Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Photochem Photobiol Sci ; 22(2): 279-302, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36152272

RESUMO

Toluidine blue O (TBO) is a phenothiazine dye that, due to its photochemical characteristics and high affinity for biomembranes, has been revealed as a new photosensitizer (PS) option for antimicrobial photodynamic therapy (PDT). This points to a possible association with membranous organelles like mitochondrion. Therefore, here we investigated its effects on mitochondrial bioenergetic functions both in the dark and under photostimulation. Two experimental systems were utilized: (a) isolated rat liver mitochondria and (b) isolated perfused rat liver. Our data revealed that, independently of photostimulation, TBO presented affinity for mitochondria. Under photostimulation, TBO increased the protein carbonylation and lipid peroxidation levels (up to 109.40 and 119.87%, respectively) and decreased the reduced glutathione levels (59.72%) in mitochondria. TBO also uncoupled oxidative phosphorylation and photoinactivated the respiratory chain complexes I, II, and IV, as well as the FoF1-ATP synthase complex. Without photostimulation, TBO caused uncoupling of oxidative phosphorylation and loss of inner mitochondrial membrane integrity and inhibited very strongly succinate oxidase activity. TBO's uncoupling effect was clearly seen in intact livers where it stimulated oxygen consumption at concentrations of 20 and 40 µM. Additionally, TBO (40 µM) reduced cellular ATP levels (52.46%) and ATP/ADP (45.98%) and ATP/AMP (74.17%) ratios. Consequently, TBO inhibited gluconeogenesis and ureagenesis whereas it stimulated glycogenolysis and glycolysis. In conclusion, we have revealed for the first time that the efficiency of TBO as a PS may be linked to its ability to photodynamically inhibit oxidative phosphorylation. In contrast, TBO is harmful to mitochondrial energy metabolism even without photostimulation, which may lead to adverse effects when used in PDT.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Mitocôndrias Hepáticas , Ratos , Animais , Mitocôndrias Hepáticas/metabolismo , Cloreto de Tolônio/metabolismo , Cloreto de Tolônio/farmacologia , Metabolismo Energético , Fármacos Fotossensibilizantes/farmacologia , Trifosfato de Adenosina/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
2.
Toxicol Mech Methods ; 32(3): 204-212, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34635006

RESUMO

Imidacloprid (IMD) is a neonicotinoid insecticide used in large quantities worldwide in both veterinary and agronomic applications. Several studies have shown adverse effects of IMD on non-target organisms, with the liver being identified as the main affected organ. This study aimed to evaluate the effects of IMD on human hepatoblastoma (HepG2) cells. HepG2 were exposed to IMD (0.25-2.0 mM) for 24 and 48 h. IMD treatment resulted in cytotoxicity in the HepG2, inhibiting cell proliferation in a dose- and time-dependent manner, starting at concentrations of 0.5 mM (24 h) and 0.25 mM (48 h), and reducing cell viability from 0.5 mM onwards (24 and 48 h). IMD significantly decreased the mitochondrial membrane potential at both time points investigated (2.0 mM), and also induced damage to the cell membrane, demonstrated by significant dose and time-dependent increases in lactate dehydrogenase (LDH) release from concentrations of 1.0 mM (24 h) and 0.5 mM (48 h) upwards. IMD treatment also increased the production of reactive oxygen and nitrogen species (ROS/RNS) at rates above 50% following 0.5 mM (24 h) or 0.25 mM (48 h) concentrations, and caused a significant decrease in reduced/oxidized glutathione ratio (GSH/GSSG), indicating oxidative stress. Furthermore, the antioxidant dithiothreitol, which reacts with ROS/RNS and acts as a thiol reducing agent, inhibited the cytotoxic effect of IMD. In addition, the metabolite IMD-olefin was more toxic than IMD. Our results indicate that IMD induces cytotoxicity in HepG2 cells and that this effect may be associated with an increase in the generation of ROS/RNS.


Assuntos
Oxigênio , Espécies Reativas de Nitrogênio , Sobrevivência Celular , Glutationa/metabolismo , Células Hep G2 , Humanos , Neonicotinoides/toxicidade , Nitrocompostos , Nitrogênio , Estresse Oxidativo , Espécies Reativas de Nitrogênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo
3.
Aging Male ; 23(5): 1296-1315, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32406295

RESUMO

Testosterone is the predominant androgen in men and the lack of it can be a trigger to the development of the metabolic syndrome. Here we review the relationship between testosterone deficiency, metabolic syndrome, and hepatic steatosis reported by studies with men and rodents. The prevalence of metabolic syndrome and testosterone deficiency is higher among older subjects. Low total and free testosterone levels were positively associated with disturbs on energy metabolism, changes in body fat distribution, and body composition. Studies reported visceral fat accumulation in men with hypogonadism and castrated rats. Despite some contradictions, the association between higher adiposity, low testosterone, and metabolic syndrome was a common point among the studies. Few studies evaluated the hepatic steatosis and found an association with hypogonadism. Most of the studies with rodents combined the castration with a high-fat diet to study metabolic disturbs. The importance of proper levels of testosterone for energy metabolism homeostasis in men was also underlined by studies that investigated the metabolic effects of testosterone replacement therapy and androgen deprivation therapy.


Assuntos
Hipogonadismo , Síndrome Metabólica , Neoplasias da Próstata , Antagonistas de Androgênios , Animais , Humanos , Hipogonadismo/complicações , Masculino , Síndrome Metabólica/etiologia , Ratos , Roedores , Testosterona
4.
J Toxicol Environ Health A ; 83(17-18): 616-629, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32787525

RESUMO

Diazinon (DZN) is a broad-spectrum insecticide extensively used to control pests in crops and animals. Several investigators demonstrated that DZN produced tissue toxicity especially to the liver. In addition, the mitochondrion was implicated in DZN-induced toxicity, but the precise role of this organelle remains to be determined. The aim of this study was thus to examine the effects of DZN (50 to 150 µM) on the bioenergetics and mitochondrial permeability transition (MPT) associated processes in isolated rat liver mitochondria. DZN inhibited state-3 respiration in mitochondria energized with glutamate plus malate, substrates of complex I, and succinate, substrate of complex II of the respiratory chain and decreased the mitochondrial membrane potential resulting in inhibition of ATP synthesis. MPT was estimated by the extent of mitochondrial swelling, in the presence of 10 µM Ca2+. DZN elicited MPT in a concentration-dependent manner, via a mechanism sensitive to cyclosporine A, EGTA, ruthenium red and N-ethylmaleimide, which was associated with mitochondrial Ca2+ efflux and cytochrome c release. DZN did not result in hydrogen peroxide accumulation or glutathione oxidation, but this insecticide oxidized endogenous NAD(P)H and protein thiol groups. Data suggest the involvement of mitochondria, via apoptosis, in the hepatic cytotoxicity attributed to DZN.


Assuntos
Diazinon/toxicidade , Inseticidas/toxicidade , Mitocôndrias Hepáticas/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Animais , Fígado , Permeabilidade , Ratos
5.
Toxicol Lett ; 383: 1-16, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37217012

RESUMO

Clomipramine, a tricyclic antidepressant used to treat depression and obsessive-compulsive disorder, has been linked to a few cases of acute hepatotoxicity. It is also recognized as a compound that hinders the functioning of mitochondria. Hence, the effects of clomipramine on mitochondria should endanger processes that are somewhat connected to energy metabolism in the liver. For this reason, the primary aim of this study was to examine how the effects of clomipramine on mitochondrial functions manifest in the intact liver. For this purpose, we used the isolated perfused rat liver, but also isolated hepatocytes and isolated mitochondria as experimental systems. According to the findings, clomipramine harmed metabolic processes and the cellular structure of the liver, especially the membrane structure. The considerable decrease in oxygen consumption in perfused livers strongly suggested that the mechanism of clomipramine toxicity involves the disruption of mitochondrial functions. Coherently, it could be observed that clomipramine inhibited both gluconeogenesis and ureagenesis, two processes that rely on ATP production within the mitochondria. Half-maximal inhibitory concentrations for gluconeogenesis and ureagenesis ranged from 36.87 µM to 59.64 µM. The levels of ATP as well as the ATP/ADP and ATP/AMP ratios were reduced, but distinctly, between the livers of fasted and fed rats. The results obtained from experiments conducted on isolated hepatocytes and isolated mitochondria unambiguously confirmed previous propositions about the effects of clomipramine on mitochondrial functions. These findings revealed at least three distinct mechanisms of action, including uncoupling of oxidative phosphorylation, inhibition of the FoF1-ATP synthase complex, and inhibition of mitochondrial electron flow. The elevation in activity of cytosolic and mitochondrial enzymes detected in the effluent perfusate from perfused livers, coupled with the increase in aminotransferase release and trypan blue uptake observed in isolated hepatocytes, provided further evidence of the hepatotoxicity of clomipramine. It can be concluded that impaired mitochondrial bioenergetics and cellular damage are important factors underlying the hepatotoxicity of clomipramine and that taking excessive amounts of clomipramine can lead to several risks including decreased ATP production, severe hypoglycemia, and potentially fatal outcomes.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Clomipramina , Ratos , Animais , Clomipramina/toxicidade , Clomipramina/metabolismo , Metabolismo Energético , Fígado/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Mitocôndrias Hepáticas/metabolismo
6.
Photodiagnosis Photodyn Ther ; 35: 102446, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34289416

RESUMO

BACKGROUND: The present study aimed to characterize the intrinsic and photodynamic effects of azure B (AB) on mitochondrial bioenergetics, as well as the consequences of its intrinsic effects on hepatic energy metabolism. METHODS: Two experimental systems were utilized: (a) isolated rat liver mitochondria and (b) isolated perfused rat liver. RESULTS: AB interacted with mitochondria regardless of photostimulation, but its binding degree was reduced by mitochondrial energization. Under photostimulation, AB caused lipid peroxidation and protein carbonylation and decreased the content of reduced glutathione (GSH) in mitochondria. AB impaired mitochondrial bioenergetics in at least three distinct ways: (1) uncoupling of oxidative phosphorylation; (2) photoinactivation of complexes I and II; and (3) photoinactivation of the FoF1-ATP synthase complex. Without photostimulation, AB also demonstrated mitochondrial toxicity, which was characterized by the induction of lipid peroxidation, loss of inner mitochondrial membrane integrity, and uncoupling of oxidative phosphorylation. The perfused rat liver experiments showed that mitochondria were one of the major targets of AB, even in intact cells. AB inhibited gluconeogenesis and ureagenesis, two biosynthetic pathways strictly dependent on intramitochondrially generated ATP. Contrariwise, AB stimulated glycogenolysis and glycolysis, which are required compensatory pathways for the inhibited oxidative phosphorylation. Similarly, AB reduced the cellular ATP content and the ATP/ADP and ATP/AMP ratios. CONCLUSIONS: Although the properties and severe photodynamic effects of AB on rat liver mitochondria might suggest its usefulness in PDT treatment of liver tumors, this possibility should be considered with precaution given the toxic intrinsic effects of AB on mitochondrial bioenergetics and energy-linked hepatic metabolism.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Trifosfato de Adenosina/metabolismo , Animais , Corantes Azur , Metabolismo Energético , Fígado , Mitocôndrias/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Ratos , Ratos Wistar
7.
Toxicology ; 455: 152766, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33775737

RESUMO

Azure A (AA) is a cationic molecule of the class of phenothiazines that has been applied in vitro as a photosensitising agent in photodynamic antimicrobial chemotherapy. It is a di-demethylated analogue of methylene blue (MB), which has been demonstrated to be intrinsically and photodynamically highly active on mitochondrial bioenergetics. However, as far as we know, there are no studies about the photodynamic effects of AA on mammalian mitochondria. Therefore, this investigation aimed to characterise the intrinsic and photodynamic acute effects of AA (0.540 µM) on isolated rat liver mitochondria, isolated hepatocytes, and isolated perfused rat liver. The effects of AA were assessed by evaluating several parameters of mitochondrial bioenergetics, oxidative stress, cell viability, and hepatic energy metabolism. The photodynamic effects of AA were assessed under simulated hypoxic conditions, a suitable way for mimicking the microenvironment of hypoxic solid tumour cells. AA interacted with the mitochondria and, upon photostimulation (10 min of light exposure), produced toxic amounts of reactive oxygen species (ROS), which damaged the organelle, as demonstrated by the high levels of lipid peroxidation and protein carbonylation. The photostimulated AA also depleted the GSH pool, which could compromise the mitochondrial antioxidant defence. Bioenergetically, AA photoinactivated the complexes I, II, and IV of the mitochondrial respiratory chain and the F1FO-ATP synthase complex, sharply inhibiting the oxidative phosphorylation. Upon photostimulation (10 min of light exposure), AA reduced the efficiency of mitochondrial energy transduction and oxidatively damaged lipids in isolated hepatocytes but did not decrease the viability of cells. Despite the useful photobiological properties, AA presented noticeable dark toxicity on mitochondrial bioenergetics, functioning predominantly as an uncoupler of oxidative phosphorylation. This harmful effect of AA was evidenced in isolated hepatocytes, in which AA diminished the cellular ATP content. In this case, the cells exhibited signs of cell viability reduction in the presence of high AA concentrations, but only after a long time of incubation (at least 90 min). The impairments on mitochondrial bioenergetics were also clearly manifested in intact perfused rat liver, in which AA diminished the cellular ATP content and stimulated the oxygen uptake. Consequently, gluconeogenesis and ureogenesis were strongly inhibited, whereas glycogenolysis and glycolysis were stimulated. AA also promoted the release of cytosolic and mitochondrial enzymes into the perfusate concomitantly with inhibition of oxygen consumption. In general, the intrinsic and photodynamic effects of AA were similar to those of MB, but AA caused some distinct effects such as the photoinactivation of the complex IV of the mitochondrial respiratory chain and a diminution of the ATP levels in the liver. It is evident that AA has the potential to be used in mitochondria-targeted photodynamic therapy, even under low oxygen concentrations. However, the fact that AA directly disrupts mitochondrial bioenergetics and affects several hepatic pathways that are linked to ATP metabolism, along with its ability to perturb cellular membranes and its little potential to reduce cell viability, could result in significant adverse effects especially in long-term treatments.


Assuntos
Corantes Azur/toxicidade , Metabolismo Energético/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/patologia , Masculino , Mitocôndrias Hepáticas/patologia , Consumo de Oxigênio/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
8.
Environ Toxicol Chem ; 39(6): 1267-1272, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32239770

RESUMO

There is no use restriction associated with bees for many fungicides used in agriculture; however, this does not always mean that these pesticides are harmless for these nontarget organisms. We investigated whether the fungicide pyraclostrobin, which acts on fungal mitochondria, also negatively affects honey bee mitochondrial bioenergetics. Honey bees were collected from 5 hives and anesthetized at 4 °C. The thoraces were separated, and mitochondria were isolated by grinding, filtering, and differential centrifugation. An aliquot of 0.5 mg of mitochondrial proteins was added to 0.5 mL of a standard reaction medium with 4 mM succinate (complex II substrate) plus 50 nM rotenone (complex I inhibitor), and mitochondrial respiration was measured at 30 °C using a Clark-type oxygen electrode. Mitochondrial membrane potential was determined spectrofluorimetrically using safranin O as a probe, and adenosine triphosphate (ATP) synthesis was determined by chemiluminescence. Pyraclostrobin at 0 to 50 µM was tested on the mitochondrial preparations, with 3 repetitions. Pyraclostrobin inhibited mitochondrial respiration in a dose-dependent manner at concentrations of 10 µM and above, demonstrating typical inhibition of oxidative phosphorylation. Pyraclostrobin also promoted a decline in the mitochondrial membrane potential at doses of 5 µM and above and in ATP synthesis at 15 µM and above. We conclude that pyraclostrobin interferes with honey bee mitochondrial function, which is especially critical for the energy-demanding flight activity of foraging bees. Environ Toxicol Chem 2020;39:1267-1272. © 2020 SETAC.


Assuntos
Abelhas/efeitos dos fármacos , Fungos/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Mitocôndrias/efeitos dos fármacos , Estrobilurinas/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Fungos/metabolismo , Fungicidas Industriais/metabolismo , Inativação Metabólica/efeitos dos fármacos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Estrobilurinas/metabolismo
9.
Free Radic Biol Med ; 153: 34-53, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32315767

RESUMO

According to the literature, methylene blue (MB) is a photosensitizer (PS) with a high affinity for mitochondria. Therefore, several studies have explored this feature to evaluate its photodynamic effects on the mitochondrial apoptotic pathway under normoxic conditions. We are aware only of limited reports regarding MB's photodynamic effects on mitochondrial energy metabolism, especially under hypoxic conditions. Thus, the purposes of this study were to determine the direct and photodynamic acute effects of MB on the energy metabolism of rat liver mitochondria under hypoxic conditions and its direct acute effects on several parameters linked to energy metabolism in the isolated perfused rat liver. MB presented a high affinity for mitochondria, irrespective of photostimulation or proton gradient formation. Upon photostimulation, MB demonstrated high in vitro oxidizing species generation ability. Consequently, MB damaged the mitochondrial macromolecules, as could be evidenced by the elevated levels of lipid peroxidation and protein carbonyls. In addition to generating a pro-oxidant environment, MB also led to a deficient antioxidant defence system, as indicated by the reduced glutathione (GSH) depletion. Bioenergetically, MB caused uncoupling of oxidative phosphorylation and led to photodynamic inactivation of complex I, complex II, and F1FO-ATP synthase complex, thus decreasing mitochondrial ATP generation. Contrary to what is expected for an ideal PS, MB displayed appreciable dark toxicity on mitochondrial energy metabolism. The results indicated that MB acted via at least three mechanisms: direct damage to the inner mitochondrial membrane; uncoupling of oxidative phosphorylation; and inhibition of electron transfer. Confirming the impairment of mitochondrial energy metabolism, MB also strongly inhibited mitochondrial ATP production. In the perfused rat liver, MB stimulated oxygen consumption, decreased the ATP/ADP ratio, inhibited gluconeogenesis and ureogenesis, and stimulated glycogenolysis, glycolysis, and ammoniagenesis, fully corroborating its uncoupling action in intact cells, as well. It can be concluded that even under hypoxic conditions, MB is a PS with potential for photodynamic effect-induced mitochondrial dysfunction. However, MB disrupts the mitochondrial energy metabolism even in the dark, causing energy-linked liver metabolic changes that could be harmful in specific circumstances.


Assuntos
Azul de Metileno , Fármacos Fotossensibilizantes , Animais , Metabolismo Energético , Azul de Metileno/toxicidade , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/metabolismo , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Ratos
10.
Anim Reprod ; 15(4): 1223-1230, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34221136

RESUMO

The toxic effects of the insecticide fipronil on the sperm production and oxidative damage in the testis were evaluated, as well as the protective action of vitamin E. Male rats received vehicle or fipronil 5 mg/kg and fipronil 5 mg/kg + vitamin E 100 mg/kg for 14 days. Thereafter, the sperm concentration in the epididymis and parameters of oxidative damage in the homogenate of testicles were assessed. Fipronil reduced epidydimal sperm count. The activity of the glutathione peroxidase enzyme increased and that of catalase was reduced in the testis. Also, a reduction in GSH and an increase in the concentration of malondialdehyde were observed in the animals treated with fipronil. The vitamin E reestablished the analysed parameters to levels similar to those of the control group. We concluded that fipronil decreased sperm production in rats because of its oxidant activity and that this effect was reversed by vitamin E.

11.
J Econ Entomol ; 111(3): 1369-1375, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29534200

RESUMO

Silkworm cocoon production has been reduced due to a number of problems other than those inherent in sericulture, such as diseases, malnutrition, and inappropriate management. The use of pesticides in areas surrounding mulberry fields can contaminate these plants and consequently harm caterpillars. The aim of this study was to evaluate whether the application of the fungicide pyraclostrobin in mulberry plants interferes with the mitochondrial bioenergetics and the productive performance of silkworms. Mulberry plants were treated with pyraclostrobin (0, 100, 200, and 300 g ha-1). After 30 d of fungicide application, fifth instar caterpillars were fed with leaves from the treated plants. We evaluated in vitro and in vivo mitochondrial bioenergetics of mitochondria from the head and intestines, as well as the feed intake and mortality rate of the caterpillars and the weight of fresh cocoons and cocoons shells. At doses of 50 µM (in vitro) and 200 g ha-1 (in vivo), pyraclostrobin inhibited oxygen consumption in state 3, dissipated membrane potential, and inhibited ATP synthesis in mitochondria. Pyraclostrobin acted as a respiratory chain inhibitor, affecting mitochondrial bioenergetics. The fungicide did not interfere with food consumption but negatively affected mortality rate and weight of cocoons. Mulberry leaves contaminated with pyraclostrobin negatively impact the mitochondrial bioenergetics of silkworms and cocoon production.


Assuntos
Bombyx/crescimento & desenvolvimento , Fungicidas Industriais/efeitos adversos , Mitocôndrias/metabolismo , Estrobilurinas/efeitos adversos , Animais , Bombyx/efeitos dos fármacos , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Mitocôndrias/efeitos dos fármacos , Morus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA