Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Toxicol ; 38(4): 783-797, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36602393

RESUMO

Cadmium (Cd) is an environmental pollutant that increases hepatotoxicity and the risk of liver diseases. In the current study, we investigated the effect of a physiologically relevant, low concentration of Cd on the regulation of liver cancer cell proliferation, steatosis, and fibrogenic/oncogenic signaling. Exposure to low concentrations of Cd increased endogenous reactive oxygen species (ROS) production and enhanced cell proliferation in a human bipotent progenitor cell line HepaRG and hepatocellular carcinoma (HCC) cell lines. Acute exposure of Cd increased Jagged-1 expression and activated Notch signaling in HepaRG and HCC cells HepG2 and SK-Hep1. Cd activated AKT/mTOR signaling by increasing phosphorylation of AKT-S473 and mTOR-S-4448 residues. Moreover, a low concentration of Cd also promoted cell steatosis and induced fibrogenic signaling in HCC cells. Chronic exposure to low concentrations of Cd-activated Notch and AKT/mTOR signaling induced the expression of pro-inflammatory cytokines tumor necrosis factor-alpha (TNFα) and its downstream target TNF-α-Induced Protein 8 (TNFAIP8). RNA-Seq data revealed that chronic exposure to low concentrations of Cd modulated the expression of several fatty liver disease-related genes involved in cell steatosis/fibrosis in HepaRG and HepG2 cells. Collectively, our data suggest that low concentrations of Cd modulate steatosis along with fibrogenic and oncogenic signaling in HCC cells by activating Notch and AKT/mTOR pathways.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Cádmio/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral
2.
Atmos Environ (1994) ; 2682022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34899026

RESUMO

Per- and polyfluoroalkyl substances (PFASs), with their water- and heat-resistant properties, have been widely used in industrial and consumer products, including floor waxes. Adverse health effects are associated with PFAS exposures (e.g., increased risk of cancer and immunotoxicity); however, exposures resulting from the use of PFAS-containing products are poorly understood. This study examines PFAS emissions during professional floor stripping/waxing and their potential for occupational exposures. We measured PFASs in dust and airborne particulate matter (PM2.0, aerodynamic diameter ≤ 2.0 µm) before, during, and after floor stripping/waxing activities in three rooms in a university building. PM2.0 samples were analyzed for 34 targeted PFASs by ultra-high performance liquid chromatography coupled to electrospray ionization triple quadrupole mass spectrometer (UHPLC/ESI-MS/MS). In total, ten PFASs were detected in PM2.0 collected during floor waxing. Five were consistently higher during floor stripping/waxing compared to before (two with 95% confidence interval): perfluoro-2-methoxyacetic acid, perfluorobutanoic acid, perfluorohexanoic acid, perfluoroheptanoic acid, and perfluorooctane sulfonic acid. For these five, estimated exposures during floor stripping were 80.6, 320.5, 83.8, 29.6, and 157.7 pg m-3 per hour of floor stripping, respectively, one order of magnitude greater than typical residential indoor and two orders of magnitude greater than ambient outdoor concentrations. Estimated emission rates were 3.0, 9.6, 3.4, 1.5, and 6.5 ng h-1m-2, respectively (34.6% uncertainty). Inhalation occupational exposures were in the range of 9.42-23.2 pg per kg body weight per hour of floor stripping across the five PFASs.

3.
Chem Res Toxicol ; 32(5): 887-898, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30990016

RESUMO

Metabolism of 1,3-butadiene, a known human and rodent carcinogen, results in formation of reactive epoxides, a key event in its carcinogenicity. Although mice exposed to 1,3-butadiene present DNA adducts in all tested tissues, carcinogenicity is limited to liver, lung, and lymphoid tissues. Previous studies demonstrated that strain- and tissue-specific epigenetic effects in response to 1,3-butadiene exposure may influence susceptibly to DNA damage and serve as a potential mechanism of tissue-specific carcinogenicity. This study aimed to investigate interindividual variability in the effects of 1,3-butadiene using a population-based mouse model. Male mice from 20 Collaborative Cross strains were exposed to 0 or 635 ppm 1,3-butadiene by inhalation (6 h/day, 5 days/week) for 2 weeks. We evaluated DNA damage and epigenetic effects in target (lung and liver) and nontarget (kidney) tissues of 1,3-butadiene-induced carcinogenesis. DNA damage was assessed by measuring N-7-(2,3,4-trihydroxybut-1-yl)-guanine (THB-Gua) adducts. To investigate global histone modification alterations, we evaluated the trimethylation and acetylation of histones H3 and H4 across tissues. Changes in global cytosine DNA methylation were evaluated from the levels of methylation of LINE-1 and SINE B1 retrotransposons. We quantified the degree of variation across strains, deriving a chemical-specific human variability factor to address population variability in carcinogenic risk, which is largely ignored in current cancer risk assessment practice. Quantitative trait locus mapping identified four candidate genes related to chromatin remodeling whose variation was associated with interstrain susceptibility. Overall, this study uses 1,3-butadiene to demonstrate how the Collaborative Cross mouse population can be used to identify the mechanisms for and quantify the degree of interindividual variability in tissue-specific effects that are relevant to chemically induced carcinogenesis.


Assuntos
Butadienos/toxicidade , Adutos de DNA/metabolismo , Epigênese Genética/efeitos dos fármacos , Animais , Carcinógenos Ambientais/toxicidade , Adutos de DNA/química , Adutos de DNA/genética , Metilação de DNA/efeitos dos fármacos , Guanina/análogos & derivados , Guanina/química , Histonas/metabolismo , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Mutagênicos/toxicidade
4.
Arch Toxicol ; 93(3): 763-773, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30701286

RESUMO

As a widespread industrial chemical, formaldehyde carcinogenicity has been highly controversial. Meanwhile, formaldehyde is an essential metabolite in all living cells. Previously, we have demonstrated exogenous formaldehyde causes DNA adducts in a nonlinear manner between 0.7 and 15.2 ppm using [13CD2]-formaldehyde for exposure coupled with the use of sensitive mass spectrometry. However, the responses from exposure to low doses of formaldehyde are still unknown. In this study, rats were exposed to 1, 30, and 300 ppb [13CD2]-formaldehyde for 28 days (6 h/day) by nose-only inhalation, followed by measuring DNA mono-adduct (N2-HOMe-dG) and DNA-protein crosslinks (dG-Me-Cys) as formaldehyde specific biomarkers. Both exogenous and endogenous DNA mono-adducts and dG-Me-Cys were examined with ultrasensitive nano-liquid chromatography-tandem mass spectrometry. Our data clearly show that endogenous adducts are present in all tissues analyzed, but exogenous adducts were not detectable in any tissue samples, including the most susceptible nasal epithelium. Moreover, formaldehyde exposure at 1, 30 and 300 ppb did not alter the levels of endogenous formaldehyde-induced DNA adducts or DNA-protein crosslinks. The novel findings from this study provide new data for risk assessment of exposure to low doses of formaldehyde.


Assuntos
Carcinógenos/toxicidade , Formaldeído/toxicidade , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Adutos de DNA , Relação Dose-Resposta a Droga , Exposição por Inalação , Ratos , Espectrometria de Massas em Tandem , Testes de Toxicidade
5.
Arch Toxicol ; 93(3): 791-800, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30552462

RESUMO

Exposure to environmental chemicals has been shown to have an impact on the epigenome. One example is a known human carcinogen 1,3-butadiene which acts primarily by a genotoxic mechanism, but also disrupts the chromatin structure by altering patterns of cytosine DNA methylation and histone modifications. Sex-specific differences in 1,3-butadiene-induced genotoxicity and carcinogenicity are well established; however, it remains unknown whether 1,3-butadiene-associated epigenetic alterations are also sex dependent. Therefore, we tested the hypothesis that inhalational exposure to 1,3-butadiene will result in sex-specific epigenetic alterations. DNA damage and epigenetic effects of 1,3-butadiene were evaluated in liver, lung, and kidney tissues of male and female mice of two inbred strains (C57BL/6J and CAST/EiJ). Mice were exposed to 0 or 425 ppm of 1,3-butadiene by inhalation (6 h/day, 5 days/week) for 2 weeks. Strain- and tissue-specific differences in 1,3-butadiene-induced DNA adducts and crosslinks were detected in the liver, lung and kidney; however, significant sex-specific differences in DNA damage were observed in the lung of C57BL/6J mice only. In addition, we assessed expression of the DNA repair genes and observed a marked upregulation of Mgmt in the kidney in female C57BL/6J mice. Sex-specific epigenetic effects of 1,3-butadiene exposure were evident in alterations of cytosine DNA methylation and histone modifications in the liver and lung in both strains. Specifically, we observed a loss of cytosine DNA methylation in the liver and lung of male and female 1,3-butadiene-exposed C57BL/6J mice, whereas hypermethylation was found in the liver and lung in 1,3-butadiene-exposed female CAST/EiJ mice. Our findings suggest that strain- and sex-specific effects of 1,3-butadiene on the epigenome may contribute to the known differences in cancer susceptibility.


Assuntos
Butadienos/toxicidade , Epigênese Genética , Mutagênicos/toxicidade , Animais , Butadienos/metabolismo , DNA , Adutos de DNA/metabolismo , Dano ao DNA , Metilação de DNA , Feminino , Exposição por Inalação , Rim , Fígado , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênicos/metabolismo , Caracteres Sexuais , Testes de Toxicidade
6.
Mamm Genome ; 29(1-2): 153-167, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29429127

RESUMO

Epigenetic effects of environmental chemicals are under intense investigation to fill existing knowledge gaps between environmental/occupational exposures and adverse health outcomes. Chromatin accessibility is one prominent mechanism of epigenetic control of transcription, and understanding of the chemical effects on both could inform the causal role of epigenetic alterations in disease mechanisms. In this study, we hypothesized that baseline variability in chromatin organization and transcription profiles among various tissues and mouse strains influence the outcome of exposure to the DNA damaging chemical 1,3-butadiene. To test this hypothesis, we evaluated DNA damage along with comprehensive quantification of RNA transcripts (RNA-seq), identification of accessible chromatin (ATAC-seq), and characterization of regions with histone modifications associated with active transcription (ChIP-seq for acetylation at histone 3 lysine 27, H3K27ac). We collected these data in the lung, liver, and kidney of mice from two genetically divergent strains, C57BL/6J and CAST/EiJ, that were exposed to clean air or to 1,3-butadiene (~600 ppm) for 2 weeks. We found that tissue effects dominate differences in both gene expression and chromatin states, followed by strain effects. At baseline, xenobiotic metabolism was consistently more active in CAST/EiJ, while immune system pathways were more active in C57BL/6J across tissues. Surprisingly, even though all three tissues in both strains harbored butadiene-induced DNA damage, little transcriptional effect of butadiene was observed in liver and kidney. Toxicologically relevant effects of butadiene in the lung were on the pathways of xenobiotic metabolism and inflammation. We also found that variability in chromatin accessibility across individuals (i.e., strains) only partially explains the variability in transcription. This study showed that variation in the basal states of epigenome and transcriptome may be useful indicators for individuals or tissues susceptible to genotoxic environmental chemicals.


Assuntos
Dano ao DNA/efeitos dos fármacos , Epigênese Genética , Transcrição Gênica/genética , Transcriptoma/genética , Animais , Butadienos/toxicidade , Carcinógenos/toxicidade , Cromatina/efeitos dos fármacos , Histonas/genética , Fígado/efeitos dos fármacos , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Testes de Mutagenicidade , Especificidade de Órgãos/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
7.
Environ Sci Technol ; 51(24): 14047-14054, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29160699

RESUMO

Azaarenes are N-heterocyclic polyaromatic pollutants that co-occur with polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. Despite the known toxicity of some high-molecular-weight azaarenes, their diversity, abundance, and fate in contaminated soils remain to be elucidated. We applied high-resolution mass spectrometry and mass-defect filtering to four PAH-contaminated samples from geographically distant sites and detected 232 azaarene congeners distributed in eight homologous series, including alkylated derivatives and two hitherto unknown series. Four- and five-ring azaarenes were detected among these series, and the most abundant nonalkylated congeners groups (C13H9N, C15H9N, C17H11N, C19H11N, and C21H13N) were quantified. The profiles of congener groups varied among different sites. Three-ring azaarenes presented higher concentrations in unweathered sites, while four- and five-ring azaarenes predominated in weathered sites. Known toxic and carcinogenic azaarenes, such as benzo[c]acridine and dibenzo[a,h]acridine, were detected along with their multiple isomers. Our results highlight a previously unrecognized diversity and abundance of azaarenes in PAH-contaminated sites, with corresponding implications for environmental monitoring and risk assessment.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Medição de Risco
8.
Prenat Diagn ; 37(13): 1364-1366, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29111618

RESUMO

Both exposures to toxic metals, as well as deficiencies in essential metals, during pregnancy has been linked to a variety of negative reproductive outcomes. The exact etiologies of such outcomes and the effects of fetal exposure to these metals are largely unknown. Therefore, the ability to assess levels of these elements is critical to determining the underlying causes of such conditions and the effects that both essential and nonessential metals have on fetal development. Thus, using cell-free fetal RNA from amniotic fluid, we set out to measure the association between amniotic fluid levels of toxic and essential metals and fetal gene expression. We find that arsenic was associated with increased expression of 3 genes known to play roles in both birth-related and reproductive effects. The results highlight the potential for detrimental health effects of prenatal metals exposure and the potential to identify biomarkers of environmental exposure during this critical developmental period.


Assuntos
Líquido Amniótico/química , Feto/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Exposição Materna , Metais Pesados/toxicidade , Adolescente , Adulto , Feminino , Feto/metabolismo , Humanos , Masculino , Projetos Piloto , Gravidez , Adulto Jovem
9.
Drug Metab Dispos ; 43(12): 1838-46, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26354949

RESUMO

UDP-Glucuronosyltransferases (UGTs) conjugate a glucuronyl group from glucuronic acid to a wide range of lipophilic substrates to form a hydrophilic glucuronide conjugate. The glucuronide generally has decreased bioactivity and increased water solubility to facilitate excretion. Glucuronidation represents an important detoxification pathway for both endogenous waste products and xenobiotics, including drugs and harmful industrial chemicals. Two clinically significant families of UGT enzymes are present in mammals: UGT1s and UGT2s. Although the two families are distinct in gene structure, studies using recombinant enzymes have shown considerable overlap in their ability to glucuronidate many substrates, often obscuring the relative importance of the two families in the clearance of particular substrates in vivo. To address this limitation, we have generated a mouse line, termed ΔUgt2, in which the entire Ugt2 gene family, extending over 609 kilobase pairs, is excised. This mouse line provides a means to determine the contributions of the two UGT families in vivo. We demonstrate the utility of these animals by defining for the first time the in vivo contributions of the UGT1 and UGT2 families to glucuronidation of the environmental estrogenic agent bisphenol A (BPA). The highest activity toward this chemical is reported for human and rodent UGT2 enzymes. Surprisingly, our studies using the ΔUgt2 mice demonstrate that, while both UGT1 and UGT2 isoforms can conjugate BPA, clearance is largely dependent on UGT1s.


Assuntos
Glucuronosiltransferase/deficiência , Glucuronosiltransferase/genética , Microssomos Hepáticos/metabolismo , Xenobióticos/metabolismo , Animais , Compostos Benzidrílicos/metabolismo , Compostos Benzidrílicos/farmacologia , Inativação Metabólica/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microssomos Hepáticos/efeitos dos fármacos , Fenóis/metabolismo , Fenóis/farmacologia , Xenobióticos/farmacologia
10.
J Toxicol Environ Health A ; 78(1): 15-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25424544

RESUMO

Trichloroethylene (TCE) is a widely used organic solvent. Although TCE is classified as carcinogenic to humans, substantial gaps remain in our understanding of interindividual variability in TCE metabolism and toxicity, especially in the liver. A hypothesis was tested that amounts of oxidative metabolites of TCE in mouse liver are associated with hepatic-specific toxicity. Oral dosing with TCE was conducted in subacute (600 mg/kg/d; 5 d; 7 inbred mouse strains) and subchronic (100 or 400 mg/kg/d; 1, 2, or 4 wk; 2 inbred mouse strains) designs. The quantitative relationship was evaluated between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P-450-mediated oxidation (trichloroacetic acid [TCA], dichloroacetic acid [DCA], and trichloroethanol) and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione] in serum and liver, and various hepatic toxicity phenotypes. In subacute study, interstrain variability in TCE metabolite amounts was observed in serum and liver. No marked induction of Cyp2e1 protein levels in liver was detected. Serum and hepatic levels of TCA and DCA were correlated with increased transcription of peroxisome proliferator-marker genes Cyp4a10 and Acox1 but not with degree of induction in hepatocellular proliferation. In subchronic study, serum and liver levels of oxidative metabolites gradually decreased over time despite continuous dosing. Hepatic protein levels of CYP2E1, ADH, and ALDH2 were unaffected by treatment with TCE. While the magnitude of induction of peroxisome proliferator-marker genes also declined, hepatocellular proliferation increased. This study offers a unique opportunity to provide a scientific data-driven rationale for some of the major assumptions in human health assessment of TCE.


Assuntos
Fígado/efeitos dos fármacos , Tricloroetileno/farmacocinética , Tricloroetileno/toxicidade , Administração Oral , Animais , Carcinógenos/farmacocinética , Carcinógenos/toxicidade , Proliferação de Células , Cisteína/análogos & derivados , Cisteína/sangue , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ácido Dicloroacético/sangue , Relação Dose-Resposta a Droga , Etilenocloroidrina/análogos & derivados , Etilenocloroidrina/metabolismo , Expressão Gênica , Glutationa/análogos & derivados , Glutationa/sangue , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Solventes/farmacocinética , Solventes/toxicidade , Ácido Tricloroacético/sangue
11.
J Toxicol Environ Health A ; 78(1): 32-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25424545

RESUMO

Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal-cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, interspecies and interindividual differences, and the mode of action for kidney carcinogenicity. It was postulated that TCE renal metabolite levels are associated with kidney-specific toxicity. Oral dosing with TCE was conducted in subacute (600 mg/kg/d; 5 d; 7 inbred mouse strains) and subchronic (100 or 400 mg/kg/d; 1, 2, or 4 wk; 2 inbred mouse strains) designs. The quantitative relationship was evaluated between strain-, dose, and time-dependent formation of TCE metabolites from cytochrome P-450-mediated oxidation (trichloroacetic acid [TCA], dichloroacetic acid [DCA], and trichloroethanol) and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione], and various kidney toxicity phenotypes. In subacute study, interstrain differences in renal TCE metabolite levels were observed. In addition, data showed that in several strains kidney-specific effects of TCE included induction of peroxisome proliferator-marker genes Cyp4a10 and Acox1, increased cell proliferation, and expression of KIM-1, a marker of tubular damage and regeneration. In subchronic study, peroxisome proliferator-marker gene induction and renal toxicity diminished while cell proliferative response was elevated in a dose-dependent manner in NZW/LacJ but not C57BL/6J mice. Overall, data demonstrated that renal TCE metabolite levels are associated with kidney-specific toxicity and that these effects are strain dependent.


Assuntos
Rim/efeitos dos fármacos , Tricloroetileno/farmacocinética , Tricloroetileno/toxicidade , Animais , Carcinógenos/farmacocinética , Carcinógenos/toxicidade , Proliferação de Células/efeitos dos fármacos , Cisteína/análogos & derivados , Cisteína/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ácido Dicloroacético/metabolismo , Etilenocloroidrina/análogos & derivados , Etilenocloroidrina/metabolismo , Glutationa/análogos & derivados , Glutationa/metabolismo , Receptor Celular 1 do Vírus da Hepatite A , Rim/citologia , Rim/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Oxirredução/efeitos dos fármacos , PPAR alfa/genética , PPAR alfa/metabolismo , Ácido Tricloroacético/metabolismo
12.
Chem Res Toxicol ; 27(2): 172-4, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24490651

RESUMO

Large individual differences in susceptibility to arsenic-induced diseases are well-documented and frequently associated with different patterns of arsenic metabolism. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that gut microbiome phenotypes affect the spectrum of metabolized arsenic species. However, it remains unclear how host genetics and the gut microbiome interact to affect the biotransformation of arsenic. Using an integrated approach combining 16S rRNA gene sequencing and HPLC-ICP-MS arsenic speciation, we demonstrate that IL-10 gene knockout leads to a significant taxonomic change of the gut microbiome, which in turn substantially affects arsenic metabolism.


Assuntos
Arsênio/farmacocinética , Poluentes Ambientais/farmacocinética , Trato Gastrointestinal/microbiologia , Interleucina-10/genética , Microbiota , Animais , Biotransformação , Cromatografia Líquida de Alta Pressão , Trato Gastrointestinal/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Knockout , Fenótipo , RNA Ribossômico 16S/genética
13.
Sci Total Environ ; 932: 172658, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657813

RESUMO

Per- and poly-fluoroalkyl substances (PFAS) are a class of synthetic chemicals known for their widespread presence and environmental persistence. Carbon-fluorine (C-F) bonds are major components among PFAS and among the strongest organic bonds, thus destroying PFAS may present significant challenge. Thermal treatment such as incineration is an effective and approved method for destroying many halogenated organic chemicals. Here, we present the results of existing studies and testing at combustion-based thermal treatment facilities and summarize what is known regarding PFAS destruction and mineralization at such units. Available results suggest the temperature and residence times reached by some thermal treatment systems are generally favorable to the destruction of PFAS, but the possibility for PFAS or fluorinated organic byproducts to escape destruction and adequate mineralization and be released into the air cannot be ruled out. Few studies have been conducted at full-scale operating facilities, and none to date have attempted to characterize possible fluorinated organic products of incomplete combustion (PICs). Further, the ability of existing air pollution control (APC) systems, designed primarily for particulate and acid gas control, to reduce PFAS air emissions has not been determined. These data gaps remain primarily due to the previous lack of available methods to characterize PFAS destruction and PIC concentrations in facility air emissions. However, newly developed stack testing methods offer an improved understanding of the extent to which thermal waste treatment technologies successfully destroy and mineralize PFAS in these waste streams.

14.
Toxicol Appl Pharmacol ; 267(1): 11-5, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23261974

RESUMO

Epidemiologic evidence has linked chronic exposure to inorganic arsenic (iAs) with an increased prevalence of diabetes mellitus. Laboratory studies have identified several mechanisms by which iAs can impair glucose homeostasis. We have previously shown that micromolar concentrations of arsenite (iAs(III)) or its methylated trivalent metabolites, methylarsonite (MAs(III)) and dimethylarsinite (DMAs(III)), inhibit the insulin-activated signal transduction pathway, resulting in insulin resistance in adipocytes. Our present study examined effects of the trivalent arsenicals on insulin secretion by intact pancreatic islets isolated from C57BL/6 mice. We found that 48-hour exposures to low subtoxic concentrations of iAs(III), MAs(III) or DMAs(III) inhibited glucose-stimulated insulin secretion (GSIS), but not basal insulin secretion. MAs(III) and DMAs(III) were more potent than iAs(III) as GSIS inhibitors with estimated IC(50)≤0.1 µM. The exposures had little or no effects on insulin content of the islets or on insulin expression, suggesting that trivalent arsenicals interfere with mechanisms regulating packaging of the insulin transport vesicles or with translocation of these vesicles to the plasma membrane. Notably, the inhibition of GSIS by iAs(III), MAs(III) or DMAs(III) could be reversed by a 24-hour incubation of the islets in arsenic-free medium. These results suggest that the insulin producing pancreatic ß-cells are among the targets for iAs exposure and that the inhibition of GSIS by low concentrations of the methylated metabolites of iAs may be the key mechanism of iAs-induced diabetes.


Assuntos
Arsenicais/farmacologia , Glucose/antagonistas & inibidores , Glucose/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Animais , Arsenicais/química , Arsenicais/metabolismo , Células Cultivadas , Secreção de Insulina , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL
15.
Chem Res Toxicol ; 26(12): 1893-903, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24134150

RESUMO

Exposure to arsenic affects large human populations worldwide and has been associated with a long list of human diseases, including skin, bladder, lung, and liver cancers, diabetes, and cardiovascular disorders. In addition, there are large individual differences in susceptibility to arsenic-induced diseases, which are frequently associated with different patterns of arsenic metabolism. Several underlying mechanisms, such as genetic polymorphisms and epigenetics, have been proposed, as these factors closely impact the individuals' capacity to metabolize arsenic. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that perturbations of the gut microbial communities affect the spectrum of metabolized arsenic species and subsequent toxicological effects. In this study, we used an animal model with an altered gut microbiome induced by bacterial infection, 16S rRNA gene sequencing, and inductively coupled plasma mass spectrometry-based arsenic speciation to examine the effect of gut microbiome perturbations on the biotransformation of arsenic. Metagenomics sequencing revealed that bacterial infection significantly perturbed the gut microbiome composition in C57BL/6 mice, which in turn resulted in altered spectra of arsenic metabolites in urine, with inorganic arsenic species and methylated and thiolated arsenic being perturbed. These data clearly illustrated that gut microbiome phenotypes significantly affected arsenic metabolic reactions, including reduction, methylation, and thiolation. These findings improve our understanding of how infectious diseases and environmental exposure interact and may also provide novel insight regarding the gut microbiome composition as a new risk factor of individual susceptibility to environmental chemicals.


Assuntos
Arsênio/metabolismo , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter/fisiologia , Animais , Modelos Animais de Doenças , Infecções por Helicobacter/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL
16.
J Anal At Spectrom ; 28(6): 843-852, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23687401

RESUMO

The formation of methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII) in the course of inorganic arsenic (iAs) metabolism plays an important role in the adverse effects of chronic exposure to iAs. High-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) and hydride generation-cryotrapping-atomic absorption spectrometry (HG-CT-AAS) have been frequently used for the analysis of MAsIII and DMAsIII in biological samples. While HG-CT-AAS has consistently detected MAsIII and DMAsIII, HPLC-ICP-MS analyses have provided inconsistent and contradictory results. This study compares the capacities of both methods to detect and quantify MAsIII and DMAsIII in an in vitro methylation system consisting of recombinant human arsenic (+3 oxidation state) methyltransferase (AS3MT), S-adenosylmethionine as a methyl donor, a non-thiol reductant tris(2-carboxyethyl)phosphine, and arsenite (iAsIII) or MAsIII as substrate. The results show that reversed-phase HPLC-ICP-MS can identify and quantify MAsIII and DMAsIII in aqueous mixtures of biologically relevant arsenical standards. However, HPLC separation of the in vitro methylation mixture resulted in significant losses of MAsIII, and particularly DMAsIII with total arsenic recoveries below 25%. Further analyses showed that MAsIII and DMAsIII bind to AS3MT or interact with other components of the methylation mixture, forming complexes that do not elute from the column. Oxidation of the mixture with H2O2 which converted trivalent arsenicals to their pentavalent analogs prior to HPLC separation increased total arsenic recoveries to ~95%. In contrast, HG-CT-AAS analysis found large quantities of methylated trivalent arsenicals in mixtures incubated with either iAsIII or MAsIII and provided high (>72%) arsenic recoveries. These data suggest that an HPLC-based analysis of biological samples can underestimate MAsIII and DMAsIII concentrations and that controlling for arsenic species recovery is essential to avoid artifacts.

17.
Am J Pathol ; 177(4): 1936-45, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20813965

RESUMO

Adiponectin is a hormone that lowers glucose production by increasing liver insulin sensitivity. Insulin blocks the generation of biochemical intermediates for glucose production by inhibiting autophagy. However, autophagy is stimulated by an essential mediator of adiponectin action, AMPK. This deadlock led to our hypothesis that adiponectin inhibits autophagy through a novel mediator. Mass spectrometry revealed a novel protein that we call suppressor of glucose by autophagy (SOGA) in adiponectin-treated hepatoma cells. Adiponectin increased SOGA in hepatocytes, and siRNA knockdown of SOGA blocked adiponectin inhibition of glucose production. Furthermore, knockdown of SOGA increased late autophagosome and lysosome staining and the secretion of valine, an amino acid that cannot be synthesized or metabolized by liver cells, suggesting that SOGA inhibits autophagy. SOGA decreased in response to AICAR, an activator of AMPK, and LY294002, an inhibitor of the insulin signaling intermediate, PI3K. AICAR reduction of SOGA was blocked by adiponectin; however, adiponectin did not increase SOGA during PI3K inhibition, suggesting that adiponectin increases SOGA through the insulin signaling pathway. SOGA contains an internal signal peptide that enables the secretion of a circulating fragment of SOGA, providing a surrogate marker for intracellular SOGA levels. Circulating SOGA increased in parallel with adiponectin and insulin activity in both humans and mice. These results suggest that adiponectin-mediated increases in SOGA contribute to the inhibition of glucose production.


Assuntos
Adiponectina/sangue , Adiponectina/farmacologia , Glicemia/metabolismo , Hipoglicemiantes/sangue , Insulina/sangue , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Autofagia , Proteínas Relacionadas à Autofagia , Clonagem Molecular , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Fígado/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Obesos , Camundongos Transgênicos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fragmentos de Peptídeos/imunologia , Coelhos , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Adulto Jovem
18.
Pediatr Dent ; 43(2): 88-94, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33892831

RESUMO

Purpose: Buffered local anesthetics offer an alternative to conventional, unbuffered anesthetic formulations; however, evidence about their use in children is scant. The purpose of this study was to determine the anesthetic and physiologic differences associated with the use of buffered one percent and unbuffered two percent lidocaine (both with 1:100,000 epinephrine) in children. Methods: In this randomized, double-blinded, crossover study, 25 children ages 10 to 12 years old received two inferior alveolar never blocks, at least one week apart, randomized to alternating sequences of two drug formulations: (1) formula A-three mL buffered one percent lidocaine (i.e., including 0.3 mL of 8.4 percent sodium bicarbonate); or (2) formula B-three mL unbuffered two percent lidocaine. Primary outcomes were mean blood lidocaine levels (15 minutes post-injection), timing of clinical signs onset, response to pain on injection, and duration of anesthesia. Analyses relied upon analysis of variance for crossover study designs and a P<0.05 statistical significance criterion. Results: The buffered formulation resulted in significantly lower mean blood lidocaine levels compared to unbuffered-a 63 percent (P<0.05) weight-adjusted relative decrease. The authors found no important differences in pain upon injection, onset, and duration of anesthesia. Conclusion: The buffered local anesthetic formulation showed equal effectiveness with a double-concentration unbuffered formulation while resulting in lower mean blood lidocaine levels-an important gain for the prevention of anesthetic toxicity.


Assuntos
Anestésicos Locais , Lidocaína , Soluções Tampão , Criança , Estudos Cross-Over , Método Duplo-Cego , Epinefrina , Humanos , Medição da Dor , Estudos Prospectivos
19.
Sci Total Environ ; 707: 135503, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31780161

RESUMO

Polycyclic aromatic nitrogen heterocycles, or azaarenes, normally co-occur with polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. We recently reported that nontarget analysis using high resolution mass spectrometry of samples from four PAH-contaminated sites revealed a previously unrecognized diversity and abundance of azaarene isomers and their methylated derivatives. Here we evaluated their biodegradability by natural microbial communities from each site in aerobic microcosm incubations under biostimulated conditions. The removal of total quantifiable azaarenes ranged from 15 to 85%, and was related to the initial degree of weathering for each sample. While three-ring azaarenes were readily biodegradable, the five-ring congeners were the most recalcitrant. Microbial-mediated removal of four-ring congeners varied for different isomers, which might be attributed to the position of the nitrogen atom that also influences the physicochemical properties of azaarenes and possibly the susceptibility to transformation by relevant microbial enzymes. The presence of methyl groups also influenced azaarene biodegradability, which decreased with increasing degree of methylation. Several oxidation products of azaarenes were detected, including ketones and dioxygenated derivatives of three- and four-ring compounds. Our results indicate the susceptibility of some azaarenes to bioremediation, while suggesting the potential implications for risk from the persistence of less-biodegradable isomers and the formation of oxidized-azaarene derivatives.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Microbiologia do Solo , Poluentes do Solo
20.
Toxics ; 8(1)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178396

RESUMO

The human gut microbiome can be easily disturbed upon exposure to a range of toxic environmental agents. Environmentally induced perturbation in the gut microbiome is strongly associated with human disease risk. Functional gut microbiome alterations that may adversely influence human health is an increasingly appreciated mechanism by which environmental chemicals exert their toxic effects. In this review, we define the functional damage driven by environmental exposure in the gut microbiome as gut microbiome toxicity. The establishment of gut microbiome toxicity links the toxic effects of various environmental agents and microbiota-associated diseases, calling for more comprehensive toxicity evaluation with extended consideration of gut microbiome toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA