RESUMO
Saliva has gained considerable attention as a diagnostics alternative to blood analyses. A wide spectrum of salivary compounds is correlated to blood concentrations of biomarkers, providing informative and discriminative data regarding the state of health. Intra-oral detection and assessment of food and beverage intake can be correlated and provides valuable information to forecast the formation and modification of salivary biomarkers. In this context, the present work proposes a novel intra-oral optical fiber sensor, developed around an optical coupler topology, and exemplified on the detection and assessment of wine intake, which is accounted for example for the formation of Nε-carboxymethyllysine Advanced Glycation End-products. A laboratory proof of concept validates the proposed solution on four white and four red wine samples. The novel optical sensor geometry shows good spectral properties, accounting for selectivity with respect to grape-based soft drinks. This enables intra-oral detection and objective quality assessment of wine. Moreover, its implementation exploits the advantages of fiber-optics sensing and facilitates integration into a mouthguard, holding considerable potential for real-time biomedical applications to investigate Advanced Glycation End-products in the saliva and their connection with consumption of wine, for the evaluation of risk factors in diet-related diseases.
Assuntos
Sistemas Computacionais , Óptica e Fotônica/instrumentação , Vinho/análise , Cor , Fibras Ópticas , Análise Espectral , VitisRESUMO
Periodontitis is a chronic inflammation caused by periodontopathogenic bacteria in the dental biofilm, and also involves the inflammatory-immune response of the host. Polymorphonuclear neutrophils (PMNs) play essential roles in bacterial clearance by multiple mechanisms, including the formation of neutrophil extracellular traps (NETs) that retain and destroy pathogens. During PD progression, the interaction between PMNs, NETs, and bacteria leads to an exaggerated immune response and a prolonged inflammatory state. As a lesion matures, PMNs accumulate in the periodontal tissues and die via NETosis, ultimately resulting in tissue injury. A better understanding of the role of NETs, the associated molecules, and the pathogenic pathways of NET formation in periodontitis, could provide markers of NETosis as reliable diagnostic and prognostic tools. Moreover, an assessment of NET biomarker levels in biofluids, particularly in saliva or gingival crevicular fluid, could be useful for monitoring periodontitis progression and treatment efficacy. Preventing excessive NET accumulation in periodontal tissues, by both controlling NETs' formation and their appropriate removal, could be a key for further development of more efficient therapeutic approaches. In periodontal therapy, local drug delivery (LDD) systems are more targeted, enhancing the bioavailability of active pharmacological agents in the periodontal pocket and surrounding tissues for prolonged time to ensure an optimal therapeutic outcome.
RESUMO
This study presents the correct processing of Co-Cr alloys as a method of preserving the properties of the materials as-cast, and therefore they can be safely placed in contact with the oral cavity tissues as resistance frameworks. The basic materials analyzed in this study were five commercial Co-Cr dental alloys with different components obtained in three processing steps. The analysis of the electrochemical behavior at the surface of the Co-Cr alloys was performed by electrochemical measurements: impedance spectroscopy (EIS), open circuit electrical potential (OCP), and linear polarization (LP). In terms of validation, all five alloys had a tendency to generate a stable oxide layer at the surface. After the measurements and the graphical representation, the alloy that had a higher percentage of tungsten (W) and iron (Fe) in composition showed a higher tendency of anodizing. After the application of the heat treatment, the disappearance of the hexagonal phase was observed, with the appearance of new phases of type (A,B)2O3 corresponding to some oxide compounds, such as Fe2O3, Cr2O3, (Cr,Fe)2O3, and CoMnO3. In conclusion, the processing of Co-Cr alloys by melting and casting in refractory molds remains a viable method that can support innovation, in the context of technology advance in recent years towards digitalization of the manufacturing process, i.e., the construction of prosthetic frameworks conducted by additive methods using Co-Cr powder alloy.
RESUMO
The central nervous system (CNS) represents a complex network of different cells, such as neurons, glial cells, and blood vessels. In tumor pathology, glial cells result in the highest number of cancers, and glioblastoma (GB) is considered the most lethal tumor in this region. The development of GB leads to the infiltration of healthy tissue through the interaction between all the elements of the brain network. This results in a GB microenvironment, a complex peritumoral hallo composed of tumor cells and several non-tumor cells (e.g., nervous cells, stem cells, fibroblasts, vascular and immune cells), which might be the principal factor for the ineffective treatment due to the fact that the microenvironment modulates the biologic status of the tumor with the increase in its evasion capacity. Crosstalk between glioma cells and the brain microenvironment finally inhibits the beneficial action of molecular pathways, favoring the development and invasion of the tumor and its increasing resistance to treatment. A deeper understanding of cell-cell interactions in the tumor microenvironment (TME) and with the tumor cells could be the basis for a more efficient therapy.
RESUMO
Basal cell carcinoma (BCC) is the most frequent form of skin cancer and is not a tumor with a lethal outcome if diagnosed and treated adequately. The gold standard for treatment is surgical excision with histologically safe margins. Even so, tumors excised with free margins may recur after a period of time. The identification of predictive factors for the recurrence of BCCs besides the localization, size and aggressive histology may be useful for the clinician. The aim of the present study was to identify clinical and pathological factors associated with recurrence in tumors with histologically free margins and assess via immunohistochemical staining, the expression of glioma-associated oncogene homolog 1 (GLI1), yes-associated protein (YAP), connective tissue growth factor (CTGF) and E-cadherin as they are involved in the development of BCCs, in the hope of identifying markers that are predictive for recurrence. In total, 8 recurrent BCCs and 38 non-recurrent tumors were analyzed. A Breslow index >2 (Se 100.0%, Sp 67.5%, P=0.008), Clark level >3 (Se 100.0%, Sp 47.5%, P<0.001), and excision margins both lateral (Se 87.5%, Sp 60.0%, P=0.04) and deep (Se 75.0%, Sp 82.5%, P<0.001) free from tumoral cells ≤1 mm proved to be predictive for recurrence in the present study. Recurrence may appear even after more than 3 years since the initial excision (Se 87.50%, Sp 70.0%, P<0.001). The expression levels of GLI1, YAP and E-cadherin were not different in the recurrent vs. non-recurrent BCCs. However, the low expression of CTGF may indicate a tumor with a higher aggressiveness. In conclusion, close follow-up of patients with excised BCCs at least annually is recommended and re-excision should be taken into consideration for locally advanced tumors especially if they are located in high-risk areas or those with histologically free margins <1 mm.
RESUMO
Objective: Oral appliance therapy is a non-invasive treatment that offers a wide variety of oral devices for the treatment of obstructive sleep apnea (OSA). The present review focuses on the effectiveness of mandibular advancement devices for the treatment of OSA.Methods: A systematic review based on the PRISMA checklist was carried out. A detailed electronic database search was conducted using "Obstructive sleep apnea" AND "Oral appliance" AND "Dentistry" as keywords.Results: The initial search in the electronic databases resulted in a total of 262 papers. After the title and abstract analysis and full-text review, the number of eligible papers was reduced to 15.Conclusion: The mandibular advancement device is an effective treatment, improving the Apnea Hypopnea Index and the symptoms of patients with OSA in 92% of the subjects from all the investigated studies. The future may include the integration of a biosensor for the diagnosis and follow-up.Abbreviations: OSA: Obstructive sleep apnea; MADs: Mandibular advancement devices; CPAP: Continuous positive airway pressure; OAT: Oral appliance therapy; MRD: Mandibular repositioning devices; MAS: Mandibular advancement splints; MAA: Mandibular advancement appliances; OA: Oral appliances; AASM: American Academy of Sleep Medicine; AHI: Apnea-hypopnea index; EEG: Sleep-related breathing disorder SRBD; Electroencephalogram; EOG: Electrooculogram; ECG: Electrocardiogram; QOL: Quality of life; TMJ: Temporomandibular joint.
Assuntos
Avanço Mandibular , Apneia Obstrutiva do Sono , Pressão Positiva Contínua nas Vias Aéreas , Humanos , Qualidade de Vida , Apneia Obstrutiva do Sono/terapia , Ronco/terapia , Resultado do TratamentoRESUMO
BACKGROUND: Saliva has been recently proposed as an alternative to classic biofluid analyses due to both availability and reliability regarding the evaluation of various biomarkers. Biosensors have been designed for the assessment of a wide spectrum of compounds, aiding in the screening, diagnosis, and monitoring of pathologies and treatment efficiency. This literature review aims to present the development in the biosensors research and their utility using salivary assessment. METHODS: a comprehensive literature search has been conducted in the PubMed database, using the keywords "saliva" and "sensor". A two-step paper selection algorithm was devised and applied. RESULTS: The 49 papers selected for the present review focused on assessing the salivary biomarkers used in general diseases, oral pathologies, and pharmacology. The biosensors proved to be reliable tools for measuring the salivary levels of biochemical metabolic compounds such as glucose, proteinases and proteins, heavy metals and various chemical compounds, microorganisms, oncology markers, drugs, and neurotransmitters. CONCLUSIONS: Saliva is a biofluid with a significant clinical applicability for the evaluation and monitoring of a patient's general health. Biosensors designed for assessing a wide range of salivary biomarkers are emerging as promising diagnostic or screening tools for improving the patients' quality of life.