Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(30): 16597-16609, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37478053

RESUMO

Photoactive complexes with earth-abundant metals have attracted increasing interest in the recent years fueled by the promise of sustainable photochemistry. However, sophisticated ligands with complicated syntheses are oftentimes required to enable photoactivity with nonprecious metals. Here, we combine a cheap metal with simple ligands to easily access a photoactive complex. Specifically, we synthesize the molybdenum(0) carbonyl complex Mo(CO)3(tpe) featuring the tripodal ligand 1,1,1-tris(pyrid-2-yl)ethane (tpe) in two steps with a high overall yield. The complex shows intense deep-red phosphorescence with excited state lifetimes of several hundred nanoseconds. Time-resolved infrared spectroscopy and laser flash photolysis reveal a triplet metal-to-ligand charge-transfer (3MLCT) state as the lowest excited state. Temperature-dependent luminescence complemented by density functional theory (DFT) calculations suggest thermal deactivation of the 3MLCT state via higher lying metal-centered states in analogy to the well-known photophysics of [Ru(bpy)3]2+. Importantly, we found that the title compound is very photostable due to the lack of labilized Mo-CO bonds (as caused by trans-coordinated CO) in the facial configuration of the ligands. Finally, we show the versatility of the molybdenum(0) complex in two applications: (1) green-to-blue photon upconversion via a triplet-triplet annihilation mechanism and (2) photoredox catalysis for a green-light-driven dehalogenation reaction. Overall, our results establish tripodal carbonyl complexes as a promising design strategy to access stable photoactive complexes of nonprecious metals avoiding tedious multistep syntheses.

2.
Chemistry ; 29(22): e202203438, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36807660

RESUMO

In this report, we present the dinuclear copper(II) dimethylglyoxime (H2 dmg) complex [Cu2 (H2 dmg)(Hdmg)(dmg)]+ (1), which, in contrast to its mononuclear analogue [Cu(Hdmg)2 ] (2), is subject to a cooperativity-driven hydrolysis. The combined Lewis acidity of both copper centers increases the electrophilicity of the carbon atom in the bridging µ2 -O-N=C-group of H2 dmg and thus, facilitates the nucleophilic attack of H2 O. This hydrolysis yields butane-2,3-dione monoxime (3) and NH2 OH that, depending on the solvent, is then either oxidized or reduced. In ethanol, NH2 OH is reduced to NH4 + , yielding acetaldehyde as the oxidation product. In contrast, in CH3 CN, NH2 OH is oxidized by CuII to form N2 O and [Cu(CH3 CN)4 ]+ . Herein are presented the combined synthetic, theoretical, spectroscopic and spectrometric methods that indicate and establish the reaction pathway of this solvent-dependent reaction.

3.
Inorg Chem ; 62(39): 16182-16195, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37721537

RESUMO

Exploring novel and existing design principles to tune the photochemical and photophysical properties of transition-metal complexes is an important goal in contemporary research. Here, we highlight the influence of constitutional isomers of pyridyl-1,2,3-triazolylidene mesoionic carbene (MIC) ligands on the photophysical and photochemical properties of the corresponding tetracarbonyl group 6 metal complexes (M = Cr, Mo, W). All new complexes [M(C-C)] presented herein incorporate a C-C linked pyridyl-MIC ligand and were fully characterized by X-ray diffraction analysis, elemental analysis, and 1H NMR and IR spectroscopy. Detailed photophysical investigations reveal a single emission in the VIS region, which extends into the NIR with lifetimes of up to 3.5 µs in the solid state at lower temperatures. The quantum yields were determined for all three complexes, and, in particular, the W0 complex shows an unusually high quantum yield of 29% compared to the values of 0.02% obtained for the [M(C-N)] isomers investigated in earlier works. Beyond this, the investigated W0 complex also exhibits an emission at 717 nm in a fluid solution. The combination of luminescence and FTIR-step scan spectroscopy with theoretical calculations reveals an emissive 3MLCT state. Irradiation of the presented complexes leads to a clean cleavage of one axial CO ligand. A metastable 16 VE species with a vacant axial coordination site was detected in the solid state at low temperatures. In solution, the respective solvato complexes are formed. A dark reverse reaction is observed, as previously described for the [M(C-N)] analogues. The increased electron density induced by the C-C linked pyridyl-MIC ligand leads to an increased kinetic rate constant for the reformation of the starting species and is also reflected in the lower photodissociation quantum yields.

4.
Chemistry ; 28(51): e202201038, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35705508

RESUMO

This work tackles the photochemistry of a series of mononuclear Cr0 , Mo0 and W0 carbonyl complexes containing a bidentate mesoionic carbene ligand of the 1,2,3-triazol-5-ylidene type. FTIR spectroscopy, combined with density functional theory calculations, revealed a clean photo-induced reaction in organic solvents (acetonitrile, pyridine, valeronitrile) to give mainly one photoproduct with monosubstitution of a carbonyl ligand for a solvent molecule. The highest photodissociation quantum yields were reached for the Cr0 complex under UV irradiation (266 nm). Based on previous investigations, the kinetics of the dark reverse reactions have now been determined, with reaction times of up to several hours in pyridine. Photochemical studies in the solid state (KBr matrix, frozen solution) also showed light-induced reactivity with stabilization of the metastable intermediate with a free coordination site at very low temperature. The identified reactive species emphasizes a mechanism without ligand-sphere reorganization.

5.
Chemistry ; 28(51): e202202543, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36047987

RESUMO

Invited for the cover of this issue are Gereon Niedner-Schatteburg, Biprajit Sarkar and co-worker at TU Kaiserslautern and the University of Stuttgart. The image depicts the selective dissociation of an axial CO from a metal complex. Read the full text of the article at 10.1002/chem.202201038.

6.
Inorg Chem ; 61(31): 12249-12261, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35877171

RESUMO

In this study, we present a slight but surprisingly successful structural modification of the previously reported heteroleptic Cu(I) photosensitizer Cubiipo ([(xantphos)Cu(biipo)]PF6; biipo = 16H-benzo-[4',5']-isoquinolino-[2',1':1,2]-imidazo-[4,5-f]-[1,10]-phenanthrolin-16-one). As a key feature, biipo bears a naphthalimide unit at the back, which is directly fused to a phenanthroline moiety to extend the conjugated π-system. This ligand was now altered to include two additional methyl groups at the 2,9-positions at the phenanthroline scaffold. Comparing the novel Cudmbiipo complex to its predecessor, ultrafast transient absorption spectroscopy reveals the efficient suppression of a major deactivation pathway by stabilization of a transient triplet state. Furthermore, quantitative measurements of singlet oxygen evolution in solution confirmed that a larger fraction of the excited-state population is transferred to the photocatalytically active ligand-centered triplet 3LC state with a much longer lifetime of ∼30 µs compared to Cubiipo (2.6 µs). In addition, Cudmbiipo was compared with the well-established reference complex Cubcp ([(xantphos)Cu(bathocuproine)]PF6) in terms of its photophysical and photocatalytic properties by applying time-resolved femto- and nanosecond absorption, step-scan Fourier transform infrared (FTIR), and emission spectroscopies. Superior light-harvesting properties and a greatly enhanced excited-state lifetime with respect to Cubcp enable Cudmbiipo to be more active in exemplary photocatalytic applications, i.e., in the formation of singlet oxygen and the isomerization of (E)-stilbene.


Assuntos
Fármacos Fotossensibilizantes , Oxigênio Singlete , Ligantes , Naftalimidas , Fenantrolinas , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/química
7.
Inorg Chem ; 61(1): 214-226, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34908410

RESUMO

Ru(II)- and Cu(I)-based photosensitizers featuring the recently developed biipo ligand (16H-benzo-[4',5']-isoquinolino-[2',1',:1,2]-imidazo-[4,5-f]-[1,10]-phenanthrolin-16-one) were comprehensively investigated by X-ray crystallography, electrochemistry, and especially several time-resolved spectroscopic methods covering all time scales from femto- to milliseconds. The analysis of the experimental results is supported by density functional theory (DFT) calculations. The biipo ligand consists of a coordinating 1,10-phenanthroline moiety fused with a 1,8-naphthalimide unit, which results in an extended π-system with an incorporated electron acceptor moiety. In a previous study, it was shown that this ligand enabled a Ru(II) complex that is an efficient singlet oxygen producer and of potential use for other light-driven applications due to its long emission lifetime. The goal of our here presented research is to provide a full spectroscopic picture of the processes that follow optical excitation. Interestingly, the Ru(II) and Cu(I) complexes differ in their characteristics even though the lowest electronically excited states involve in both cases the biipo ligand. The combined spectroscopic results indicate that an emissive 3MLCT state and a rather dark 3LC state are populated, each to some extent. For the Cu(I) complex, most of the excited population ends up in the 3LC state with an extraordinary lifetime of 439 µs in the solid state at 20 K, while a significant population of the 3MLCT state causes luminescence for the Ru(II) complex. Hence, there is a balance between these two states, which can be tuned by altering the metal center or even by thermal energy, as suggested by the temperature-dependent experiments.

8.
J Am Chem Soc ; 143(30): 11843-11855, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34296865

RESUMO

Gaining chemical control over the thermodynamics and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge transfer states described by spatially separated orbitals, the energies of spin-flip states cannot straightforwardly be predicted as Pauli repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chemical calculations, we report a novel highly luminescent spin-flip emitter with a quantum chemically predicted blue-shifted luminescence. The spin-flip emission band of the chromium complex [Cr(bpmp)2]3+ (bpmp = 2,6-bis(2-pyridylmethyl)pyridine) shifted to higher energy from ca. 780 nm observed for known highly emissive chromium(III) complexes to 709 nm. The photoluminescence quantum yields climb to 20%, and very long excited state lifetimes in the millisecond range are achieved at room temperature in acidic D2O solution. Partial ligand deuteration increases the quantum yield to 25%. The high excited state energy of [Cr(bpmp)2]3+ and its facile reduction to [Cr(bpmp)2]2+ result in a high excited state redox potential. The ligand's methylene bridge acts as a Brønsted acid quenching the luminescence at high pH. Combined with a pH-insensitive chromium(III) emitter, ratiometric optical pH sensing is achieved with single wavelength excitation. The photophysical and ground state properties (quantum yield, lifetime, redox potential, and acid/base) of this spin-flip complex incorporating an earth-abundant metal surpass those of the classical precious metal [Ru(α-diimine)3]2+ charge transfer complexes, which are commonly employed in optical sensing and photo(redox) catalysis, underlining the bright future of these molecular ruby analogues.

9.
Chemistry ; 27(51): 12959-12964, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34237175

RESUMO

The development of NIR emitters based on earth-abundant elements is an important goal in contemporary science. We present here Cr(0), Mo(0), and W(0) carbonyl complexes with a pyridyl-mesoionic carbene (MIC) based ligand. A detailed photophysical investigation shows that all the complexes exhibit dual emissions in the VIS and in the NIR region. The emissive excited states are assigned to two distinct triplet states by time-resolved emission and step-scan FTIR spectroscopy at variable temperature, supported by density functional theory. In particular, the NIR emissive triplet state exhibits unprecedented lifetimes of up to 600±10 ns and quantum yields reaching 1.7 ⋅ 10-4 at room temperature. These are the first examples of Cr(0), Mo(0) and W(0) complexes that emit in the NIR II region.

10.
Chemistry ; 27(61): 15251-15270, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34550622

RESUMO

Chemical and spectroscopic characterization of the mononuclear photosensitizers [(DPEPhos)Cu(I)(MPyrT)]0/+ (CuL, CuLH) and their dinuclear analogues (Cu2 L', Cu2 L'H2 ), backed by (TD)DFT and high-level GW-Bethe-Salpeter equation calculations, exemplifies the complex influence of charge, nuclearity and structural flexibility on UV-induced photophysical pathways. Ultrafast transient absorption and step-scan FTIR spectroscopy reveal flattening distortion in the triplet state of CuLH as controlled by charge, which also appears to have a large impact on the symmetry of the long-lived triplet states in Cu2 L' and Cu2 L'H2 . Time-resolved luminescence spectroscopy (solid state), supported by transient photodissociation spectroscopy (gas phase), confirm a lifetime of some tens of µs for the respective triplet states, as well as the energetics of thermally activated delayed luminescence, both being essential parameters for application of these materials based on earth-abundant copper in photocatalysis and luminescent devices.


Assuntos
Cobre , Triazóis , Eletrônica , Luminescência , Análise Espectral
11.
Chemistry ; 27(61): 15109-15118, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33899967

RESUMO

The synthesis of copper and zinc complexes of four variably substituted iminophosphonamide ligands is presented. While the copper complexes form ligand-bridged dimers, the zinc compounds are monomeric. Due to different steric demand of the ligand the arrangement of the ligands within the dimeric complexes varies. Similar to the structurally related iminophosphonamide complexes of alkali metals and calcium, the steady-state and time-resolved photoluminescence (PL) of four of the seven compounds studied here as solids in a temperature range of 5-295 K can be described within the scheme of thermally activated delayed fluorescence (TADF). Accordingly, they exhibit bright blue-green phosphorescence at low temperatures (<100 K), which turns into delayed fluorescence by increasing the temperature. However, unusually, the fluorescence is practically absent in two copper complexes which otherwise still conform to the TADF scheme. In these cases, the excited singlet states decay essentially non-radiatively and their thermal population from the corresponding low-lying triplet states efficiently quenches PL (phosphorescence). Three other copper and zinc complexes only exhibit prompt fluorescence, evidencing a wide variation of photophysical properties in this class of compounds. The excited states of the copper complex with especially pronounced phosphorescence quenching were also investigated by low-temperature time-resolved infrared spectroscopy and quantum chemical calculations.

12.
Chemistry ; 27(17): 5439-5452, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33176033

RESUMO

To develop new and flexible CuI containing luminescent substances, we extend our previous investigations on two metal-centered species to four metal-centered complexes. These complexes could be a basis for designing new organic light-emitting diode (OLED) relevant species. Both the synthesis and in-depth spectroscopic analysis, combined with high-level theoretical calculations are presented on a series of tetranuclear CuI complexes with a halide containing Cu4 X4 core (X=iodide, bromide or chloride) and two 2-(diphenylphosphino)pyridine bridging ligands with a methyl group in para (4-Me) or ortho (6-Me) position of the pyridine ring. The structure of the electronic ground state is characterized by X-ray diffraction, NMR, and IR spectroscopy with the support of theoretical calculations. In contrast to the para system, the complexes with ortho-substituted bridging ligands show a remarkable and reversible temperature-dependent dual phosphorescence. Here, we combine for the first time the luminescence thermochromism with time-resolved FTIR spectroscopy. Thus, we receive experimental data on the structures of the two triplet states involved in the luminescence thermochromism. The transient IR spectra of the underlying triplet metal/halide-to-ligand charge transfer (3 M/XLCT) and cluster-centered (3 CC) states were obtained and interpreted by comparison with calculated vibrational spectra. The systematic and significant dependence of the bridging halides was analyzed.

13.
Phys Chem Chem Phys ; 23(25): 13808-13818, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34139001

RESUMO

The development of photoactive transition metal complexes with Earth-abundant metals is a rapidly growing research field, where a deeper understanding of the underlying photophysical processes is of great importance. A multitude of potential applications in the fields of photosensitizing, optical sensing, photoluminescence and photoredox catalysis motivates demanding spectroscopic studies. We applied a series of high-level spectroscopic methods on the previously reported highly luminescent chromium(iii) complex [Cr(ddpd)2](BF4)3 (ddpd = N,N'-dimethyl-N,N'-dipyridine-2-ylpyridine-2,6-diamine) possessing two near-IR emissive doublet states with microsecond lifetimes. Luminescence measurements were performed at temperatures down to about 10 K, showing a remarkable rise of the integrated emission intensity by more than a factor of three. The emissive doublet states were structurally characterized by transient FTIR spectroscopy at 290 K and 20 K, supplemented by ground state FTIR and Raman spectroscopy in combination with density functional theory. According to emission and step-scan FT-IR spectroscopy, the stronger luminescence at lower temperature arises from decreased non-radiative decay via energy transfer to CH vibrational overtones and increased radiative decay based on lowered symmetry. Pump/pump/probe (FTIR) and pump/dump/probe (FTIR) schemes were developed to modulate the excited doublet state populations at 290 and 20 K as a function of specific near-IR pump vs. dump wavelengths. The effect of the second near-IR pulse can be explained by combinations of excited state absorption, ground state absorption and stimulated emission. The successful establishment of these two-colour step-scan FTIR experiments is an important step towards profound studies on further transition metal complexes with energetically close-lying excited states in the near future.

14.
J Am Chem Soc ; 142(17): 7947-7955, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32275150

RESUMO

Luminescence from Earth-abundant metal ions in solution at room temperature is a very challenging objective due to the intrinsically weak ligand field splitting of first-row transition metal ions, which leads to efficient nonradiative deactivation via metal-centered states. Only a handful of 3dn metal complexes (n ≠ 10) show sizable luminescence at room temperature. Luminescence in the near-infrared spectral region is even more difficult to achieve as further nonradiative pathways come into play. No Earth-abundant first-row transition metal complexes have displayed emission >1000 nm at room temperature in solution up to now. Here, we report the vanadium(III) complex mer-[V(ddpd)2][PF6]3 yielding phosphorescence around 1100 nm in valeronitrile glass at 77 K as well as at room temperature in acetonitrile with 1.8 × 10-4% quantum yield (ddpd = N,N'-dimethyl-N,N'-dipyridine-2-ylpyridine-2,6-diamine). In addition, mer-[V(ddpd)2][PF6]3 shows very strong blue fluorescence with 2% quantum yield in acetonitrile at room temperature. Our comprehensive study demonstrates that vanadium(III) complexes with d2 electron configuration constitute a new class of blue and NIR-II luminophores, which complement the classical established complexes of expensive precious metals and rare-earth elements.

15.
Chemistry ; 26(47): 10743-10751, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32428347

RESUMO

This work reports on a series of polynuclear complexes containing a trinuclear Cu, Ag, or Au core in combination with the fac-isomer of the metalloligand [Ru(pypzH)3 ](PF6 )2 (pypzH=3-(pyridin-2-yl)pyrazole). These (in case of the Ag and Au containing species) newly synthesized compounds of the general formula [{Ru(pypz)3 }2 M3 ](PF6 ) (2: M=Cu; 3: M=Ag; 4: M=Au) contain triple-stranded helical structures in which two ruthenium moieties are connected by three N-M-N (M=Cu, Ag, Au) bridges. In order to obtain a detailed description of the structure both in the electronic ground and excited states, extensive spectroscopic and quantum chemical calculations are applied. The equilateral coinage metal core triangle in the electronic ground state of 2-4 is distorted in the triplet state. Furthermore, the analyses offer a detailed description of electronic excitations. By using time-resolved IR spectroscopy from the microsecond down to the nanosecond regime, both the vibrational spectra and the lifetime of the lowest lying electronically excited triplet state can be determined. The lifetimes of these almost only non-radiative triplet states of 2-4 show an unusual effect in a way that the Au-containing complex 4 has a lifetime which is by more than a factor of five longer than in case of the Cu complex 2. Thus, the coinage metals have a significant effect on the electronically excited state, which is localized on a pypz ligand coordinated to the Ru atom indicating an unusual cooperative effect between two moieties of the complex.

16.
Chemistry ; 26(32): 7199-7204, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32167607

RESUMO

The chromium(III) complex [CrIII (ddpd)2 ]3+ (molecular ruby; ddpd=N,N'-dimethyl-N,N'-dipyridine-2-yl-pyridine-2,6-diamine) is reduced to the genuine chromium(II) complex [CrII (ddpd)2 ]2+ with d4 electron configuration. This reduced molecular ruby represents one of the very few chromium(II) complexes showing spin crossover (SCO). The reversible SCO is gradual with T1/2 around room temperature. The low-spin and high-spin chromium(II) isomers exhibit distinct spectroscopic and structural properties (UV/Vis/NIR, IR, EPR spectroscopies, single-crystal XRD). Excitation of [CrII (ddpd)2 ]2+ with UV light at 20 and 290 K generates electronically excited states with microsecond lifetimes. This initial study on the unique reduced molecular ruby paves the way for thermally and photochemically switchable magnetic systems based on chromium complexes complementing the well-established iron(II) SCO systems.

17.
Inorg Chem ; 59(20): 15504-15513, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33021374

RESUMO

This work reports on the synthesis and in-depth electrochemical and photochemical characterization of two chromium(0) and molydenum(0) metal complexes with bidentate pyridyl-mesoionic carbene (MIC) ligands of the 1,2,3-triazol-5-ylidene type and carbonyl coligands. Metal complexes with MIC ligands have turned out to have very promising electrocatalytic and photochemical properties, but examples of MIC-containing complexes with early-transition-metal centers remain extremely rare. The electrochemistry of these new MIC complexes was studied by cyclic voltammetry and especially spectroelectrochemistry in the IR region consistent with a mainly metal-centered oxidation, which is fully reversible in the case of the chromium(0) complex. At the same time, the two reduction steps are predominantly ligand-centered according to the observed near-IR absorbance, with the first reduction step being reversible for both systems. The results of the electron paramagnetic resonance studies on the oxidized and reduced species confirm the IR spectroelectrochemistry experiments. The photochemical reactivity of the complexes with a series of organic ligands was investigated by time-resolved (step-scan) Fourier transform infrared (FTIR) spectroscopy. Interestingly, the photoreactions in pyridine and acetonitrile are fully reversible with a slow dark reverse reaction back to the educt species over minutes and even hours, depending on the metal center and reagent. This reversible behavior is in contrast to the expected loss of one or several CO ligands known from related homoleptic as well as heteroleptic M(CO)4L2 α-diimine transition-metal complexes.

18.
Angew Chem Int Ed Engl ; 58(50): 18075-18085, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600421

RESUMO

Photoactive metal complexes employing Earth-abundant metal ions are a key to sustainable photophysical and photochemical applications. We exploit the effects of an inversion center and ligand non-innocence to tune the luminescence and photochemistry of the excited state of the [CrN6 ] chromophore [Cr(tpe)2 ]3+ with close to octahedral symmetry (tpe=1,1,1-tris(pyrid-2-yl)ethane). [Cr(tpe)2 ]3+ exhibits the longest luminescence lifetime (τ=4500 µs) reported up to date for a molecular polypyridyl chromium(III) complex together with a very high luminescence quantum yield of Φ=8.2 % at room temperature in fluid solution. Furthermore, the tpe ligands in [Cr(tpe)2 ]3+ are redox non-innocent, leading to reversible reductive chemistry. The excited state redox potential and lifetime of [Cr(tpe)2 ]3+ surpass those of the classical photosensitizer [Ru(bpy)3 ]2+ (bpy=2,2'-bipyridine) enabling energy transfer (to oxygen) and photoredox processes (with azulene and tri(n-butyl)amine).

20.
Chem Commun (Camb) ; 58(22): 3701-3704, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35226026

RESUMO

Cr(ppy)3, a structural analog of the green phosphorescent Ir(ppy)3, emits even in solution at room temperature from a weakly distorted spin-flip state at 910 nm (Hppy = 2-phenylpyridine). The low energy arises from an enhanced covalence of the Cr-C bonds as compared to Cr-N bonds. Lower temperature reduces thermally activated decay increasing the emission intensity.


Assuntos
Luminescência , Compostos Organometálicos , Irídio/química , Compostos Organometálicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA