Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutr Neurosci ; 25(1): 137-145, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32050863

RESUMO

Objectives: Inbred mouse strains differ in the pharmacology mediating sugar and fat intake and conditioned flavor preferences (CFP). C57BL/6, BALB/c and SWR inbred mice are differentially sensitive to dopamine (DA) D1, opioid and muscarinic receptor antagonism of sucrose, saccharin or fat intake, and to DA, opioid, muscarinic and N-methyl-D-aspartate (NMDA) receptor antagonism of acquisition of sucrose-CFP. DA D1, opioid and NMDA receptor antagonists differentially alter fat (Intralipid)-CFP in BALB/c and SWR mice. The present study examined whether naltrexone, SCH23390 or MK-801 altered acquisition and expression of Intralipid-CFP in C57BL/6 mice.Methods: In acquisition, groups of male food-restricted C57BL/6 mice received vehicle, naltrexone (1, 5 mg/kg), SCH23390 (50, 200 nmol/kg) or MK-801 (100, 200 µg/kg) before 10 training sessions in which mice alternately consumed two novel-flavored 5% (CS+) and 0.5% (CS-) Intralipid solutions. Six two-bottle CS choice tests followed with both flavors mixed in 0.5% Intralipid without injections. In expression, C57BL/6 mice underwent the 10 training sessions without injections followed by two-bottle CS choice tests 30 min following vehicle, naltrexone (1, 5 mg/kg), SCH23390 (200, 800 nmol/kg) or MK-801 (100, 200 µg/kg).Results: Fat-CFP acquisition in C57BL/6 mice was significantly though marginally reduced following naltrexone, SCH23390 and MK-801. Fat-CFP expression was similarly reduced by naltrexone, SCH23390 and MK-801 in C57BL/6 mice. Discussion: C57BL/6 mice were more sensitive to DA D1, opioid and NMDA antagonists in the expression of fat-CFP relative to sugar-CFP, but were less sensitive to DA D1 and NMDA antagonists in the acquisition of fat-CFP relative to sugar-CFP.


Assuntos
Gorduras na Dieta , Antagonistas de Entorpecentes/farmacologia , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Paladar/fisiologia , Animais , Benzazepinas/farmacologia , Condicionamento Clássico , Maleato de Dizocilpina/farmacologia , Emulsões , Preferências Alimentares/efeitos dos fármacos , Preferências Alimentares/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naltrexona/farmacologia , Fosfolipídeos , Receptores Opioides , Óleo de Soja , Paladar/efeitos dos fármacos
2.
Cell Mol Neurobiol ; 41(5): 863-897, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32970288

RESUMO

Almost a half century of research has elaborated the discoveries of the central mechanisms governing the analgesic responses of opiates, including their receptors, endogenous peptides, genes and their putative spinal and supraspinal sites of action. One of the central tenets of "gate-control theories of pain" was the activation of descending supraspinal sites by opiate drugs and opioid peptides thereby controlling further noxious input. This review in the Special Issue dedicated to the research of Dr. Gavril Pasternak indicates his contributions to the understanding of supraspinal mediation of opioid analgesic action within the context of the large body of work over this period. This review will examine (a) the relevant supraspinal sites mediating opioid analgesia, (b) the opioid receptor subtypes and opioid peptides involved, (c) supraspinal site analgesic interactions and their underlying neurophysiology, (d) molecular (particularly AS) tools identifying opioid receptor actions, and (e) relevant physiological variables affecting site-specific opioid analgesia. This review will build on classic initial studies, specify the contributions that Gavril Pasternak and his colleagues did in this specific area, and follow through with studies up to the present.


Assuntos
Analgesia/métodos , Analgésicos Opioides/metabolismo , Encéfalo/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Receptores Opioides/metabolismo , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Humanos , Morfina/metabolismo , Morfina/farmacologia , Morfina/uso terapêutico , Antagonistas de Entorpecentes/metabolismo , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides/agonistas , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
3.
Glia ; 68(10): 2040-2056, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32187401

RESUMO

Fused in sarcoma (FUS) is a predominantly nuclear multifunctional RNA/DNA-binding protein that regulates multiple aspects of gene expression. FUS mutations are associated with familial amyotrophic lateral sclerosis (fALS) and frontotemporal lobe degeneration (FTLD) in humans. At the molecular level, the mutated FUS protein is reduced in the nucleus but accumulates in cytoplasmic granules. Oligodendrocytes (OL) carrying clinically relevant FUS mutations contribute to non-cell autonomous motor neuron disease progression, consistent with an extrinsic mechanism of disease mediated by OL. Knocking out FUS globally or in neurons lead to behavioral abnormalities that are similar to those present in FTLD. In this study, we sought to investigate whether an extrinsic mechanism mediated by loss of FUS function in OL contributes to the behavioral phenotype. We have generated a novel conditional knockout (cKO) in which Fus is selectively depleted in OL (FusOL cKO). The FusOL cKO mice show increased novelty-induced motor activity and enhanced exploratory behavior, which are reminiscent of some manifestations of FTLD. The phenotypes are associated with greater myelin thickness, higher number of myelinated small diameter axons without an increase in the number of mature OL. The expression of the rate-limiting enzyme of cholesterol biosynthesis (HMGCR) is increased in white matter tracts of the FusOL cKO and results in higher cholesterol content. In addition, phosphorylation of Akt, an important regulator of myelination is increased in the FusOL cKO. Collectively, this work has uncovered a novel role of oligodendrocytic Fus in regulating myelin deposition through activation of Akt and cholesterol biosynthesis.


Assuntos
Colesterol/metabolismo , Hipercinese/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína FUS de Ligação a RNA/deficiência , Animais , Colesterol/genética , Hipercinese/genética , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Bainha de Mielina/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteína FUS de Ligação a RNA/genética
4.
Nutr Neurosci ; 23(9): 672-678, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30465483

RESUMO

The study of inbred mouse strains is a useful animal model to assess differences in ingestive behavior responses, including conditioned flavor preferences (CFP). C57BL/6, BALB/c and SWR inbred mice display differential sensitivity to dopamine (DA) D1, opioid and muscarinic cholinergic receptor antagonism of sucrose or saccharin intake as well as to muscarinic cholinergic antagonism of acquisition (learning) of sucrose-CFP. Given that DA D1, opioid and N-methyl-D-aspartate (NMDA) receptor antagonists differentially alter sucrose-CFP in BALB/c and SWR inbred mice, the present study examined whether systemic administration of naltrexone, SCH23390 or MK-801 altered acquisition and expression of sucrose-CFP in C57BL/6 mice. In acquisition experiments, male food-restricted C57BL/6 mice were treated with vehicle, naltrexone (1, 5 mg/kg), SCH23390 (50, 200 nmol/kg) or MK-801 (100, 200 µg/kg) 30 min prior to each of ten daily sessions in which they alternately consumed a flavored (CS+, e.g. cherry) 16% sucrose solution and a differently-flavored (CS-, e.g. grape) 0.05% saccharin solution followed by six two-bottle CS choice tests mixed in 0.2% saccharin without injections. SCH23390 and MK-801, but not naltrexone eliminated sucrose-CFP acquisition in food-restricted C57BL/6 mice. In expression experiments, food-restricted C57BL/6 mice underwent the ten training sessions without injections followed by two-bottle CS choice tests 30 min following vehicle, naltrexone (1, 5 mg/kg), SCH23390 (200, 800 nmol/kg) or MK-801 (100, 200 µg/kg). SCH23390 more effectively reduced the magnitude of sucrose-CFP expression than naltrexone or MK-801 in food-restricted C57BL/6 mice. Thus, dopamine D1 and NMDA receptor signaling is essential for learning of sucrose-CFP in C57BL/6 mice.


Assuntos
Condicionamento Clássico/fisiologia , Preferências Alimentares/fisiologia , Receptores de Dopamina D1/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Receptores Opioides/fisiologia , Sacarose/administração & dosagem , Animais , Benzazepinas/administração & dosagem , Condicionamento Clássico/efeitos dos fármacos , Maleato de Dizocilpina/administração & dosagem , Antagonistas de Aminoácidos Excitatórios , Preferências Alimentares/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Naltrexona/administração & dosagem , Antagonistas de Entorpecentes/administração & dosagem , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
5.
Nutr Neurosci ; 22(10): 706-717, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29415638

RESUMO

Murine genetic variance affects sucrose's ability to condition flavor preferences (CFP) relative to saccharin. Whereas BALB/c mice display robust sucrose- and fructose-CFP, C57BL/6 mice only display sucrose-CFP. Prior exposure to sucrose or saccharin solutions alters subsequent food choice responsiveness. The present study examined whether pre-exposure for one month to 10% sucrose or 0.2% saccharin altered subsequent sucrose-CFP in male and female BALB/c and C57BL/6 mice. Two weeks later, food-restricted mice were exposed to 10 CFP training trials with uniquely flavored 16% sucrose and 0.2% saccharin solutions. Two-bottle choice tests of the flavors mixed in saccharin followed for 4 weeks. Male mice weighed more than females across all conditions, and male BALB/c, but not C57BL mice consumed more 85 sucrose than females. No other notable sex differences were observed. BALB/c mice consumed more sucrose during pre-exposure and one-bottle training than C57BL/6 mice. Although the magnitudes of sucrose-CFP were comparable in two-bottle choice tests in water-exposed BALB/c and C57BL/6 mice, sucrose- and saccharin-exposed BALB/c mice displayed significantly greater sucrose-CFP preferences relative to C57BL/6 counterparts. These data indicate murine genetic variance in the effects of prior exposure to nutritive or non-nutritive sweeteners upon the magnitude of adult sugar-CFP.


Assuntos
Preferências Alimentares , Sacarina/administração & dosagem , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem , Animais , Condicionamento Clássico , Feminino , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Especificidade da Espécie
6.
Glia ; 66(9): 1999-2012, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29761559

RESUMO

Apoptosis is recognized as the main mechanism of oligodendrocyte loss in Multiple Sclerosis caused either by immune mediated injury (Barnett & Prineas, ) or a direct degenerative process (oligodendrogliapathy; Lucchinetti et al., ). Cuprizone induced demyelination is the result of non-immune mediated apoptosis of oligodendrocytes (OL) and represents a model of oligodendrogliapathy (Simmons, Pierson, Lee, & Goverman, ). Glycogen Synthase Kinase (GSK) 3b has been shown to be pro-apoptotic for cells other than OL. Here, we sought to investigate whether GSK3b plays a role in cuprizone-induced apoptosis of OL by using a novel inducible conditional knockout (cKO) of GSK3b in mature OL. While depletion of GSK3b has no effect on survival of uninjured OL, it increases survival of mature OL exposed to cuprizone. We show that GSK3b-deficient OLs are protected against caspase-dependent, but not against caspase-independent apoptosis. Active GSK3b is present in the nuclei of OL at peak of caspase-dependent apoptosis. Significant preservation of myelinated axons is associated with GSK3b depletion and glial cell activation is markedly reduced. Collectively, the data show that GSK3b is pro-apoptotic for caspase-dependent cell death, likely through activation of nuclear GSK3b and its depletion promotes survival of oligodendrocytes and attenuates myelin loss.


Assuntos
Apoptose/fisiologia , Doenças Desmielinizantes/enzimologia , Glicogênio Sintase Quinase 3 beta/deficiência , Bainha de Mielina/enzimologia , Oligodendroglia/enzimologia , Animais , Astrócitos/enzimologia , Astrócitos/patologia , Caspases/metabolismo , Núcleo Celular/enzimologia , Núcleo Celular/patologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Cuprizona , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Feminino , Glicogênio Sintase Quinase 3 beta/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/enzimologia , Microglia/patologia , Bainha de Mielina/patologia , Oligodendroglia/patologia
7.
Cytotherapy ; 20(8): 1046-1060, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30093323

RESUMO

BACKGROUND: Pericytes have been shown to have mesenchymal stromal cell-like properties and play a role in tissue regeneration. The goal of this study was to determine whether the addition of a pericyte sheet to a full-thickness dermal wound would enhance the healing of an acute wound. METHODS: Human muscle-derived pericytes and human dermal fibroblasts were formed into cell sheets, then applied to full-thickness excisional wounds on the dorsum of nu/nu mice. Histology was performed to evaluate epidermal and dermal reformation, inflammation and fibrosis. In addition, real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was used to determine cytokine response. RESULTS: Pericytes were detected in the wounds until day 16 but not fibroblasts. Decrease in wound size was noted in pericyte sheet-treated wounds. Enhanced neo-vascularization and healthy granulation tissue formation were noted in the pericyte-treated wounds. Expression of type I collagen messenger RNA (mRNA) was significantly higher in the fibroblast-treated group, whereas Type III collagen mRNA showed significant increase in the pericyte group at days 3, 6 and 9 compared with the fibroblast and no-cell groups. Trichrome staining revealed thick unorganized collagen fibrils in the fibroblast-treated wounds, whereas pericyte-treated wounds contained thinner and more alligned collagen fibrils. Tumor necrosis factor (TNF)-α mRNA levels were increased in the fibroblast-treated wounds compared with pericyte-treated wounds. DISCUSSION: The addition of pericytes may confer beneficial effects to wound healing resulting in reduced recruitment of inflammatory cells and collagen I deposition, potential to enhance wound closure and better collagen alignment promoting stronger tissue.


Assuntos
Colágeno/metabolismo , Derme/lesões , Inflamação/prevenção & controle , Pericitos/fisiologia , Pericitos/transplante , Cicatrização/fisiologia , Animais , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Derme/irrigação sanguínea , Derme/metabolismo , Derme/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Fisiológica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pele/irrigação sanguínea , Pele/lesões , Pele/metabolismo , Pele/patologia , Cicatrização/genética
8.
Appetite ; 122: 17-25, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27988368

RESUMO

The elucidation of the behavioral, neurochemical, neuroanatomical and genetic substrates mediating the development of conditioned flavor preferences (CFP) is one of the multi-faceted scientific contributions that Dr. Anthony Sclafani has made to the study of food intake. This review summarizes the results of thirty-five publications over nearly twenty years of collaborations between the Sclafani and Bodnar laboratories. This includes the different approaches employed to study the orosensory (flavor-flavor) and post-ingestive (flavor-nutrient) processes underlying CFP including its acquisition (learning) and expression. It describes how CFP is elicited by different sugars (sucrose, glucose, fructose) and fats (corn oil) in rats, and how strain-specific CFP effects can be observed through the use of inbred mouse strains to evaluate genetic variance. The roles of pharmacological substrates (dopamine, glutamate, opioids, acetylcholine, GABA, cannabinoids) mediating sugar- and fat-CFP acquisition and expression are elucidated. Finally, neuroanatomical sites of action (nucleus accumbens, amygdala, medial prefrontal and orbital frontal cortices, lateral hypothalamus) are evaluated at which dopamine signaling mediates acquisition and expression of different forms of CFP.


Assuntos
Encéfalo/fisiologia , Preferências Alimentares/fisiologia , Variantes Farmacogenômicos , Paladar , Acetilcolina/farmacologia , Animais , Canabinoides/farmacologia , Gorduras na Dieta/administração & dosagem , Açúcares da Dieta/administração & dosagem , Dopamina/fisiologia , Camundongos , N-Metilaspartato/fisiologia , Quinina/farmacologia , Ratos , Receptor CB1 de Canabinoide/fisiologia , Receptores de GABA-B/fisiologia , Receptores Muscarínicos/fisiologia
9.
Wound Repair Regen ; 24(2): 204-14, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26969517

RESUMO

Pericytes have generally been considered in the context of stabilizing vessels, ensuring the blood barriers, and regulating the flow through capillaries. However, new reports suggest that pericytes may function at critical times to either drive healing with minimal scarring or, perversely, contribute to fibrosis and ongoing scar formation. Beneficially, pericytes probably drive much of the vascular involution that occurs during the transition from the regenerative to the resolution phases of healing. Pathologically, pericytes can assume a fibrotic phenotype and promote scarring. This perspective will discuss pericyte involvement in wound repair and the relationship pericytes form with the parenchymal cells of the skin. We will further evaluate the role pericytes may have in disease progression in relation to chronic wounds and fibrosis.


Assuntos
Pericitos/fisiologia , Medicina Regenerativa , Cicatrização/fisiologia , Animais , Doença Crônica/terapia , Cicatriz/prevenção & controle , Medicina Baseada em Evidências , Fibrose/patologia , Fibrose/terapia , Humanos , Pericitos/citologia , Medicina Regenerativa/tendências , Pele/patologia , Ferimentos e Lesões/patologia , Ferimentos e Lesões/terapia
10.
J Undergrad Neurosci Educ ; 14(2): A104-10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27385918

RESUMO

A large (250 registrants) General Education lecture course, Pleasure and Pain, presented basic neuroscience principles as they related to animal and human models of pleasure and pain by weaving basic findings related to food and drug addiction and analgesic states with human studies examining empathy, social neuroscience and neuroeconomics. In its first four years, the course grade was based on weighted scores from two multiple-choice exams and a five-page review of three unique peer-reviewed research articles. Although well-registered and well-received, 18% of the students received Incomplete grades, primarily due to failing to submit the paper that went largely unresolved and eventually resulted in a failing grade. To rectify this issue, a modified version of the C.R.E.A.T.E. (Consider, Read, Elucidate hypotheses, Analyze and interpret data, Think of the next Experiment) method replaced the paper with eight structured assignments focusing on an initial general-topic article, the introduction-methods, and results-discussion of each of three related peer-review neuroscience-related articles, and a final summary. Compliance in completing these assignments was very high, resulting in only 11 INC grades out of 228 students. Thus, use of the C.R.E.A.T.E. method reduced the percentage of problematic INC grades from 18% to 4.8%, a 73% decline, without changing the overall grade distribution. Other analyses suggested the students achieved a deeper understanding of the scientific process using the C.R.E.A.T.E. method relative to the original term paper assignment.

11.
Neurobiol Learn Mem ; 123: 239-49, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26188277

RESUMO

Rats display both conditioned flavor preference (CFP) for fructose, and conditioned flavor avoidance (CFA) following sweet adulteration with quinine. Previous pharmacological analyses revealed that fructose-CFP expression was significantly reduced by dopamine (DA) D1 or D2 antagonists, but not NMDA or opioid antagonists. Fructose-CFP acquisition was significantly reduced by DA D1, DA D2 or NMDA antagonists, but not opioid antagonists. Quinine-CFA acquisition was significantly enhanced and prolonged by DA D1, NMDA or opioid, but not DA D2 antagonists. Cholinergic interneurons and projections interact with DA systems in the nucleus accumbens and ventral tegmental area. Further, both muscarinic and nicotinic cholinergic receptor signaling have been implicated in sweet intake and development of food-related preferences. Therefore, the present study examined whether systemic administration of muscarinic (scopolamine: SCOP) or nicotinic (mecamylamine: MEC) cholinergic receptor antagonists mediated fructose-CFP expression, fructose-CFP acquisition and quinine-CFA acquisition. For fructose-CFP expression, rats were trained over 10 sessions with a CS+ flavor in 8% fructose and 0.2% saccharin and a CS- flavor in 0.2% saccharin. Two-bottle choice tests with CS+ and CS- flavors mixed in 0.2% saccharin occurred following vehicle, SCOP (0.1-10mg/kg) and MEC (1-8mg/kg). For fructose-CFP acquisition, six groups of rats received vehicle, SCOP (1 or 2.5mg/kg), MEC (4 or 6mg/kg) or a limited intake vehicle control 0.5h prior to 10 CS+ and CS- training sessions followed by six 2-bottle CS+ and CS- choice tests in 0.2% saccharin. For quinine-CFA acquisition, five groups of rats received vehicle, SCOP (1 or 2.5mg/kg) or MEC (4 or 6mg/kg) 0.5h prior to 8 one-bottle CS- (8% fructose+0.2% saccharin: FS) and CS+ (fructose+saccharin+quinine (0.030%: FSQ) training sessions followed by six 2-bottle CS- and CS+ choice tests in fructose-saccharin solutions. Fructose-CFP expression was significantly reduced by SCOP (2.5-10mg/kg: 65-68%) and MEC (4-8mg/kg: 67-73%) relative to vehicle (89-90%), that occurred only when antagonist doses reduced total saccharin intake but in which CS+ intake was still significantly higher than CS- intake. Fructose-CFP acquisition was eliminated by SCOP at doses of 1 (40-54%) and 2.5 (45-58%)mg/kg, and was accompanied by a failure to observe CS+ and CS- intake differences during testing relative to vehicle (85-92%) and limited control (74-88%) conditions. In contrast, MEC failed to alter fructose-CFP acquisition. Quinine-CFA acquisition was significantly enhanced and prolonged by MEC at 4 (18-24%) and 6 (11-13%) mg/kg relative to vehicle (34-48%). In contrast, SCOP failed to alter quinine-CFA acquisition. These data implicate the cholinergic receptor system in mediating acquisition (learning) of sugar-induced preferences and quinine-induced aversions with muscarinic receptor signaling controlling the former and nicotinic receptor signaling controlling the latter.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Antagonistas Muscarínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Percepção Gustatória/efeitos dos fármacos , Analgésicos não Narcóticos/administração & dosagem , Analgésicos não Narcóticos/farmacologia , Animais , Frutose/administração & dosagem , Frutose/farmacologia , Masculino , Mecamilamina/administração & dosagem , Mecamilamina/farmacologia , Antagonistas Muscarínicos/administração & dosagem , Antagonistas Nicotínicos/administração & dosagem , Quinina/administração & dosagem , Quinina/farmacologia , Ratos , Ratos Sprague-Dawley , Escopolamina/administração & dosagem , Escopolamina/farmacologia , Edulcorantes/administração & dosagem , Edulcorantes/farmacologia
12.
Wound Repair Regen ; 23(6): 785-96, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26207932

RESUMO

Pericytes are mural cell that have been found to play important roles in promoting blood vessel development and regulating blood flow. The signals that attract pericytes to maturing vessels during the resolution phase of wound healing are unknown. In this study, we examine the role of the chemokine receptor CXC receptor 3 (CXCR3) ligands, as they are produced by maturing endothelial cells. Pericytes isolated from muscle and retina were found to by and large only express the B-isoform of CXCR3 (CXCR3B), with expression being independent of the mitotic state of the cells. Pericyte stimulation with the CXCR3 ligands Mig (CXCL9), IP-9/I-TAC (CXCL11), or IP-10 (CXCL10) resulted in the activation of ERK but not AKT. Treatment with Mig or IP-9, but not IP-10, enhanced p38(MAPK) phosphorylation. Interestingly, while cyclic adenosine monophosphate is generated downstream of CXCR3B in other cells, protein kinase A activation was not observed in these pericytes when treated with these three CXCR3 ligands. The increase in ERK activity resulted in a slight increase in cell transmigration, with the inhibition of ERK leading to a decrease in CXCR3B mediated migration and inhibition of p38(MAPK) reducing transmigration through small pores. These ligands did not affect proliferation. These data are the first to characterize CXCR3B as the predominant isoform expressed on pericytes, and was found on these diverse cells isolated from both muscle and eye. We also show that CXCR3B signaling stimulates transmigration of barrier pores in pericytes as opposed to its inhibitory affects on endothelial cells and fibroblasts. These findings characterize a novel role for the CXCR3B in regulating cellular function. Taken together these data show a role for CXCR3B in regulating pericyte function.


Assuntos
Vasos Sanguíneos/fisiopatologia , Receptores CXCR3/metabolismo , Cicatrização , Indutores da Angiogênese , Vasos Sanguíneos/citologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Quimiotaxia , Humanos , Pericitos/citologia , Pericitos/metabolismo , Fosforilação , Transdução de Sinais
13.
Arterioscler Thromb Vasc Biol ; 33(12): 2818-29, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24135023

RESUMO

OBJECTIVE: To understand the role, if any, played by pericytes in the regulation of newly formed vessels during angiogenesis. In this study, we investigate whether pericytes regulate the number of nascent endothelial tubes. APPROACH AND RESULTS: Using an in vitro angiogenesis assay (Matrigel assay), we demonstrate that pericytes can inhibit vessel formation and induce vessel dissociation via CXCR3-induced involution of the endothelial cells. In a coculture Matrigel assay for cord formation, pericytes prevented endothelial cord formation of human dermal microvascular endothelial cells but not umbilical vein endothelial cells. Blockade of endothelial CXCR3 function or expression inhibited the repressing effect of the pericytes. We further show that pericytes are also able to induce regression of newly formed microvascular cords through CXCR3 activation of calpain. When CXCR3 function was inhibited by a neutralizing antibody or downregulated by siRNA, cord regression mediated by pericytes was abolished. CONCLUSIONS: We show for the first time that pericytes regulate angiogenic vessel formation, and that this is mediated through CXCR3 expressed on endothelial cells. This suggests a role for pericytes in the pruning of immature vessels overproduced during wound repair.


Assuntos
Comunicação Celular , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Pericitos/metabolismo , Receptores CXCR3/metabolismo , Calpaína/metabolismo , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/imunologia , Ativação Enzimática , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Interferon gama/metabolismo , Ligantes , Pericitos/imunologia , Interferência de RNA , Receptores CXCR3/genética , Transdução de Sinais , Fatores de Tempo , Transfecção , Cicatrização
14.
Peptides ; 179: 171268, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943841

RESUMO

This paper is the forty-sixth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2023 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug and alcohol abuse (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).

15.
Neurobiol Learn Mem ; 106: 95-101, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23887141

RESUMO

The role of amygdala (AMY) NMDA receptor signaling and its interaction with dopamine D1-like receptor signaling in glucose-mediated flavor preference learning was investigated. In Experiment 1, rats were trained with a flavor (CS+) paired with intragastric (IG) 8% glucose infusions and a different flavor (CS-) paired with IG water infusions. In the two-bottle tests (Expression), bilateral intra-AMY injections of the NMDA receptor antagonist, AP5 (0, 5 and 10 nmol/brain), did not block the CS+ preference. In Experiment 2, new rats received intra-AMY injections of either vehicle or AP5 (10 nmol), prior to training sessions with CS+/IG glucose and CS-/IG water. In the two-bottle tests without drug treatment, AP5 rats failed to prefer the CS+ flavor (50%). In Experiments 3, new rats were trained as in Experiment 2 except that, during training, half the rats received AP5 injections (5 nmol) in one side of the AMY and SCH23390 (D1-like receptor antagonist, 6 nmol), in the contralateral AMY (Drug/Drug group). The remaining rats received vehicle injections in one side of the AMY and either AP5 (5 nmol) or SCH23390 (6 nmol) in the contralateral AMY (Drug/Vehicle group). The two-bottle choice tests without drug treatment revealed that, unlike the Drug/Vehicle group (85%), the Drug/Drug group failed to prefer the CS+ flavor (50%). These results reveal an essential role for AMY NMDA receptor activation in the acquisition of flavor preference learning induced by the post-oral reinforcing properties of glucose and demonstrate that such learning is based on co-activation of NMDA and DA D1 receptors within this forebrain structure.


Assuntos
Tonsila do Cerebelo/metabolismo , Preferências Alimentares/efeitos dos fármacos , Glucose/farmacologia , Aprendizagem/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Preferências Alimentares/fisiologia , Aprendizagem/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Paladar/efeitos dos fármacos , Paladar/fisiologia
16.
J Undergrad Neurosci Educ ; 12(1): A34-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24319388

RESUMO

In a large (250 registrants) general education lecture course, neuroscience principles were taught by two professors as co-instructors, starting with simple brain anatomy, chemistry, and function, proceeding to basic brain circuits of pleasure and pain, and progressing with fellow expert professors covering relevant philosophical, artistic, marketing, and anthropological issues. With this as a base, the course wove between fields of high relevance to psychology and neuroscience, such as food addiction and preferences, drug seeking and craving, analgesic pain-inhibitory systems activated by opiates and stress, neuroeconomics, unconscious decision-making, empathy, and modern neuroscientific techniques (functional magnetic resonance imaging and event-related potentials) presented by the co-instructors and other Psychology professors. With no formal assigned textbook, all lectures were PowerPoint-based, containing links to supplemental public-domain material. PowerPoints were available on Blackboard several days before the lecture. All lectures were also video-recorded and posted that evening. The course had a Facebook page for after-class conversation and one of the co-instructors communicated directly with students on Twitter in real time during lecture to provide momentary clarification and comment. In addition to graduate student Teaching Assistants (TAs), to allow for small group discussion, ten undergraduate students who performed well in a previous class were selected to serve as discussion leaders. The Discussion Leaders met four times at strategic points over the semester with groups of 20-25 current students, and received one credit of Independent Study, thus creating a course within a course. The course grade was based on weighted scores from two multiple-choice exams and a five-page writing assignment in which each student reviewed three unique, but brief original peer-review research articles (one page each) combined with expository writing on the first and last pages. A draft of the first page, collected early in the term, was returned to each student by graduate TAs to provide individual feedback on scientific writing. Overall the course has run three times at ful or near enrollment capacity despite being held at an 8:00 AM time slot. Student-generated teaching evaluations place it well within the normal range, while this format importantly contributes to budget efficiency permitting the teaching of more required small-format courses (e.g., freshman writing). The demographics of the course have changed to one in which the vast majority of the students are now outside the disciplines of neuroscience or psychology and are taking the course to fulfill a General Education requirement. This pattern allows the wide dissemination of basic neuroscientific knowledge to a general college audience.

17.
Peptides ; 169: 171095, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37704079

RESUMO

This paper is the forty-fifth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2022 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).


Assuntos
Analgesia , Analgésicos não Narcóticos , Animais , Humanos , Feminino , Gravidez , Peptídeos Opioides/farmacologia , Analgésicos Opioides , Tolerância a Medicamentos
18.
Peptides ; 164: 171004, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990387

RESUMO

This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).


Assuntos
Peptídeos Opioides , Receptores Opioides , Animais , Humanos , Peptídeos Opioides/farmacologia , Receptores Opioides/fisiologia , Analgésicos Opioides/farmacologia , Aprendizagem/fisiologia , Dor/tratamento farmacológico
19.
Pharmacol Biochem Behav ; 223: 173514, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642390

RESUMO

Opioid and dopamine (DA) D1 receptor antagonists differentially reduce nutritive and non-nutritive sweetener intakes in inbred mouse strains. Sucrose intake was more effectively reduced by naltrexone in C57BL/6 (B6) mice relative to 129P3 (129) mice, but more effectively reduced by SCH23390 in 129 mice relative to B6 mice. Opioid and DA D1 antagonists differentially reduced saccharin intakes in B6 mice relative to other strains. Given these differential patterns in sweetener intake in B6 and 129 mice, the present study examined whether systemic naltrexone (0.01-5 mg/kg) and SCH23390 (50-1600 nmol/kg) reduced intakes of 10 % sucrose or 0.2 % saccharin solutions over a 120 min time course in first-generation hybrid mice (B6:129) of B6 and 129 parents and reduced low-nutritive sweetener intakes in 129 mice. Naltrexone (5 mg/kg) significantly reduced 10 % sucrose intake in B6:129 hybrid mice more like that of 129 than B6 mice. In contrast, SCH23390 (400-1600 nmol/kg) reduced 10 % sucrose intake in B6:129 hybrid mice more effectively than that observed in B6 or 129 parental strains. Because 129 mice consumed relatively low amounts of 0.2 % saccharin, they were tested with a more attractive low-nutritive solution containing 0.2 % saccharin and 2 % sucrose. Naltrexone failed to reduce saccharin intake in B6:129 hybrid mice but suppressed saccharin+sucrose intake in 129 mice more like that observed in B6 mice. SCH23390 similarly inhibited saccharin or saccharin+sucrose intakes in hybrid B6:129, 129, and B6 mice with B6 mice more resistant to the lowest SCH23390 dose. Thus, whereas sucrose intake in B6:129 hybrid mice exhibited similar sensitivity to opioid and to a lesser degree DA D1 antagonism to their 129, but not B6 parents, opioid and DA D1 mediation of low- and non-nutritive sweet intake produced unique profiles among B6:129 hybrid and B6 and 129 strains which does not support a simple heritability explanation.


Assuntos
Adoçantes não Calóricos , Edulcorantes , Camundongos , Animais , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Analgésicos Opioides , Camundongos da Linhagem 129 , Sacarina , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Sacarose , Antagonistas de Dopamina/farmacologia , Receptores de Dopamina D1
20.
Physiol Behav ; 267: 114221, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146897

RESUMO

Isomaltulose, a slowly digested isocaloric analog of sucrose, and allulose, a noncaloric fructose analog, are promoted as "healthful" sugar alternatives in human food products. Here we investigated the appetite and preference conditioning actions of these sugar analogs in inbred mouse strains. In brief-access lick tests (Experiment 1), C57BL/6 (B6) mice showed similar concentration dependent increases in licking for allulose and fructose, but less pronounced concentration-dependent increases in licking for isomaltulose than sucrose. In Experiment 2, B6 mice were given one-bottle training with a CS+ flavor (e.g., grape) mixed with 8% isomaltulose or allulose and a CS- flavor (e.g., cherry) mixed in water followed by two-bottle CS flavor tests. The isomaltulose mice showed only a weak CS+ flavor preference but a strong preference for the sugar over water. The allulose mice strongly preferred the CS- flavor and water over the sugar. The allulose avoidance may be due to gut discomfort as reported in humans consuming high amounts of the sugar. Experiment 3 found that the preference for 8% sucrose over 8% isomaltulose could be reversed or blocked by adding different concentrations of a noncaloric sweetener mixture (sucralose + saccharin, SS) to the isomaltulose. Experiment 4 revealed that the preference of B6 or FVB/N mice for isomaltulose+0.01%SS or sucrose over 0.1%SS increased after separate experience with the sugars and SS. This indicates that isomaltulose, like sucrose, has postoral appetition effects that enhances the appetite for the sugar. In Experiments 5 and 6, the appetition actions of the two sugars were directly compared by giving mice isomaltulose+0.05%SS vs. sucrose choice tests before and after separate experience with the two sugars. In general, the initial preference the mice displayed for isomaltulose+0.05%SS was reduced or reversed after separate experience with the two sugars although some strain and sex differences were obtained. This indicates that isomaltulose has weaker postoral appetition effects than sucrose.


Assuntos
Frutose , Açúcares , Humanos , Camundongos , Feminino , Animais , Masculino , Açúcares/farmacologia , Camundongos Endogâmicos C57BL , Frutose/farmacologia , Carboidratos/farmacologia , Sacarose/farmacologia , Camundongos Endogâmicos , Preferências Alimentares , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA