Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 34(9): e8748, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32048367

RESUMO

RATIONALE: Glatiramer acetate (GA) (Copaxone®) is a non-biological complex drug (NBCD) comprising random-sequence polymer chains of four amino acids (MW ~ 5-9 kDa) with unknown structure. The characterization of NBCDs by reversed-phase liquid chromatography/mass spectrometry (RPLC/MS) peptide mapping is often impeded by insufficient separation and/or low sensitivity. To overcome this issue, pre-column derivatization of GA peptide digest was used to improve RPLC/MS detectability and to generate a comprehensive peptide profile. METHODS: Amino groups of peptides generated by trypsin digestion of GA were derivatized using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) reagent. The derivatized mixture of random-sequence peptides was analyzed by liquid chromatography/positive-mode electrospray ionization collision-induced dissociation high-resolution mass spectrometry (RPLC/ESI-CID-HRMS/MS). Data-independent LC/MSE mode was used for data acquisition. RESULTS: The derivatization of the GA peptide mixture increased the detectability of RPLC/ESI-CID-HRMS/MS analysis. The efficacy of the procedure was demonstrated by using selected peptides related to different polymeric chain origins. The resultant peptides were derivatized in a predictable manner giving a minimum of side products. The reproducibility of the developed method was demonstrated by comparing peptide elution profiles derived from six Copaxone® lots. CONCLUSIONS: Application of the AQC pre-column derivatization provides a framework that could be used as an attractive approach for monitoring the quality and characterization of NBCD products in the pharmaceutical industry.


Assuntos
Aminoquinolinas/química , Carbamatos/química , Acetato de Glatiramer/análise , Imunossupressores/análise , Mapeamento de Peptídeos/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão/métodos , Fragmentos de Peptídeos/análise
2.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34358094

RESUMO

The strong psychoactive effects of synthetic cannabinoids raise the need for the deeper studying of their neurometabolic effects. The pharmacokinetic properties of 5F-APINAC and its influence on metabolomics profiles associated with neurotransmission were investigated in rabbit plasma. Twelve rabbits divided into three groups received 1-mL 5F-APINAC at 0.1, 1 and 2 mg/kg. The intervention groups were compared with the controls. Sampling was performed at nine time points (0-24 h). Ultra-high-performance liquid chromatography-tandem mass spectrometry was used. The pharmacokinetics were dose-dependent (higher curve at a higher dose) with a rapid biotransformation, followed by gradual elimination within 24 h. The tryptophan concentrations abruptly decreased (p < 0.05) in all tested groups, returning to the basal levels after 6 h. 5-hydroxylindole acetic acid increased (p < 0.05) in the controls, but this trend was absent in the treated groups. The aspartic acid concentrations were elevated (p < 0.001) in the treated groups. L-kynurenine was elevated (p < 0.01) in the intervention groups receiving 1 mg/kg to 2 mg/kg. Dose-dependent elevations (p < 0.01) were found for kynurenic acid, xanthurenic acid and quinolinic acid (p < 0.01), whereas the anthranilic acid trends were decreased (p < 0.01). The indole-3-propionic acid and indole-3-carboxaldehyde trends were elevated (p < 0.05), whereas the indole-3-lactic acid trajectories were decreased (p < 0.01) in the intervention groups. 5F-APINAC administration had a rapid biotransformation and gradual elimination. The metabolites related to the kynurenine and serotonergic system/serotonin pathways, aspartic acid innervation system and microbial tryptophan catabolism were altered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA