Health approach to public health science. After catalytic events such as the global expansion of highly pathogenic H5N1 and the 2006 East African multi-country outbreaks of Rift Valley Fever, CDC Kenya supported key Kenya government institutions including the Ministry of Health and the Ministry of Agriculture, Livestock, and Fisheries to establish a framework for multi-sectoral collaboration at national and county level and a coordination office referred to as the Zoonotic Disease Unit (ZDU). The ZDU has provided Kenya with an institutional framework to highlight the public health importance of endemic and epidemic zoonoses including RVF, rabies, brucellosis, Middle East Respiratory Syndrome Coronavirus, anthrax and other emerging issues such as anti-microbial resistance through capacity building programs, surveillance, workforce development, research, coordinated investigation and outbreak response. This has led to improved outbreak response, and generated data (including discovery of new pathogens) that has informed disease control programs to reduce burden of and enhance preparedness for endemic and epidemic zoonotic diseases, thereby enhancing global health security. Since 2014, the Global Health Security Agenda implemented through CDC Kenya and other partners in the country has provided additional impetus to maintain this effort and Kenya's achievement now serves as a model for other countries in the region.Significant gaps remain in implementation of the One Health approach at subnational administrative levels; there are sustainability concerns, competing priorities and funding deficiencies.


Assuntos
Doenças Transmissíveis Emergentes/prevenção & controle , Surtos de Doenças/prevenção & controle , Saúde Única/estatística & dados numéricos , Saúde Pública/métodos , Zoonoses/prevenção & controle , Animais , Epidemias/prevenção & controle , Humanos , Quênia/epidemiologia , Avaliação de Programas e Projetos de Saúde
2.
AAS Open Res ; 1: 23, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32259023

RESUMO

BACKGROUND: Rabies causes an estimated 59,000 human deaths annually. In Kenya, rabies was first reported in a dog in 1912, with the first human case reported in 1928. Here we examine retrospective rabies data in Kenya for the period 1912 - 2017 and describe the spatial and temporal patterns of rabies occurrence in the country. Additionally, we detail Kenya's strategy for the elimination of dog-mediated human rabies by 2030. METHODS: Data on submitted samples and confirmed cases in humans, domestic animals and wildlife were obtained from Kenya's Directorate of Veterinary Services. These data were associated with the geographical regions where the samples originated, and temporal and spatial trends examined. RESULTS: Between 1912 and the mid 1970's, rabies spread across Kenya gradually, with fewer than 50 cases reported per year and less than half of the 47 counties affected. Following an outbreak in the mid 1970's, rabies spread rapidly to more than 85% of counties, with a 4 fold increase in the percent positivity of samples submitted and number of confirmed rabies cases. Since 1958, 7,584 samples from domestic animals (93%), wildlife (5%), and humans (2%) were tested. Over two-thirds of all rabies cases came from six counties, all in close proximity to veterinary diagnostic laboratories, highlighting a limitation of passive surveillance. CONCLUSIONS: Compulsory annual dog vaccinations between 1950's and the early 1970's slowed rabies spread. The rapid spread with peak rabies cases in the 1980's coincided with implementation of structural adjustment programs privatizing the veterinary sector leading to breakdown of rabies control programs. To eliminate human deaths from rabies by 2030, Kenya is implementing a 15-year step-wise strategy based on three pillars: a) mass dog vaccination, b) provision of post-exposure prophylaxis and public awareness and c) improved surveillance for rabies in dogs and humans with prompt responses to rabies outbreaks.

3.
Ecohealth ; 15(2): 372-387, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29549589

RESUMO

Dromedary camels have been implicated consistently as the source of Middle East respiratory syndrome coronavirus (MERS-CoV) human infections and attention to prevent and control it has focused on camels. To understanding the epidemiological role of camels in the transmission of MERS-CoV, we utilized an iterative empirical process in Geographic Information System (GIS) to identify and qualify potential hotspots for maintenance and circulation of MERS-CoV, and produced risk-based surveillance sites in Kenya. Data on camel population and distribution were used to develop camel density map, while camel farming system was defined using multi-factorial criteria including the agro-ecological zones (AEZs), production and marketing practices. Primary and secondary MERS-CoV seroprevalence data from specific sites were analyzed, and location-based prevalence matching with camel densities was conducted. High-risk convergence points (migration zones, trade routes, camel markets, slaughter slabs) were profiled and frequent cross-border camel movement mapped. Results showed that high camel-dense areas and interaction (markets and migration zones) were potential hotspot for transmission and spread. Cross-border contacts occurred with in-migrated herds at hotspot locations. AEZ differential did not influence risk distribution and plausible risk factors for spatial MERS-CoV hotspots were camel densities, previous cases of MERS-CoV, high seroprevalence and points of camel convergences. Although Kenyan camels are predisposed to MERS-CoV, no shedding is documented to date. These potential hotspots, determined using anthropogenic, system and trade characterizations should guide selection of sampling/surveillance sites, high-risk locations, critical areas for interventions and policy development in Kenya, as well as instigate further virological examination of camels.


Assuntos
Doenças dos Animais/epidemiologia , Camelus/virologia , Infecções por Coronavirus/veterinária , Reservatórios de Doenças/veterinária , Mapeamento Geográfico , Doenças dos Animais/transmissão , Animais , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Reservatórios de Doenças/virologia , Sistemas de Informação Geográfica , Quênia/epidemiologia , Coronavírus da Síndrome Respiratória do Oriente Médio , Prevalência , Vigilância em Saúde Pública , Estudos Soroepidemiológicos
4.
Infect Ecol Epidemiol ; 5: 28024, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26234531

RESUMO

BACKGROUND: Rift Valley Fever (RVF) is a mosquito-borne viral zoonosis that was first isolated and characterized in 1931 in Kenya. RVF outbreaks have resulted in significant losses through human illness and deaths, high livestock abortions and deaths. This report provides an overview on epidemiology of RVF including ecology, molecular diversity spatiotemporal analysis, and predictive risk modeling. METHODOLOGY: Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched for relevant RVF publications in repositories of the World Health Organization Library and Information Networks for Knowledge (WHOLIS), U.S Centers for Disease Control and Prevention (CDC), and Food and Agricultural Organization (FAO). Detailed searches were performed in Google Scholar, SpringerLink, and PubMed databases and included conference proceedings and books published from 1931 up to 31st January 2015. RESULTS AND DISCUSSION: A total of 84 studies were included in this review; majority (50%) reported on common human and animal risk factors that included consumption of animal products, contact with infected animals and residing in low altitude areas associated with favorable climatic and ecological conditions for vector emergence. A total of 14 (16%) of the publications described RVF progressive spatial and temporal distribution and the use of risk modeling for timely prediction of imminent outbreaks. Using distribution maps, we illustrated the gradual spread and geographical extent of disease; we also estimated the disease burden using aggregate human mortalities and cumulative outbreak periods for endemic regions. CONCLUSION: This review outlines common risk factors for RVF infections over wider geographical areas; it also emphasizes the role of spatial models in predicting RVF enzootics. It, therefore, explains RVF epidemiological status that may be used for design of targeted surveillance and control programs in endemic countries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA