Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 107(2): 251-264, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640185

RESUMO

Applying exome sequencing to populations with unique genetic architecture has the potential to reveal novel genes and variants associated with traits and diseases. We sequenced and analyzed the exomes of 6,716 individuals from a Southwestern American Indian (SWAI) population with well-characterized metabolic traits. We found that the SWAI population has distinct allelic architecture compared to populations of European and East Asian ancestry, and there were many predicted loss-of-function (pLOF) and nonsynonymous variants that were highly enriched or private in the SWAI population. We used pLOF and nonsynonymous variants in the SWAI population to evaluate gene-burden associations of candidate genes from European genome-wide association studies (GWASs) for type 2 diabetes, body mass index, and four major plasma lipids. We found 19 significant gene-burden associations for 11 genes, providing additional evidence for prioritizing candidate effector genes of GWAS signals. Interestingly, these associations were mainly driven by pLOF and nonsynonymous variants that are unique or highly enriched in the SWAI population. Particularly, we found four pLOF or nonsynonymous variants in APOB, APOE, PCSK9, and TM6SF2 that are private or enriched in the SWAI population and associated with low-density lipoprotein (LDL) cholesterol levels. Their large estimated effects on LDL cholesterol levels suggest strong impacts on protein function and potential clinical implications of these variants in cardiovascular health. In summary, our study illustrates the utility and potential of exome sequencing in genetically unique populations, such as the SWAI population, to prioritize candidate effector genes within GWAS loci and to find additional variants in known disease genes with potential clinical impact.


Assuntos
Exoma/genética , Predisposição Genética para Doença/genética , Indígenas Norte-Americanos/genética , Polimorfismo de Nucleotídeo Único/genética , Alelos , Índice de Massa Corporal , Feminino , Genética Populacional/métodos , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Fenótipo , Sudoeste dos Estados Unidos
2.
Diabetes Metab Res Rev ; 38(3): e3504, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34655148

RESUMO

AIMS: Hormone sensitive lipase (HSL), encoded by the LIPE gene, is involved in lipolysis. Based on prior animal and human studies, LIPE was analysed as a candidate gene for the development of type 2 diabetes (T2D) in a community-based sample of American Indians. MATERIALS AND METHODS: Whole-exome sequence data from 6782 participants with longitudinal clinical measures were used to identify variation in LIPE. RESULTS: Amongst the 16 missense variants identified, an Arg611Cys variant (rs34052647; Cys-allele frequency = 0.087) significantly associated with T2D (OR [95% CI] = 1.38 [1.17-1.64], p = 0.0002, adjusted for age, sex, birth year, and the first five genetic principal components) and an earlier onset age of T2D (HR = 1.22 [1.09-1.36], p = 0.0005). This variant was further analysed for quantitative traits related to T2D. Amongst non-diabetic American Indians, those with the T2D risk Cys-allele had increased insulin levels during an oral glucose tolerance test (0.07 SD per Cys-allele, p = 0.04) and a mixed meal test (0.08 log10 µU/ml per Cys-allele, p = 0.003), and had increased lipid oxidation rates post-absorptively and during insulin infusion (0.07 mg [kg estimated metabolic body size {EMBS}]-1  min-1 per Cys-allele for both, p = 0.01 and 0.009, respectively), compared to individuals with the non-risk Arg-allele. In vitro functional studies showed that cells expressing the Cys-allele had a 17.2% decrease in lipolysis under isoproterenol stimulation (p = 0.03) and a 21.3% decrease in lipase enzyme activity measured by using p-nitrophenyl butyrate as a substrate (p = 0.04) compared to the Arg-allele. CONCLUSION: The Arg611Cys variant causes a modest impairment in lipolysis, thereby affecting glucose homoeostasis and risk of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Esterol Esterase , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Lipólise/genética , Esterol Esterase/genética , Esterol Esterase/metabolismo , Indígena Americano ou Nativo do Alasca
3.
Diabetes Metab Res Rev ; 34(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28948712

RESUMO

BACKGROUND: To investigate (1) whether the decline in acute insulin response (AIR) precedes or coincides with defined glucose regulation categories and whether acute insulin response decline varies by race and adiposity, (2) linearity of the relationship between acute insulin response and increasing plasma glucose concentrations, (3) longitudinal changes in acute insulin response accounting for changes in insulin action across categories of glucose tolerance. METHODS: Clinical cross-sectional and longitudinal study of nondiabetic subjects. Inpatient assessment of oral glucose tolerance (2-h PG, fasting PG), and acute insulin response (intravenous glucose tolerance test) in 326 and 84 Native Americans of full and ≤6/8th Southwestern heritage, respectively, and 115 Whites. Linearity of acute insulin response vs plasma glucose concentrations investigated using spline analyses. Follow-up (average = 2.07 years) glucose tolerance, acute insulin response, and insulin action (hyperinsulinemic-euglycemic clamp) assessed in 230 full Native Americans. RESULTS: In certain groups, the relationship between acute insulin response and increasing plasma glucose levels was non-linear. In all groups, acute insulin response decline preceded the cut-offs for traditional glucose regulation categories, although the timing with respect to increasing plasma glucose varied by race and adiposity. Longitudinal data indicated that improvement in insulin action is the key factor to preserve insulin secretion, underlying the reversion of glucose tolerance in prediabetic individuals. CONCLUSIONS: With worsening insulin action, the decline in insulin secretion occurred prior to current diagnostic guidelines for impaired glucose regulation. However, the relationship between acute insulin response and increasing plasma glucose varies and was not always non-linear. Understanding the dynamics of this relationship may determine when to initiate preventive pharmacotherapy directed at the preservation of ß-cell failure.


Assuntos
Biomarcadores/análise , Glicemia/análise , Intolerância à Glucose , Resistência à Insulina , Insulina/metabolismo , Adulto , Estudos Transversais , Feminino , Seguimentos , Teste de Tolerância a Glucose , Humanos , Secreção de Insulina , Estudos Longitudinais , Masculino , Obesidade/fisiopatologia , Prognóstico , Adulto Jovem
4.
Diabetes Metab Res Rev ; 34(4): e2994, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29470850

RESUMO

AIMS: Insulin-like growth factor 1 receptor (IGF1R) is involved in cell growth and glucose homeostasis. In the current study, the IGF1R locus was analysed as a candidate gene for type 2 diabetes (T2D) in American Indians. MATERIALS AND METHODS: Whole genome sequence data from 335 American Indians identified 3 novel missense variants in IGF1R. The associations of IGF1R variants with T2D, age of T2D onset and birth weight were analysed in a population-based sample of 7701 American Indians. RESULTS: A novel glycine-to-aspartic acid substitution (G310D) in IGF1R was identified, which associated with T2D in a sex-specific manner (Psex interaction = 0.02). In women, the aspartic acid (D) allele (frequency = 0.034) was associated with increased risk for T2D (n = 4292, P = 2.0 × 10-5 adjusted for age, birth year, and the first 5 genetic principal components; odds ratio [OR] = 2.23 [1.54-3.23] per risk allele) and an earlier age of T2D onset (n = 4292, P = 2 × 10-4 , hazard rate ratio = 1.45 [1.20-1.75], Psex interaction = 0.05). Female carriers of the D-allele also had lower birth weight (n = 1313, ß = -163 g, P = .006, Psex interaction = 0.008). Among 85 siblings discordant for G310D, carriers of the D-allele had shorter stature as compared with carriers of the G-allele (ß = -1.6 cm, P = .001, within family model). The G310D variant was functionally studied in vitro, where the D-allele had a 22% increase (P = .0005) in FOXO1-induced transcriptional activity, due to decreased activation of the PI3K/AKT pathway mediated through reduced IGF1R activity. CONCLUSION: A unique G310D variant in IGF1R, which occurs in 6% American Indians, may impair IGF1R signalling pathways, thereby increasing the risk of T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Indígenas Norte-Americanos/genética , Polimorfismo de Nucleotídeo Único , Receptores de Somatomedina/genética , Diabetes Mellitus Tipo 2/etnologia , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Receptor IGF Tipo 1 , Estados Unidos/epidemiologia
5.
Diabetologia ; 60(4): 645-655, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28127622

RESUMO

AIMS/HYPOTHESIS: Individuals exposed to maternal diabetes in utero are more likely to develop metabolic and cardiovascular diseases later in life. This may be partially attributable to epigenetic regulation of gene expression. We performed an epigenome-wide association study to examine whether differential DNA methylation, a major source of epigenetic regulation, can be observed in offspring of mothers with type 2 diabetes during the pregnancy (OMD) compared with offspring of mothers with no diabetes during the pregnancy (OMND). METHODS: DNA methylation was measured in peripheral blood using the Illumina HumanMethylation450K BeadChip. A total of 423,311 CpG sites were analysed in 388 Pima Indian individuals, mean age at examination was 13.0 years, 187 of whom were OMD and 201 were OMND. Differences in methylation between OMD and OMND were assessed. RESULTS: Forty-eight differentially methylated CpG sites (with an empirical false discovery rate ≤0.05), mapping to 29 genes and ten intergenic regions, were identified. The gene with the strongest evidence was LHX3, in which six CpG sites were hypermethylated in OMD compared with OMND (p ≤ 1.1 × 10-5). Similarly, a CpG near PRDM16 was hypermethylated in OMD (1.1% higher, p = 5.6 × 10-7), where hypermethylation also predicted future diabetes risk (HR 2.12 per SD methylation increase, p = 9.7 × 10-5). Hypermethylation near AK3 and hypomethylation at PCDHGA4 and STC1 were associated with exposure to diabetes in utero (AK3: 2.5% higher, p = 7.8 × 10-6; PCDHGA4: 2.8% lower, p = 3.0 × 10-5; STC1: 2.9% lower, p = 1.6 × 10-5) and decreased insulin secretory function among offspring with normal glucose tolerance (AK3: 0.088 SD lower per SD of methylation increase, p = 0.02; PCDHGA4: 0.08 lower SD per SD of methylation decrease, p = 0.03; STC1: 0.072 SD lower per SD of methylation decrease, p = 0.05). Seventeen CpG sites were also associated with BMI (p ≤ 0.05). Pathway analysis of the genes with at least one differentially methylated CpG (p < 0.005) showed enrichment for three relevant biological pathways. CONCLUSIONS/INTERPRETATION: Intrauterine exposure to diabetes can affect methylation at multiple genomic sites. Methylation status at some of these sites can impair insulin secretion, increase body weight and increase risk of type 2 diabetes.


Assuntos
Metilação de DNA/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Gestacional/metabolismo , Adolescente , Adulto , Ilhas de CpG/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Gestacional/genética , Epigênese Genética/genética , Feminino , Estudo de Associação Genômica Ampla , Glicoproteínas/genética , Humanos , Recém-Nascido , Proteínas com Homeodomínio LIM/genética , Masculino , Gravidez , Fatores de Transcrição/genética , Adulto Jovem
6.
Hum Mol Genet ; 24(10): 2985-96, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25662186

RESUMO

A prior genome-wide association study (GWAS) in Pima Indians identified a variant within PFKFB2 (rs17258746) associated with body mass index (BMI). PFKFB2 encodes 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase isoform 2, which plays a role in glucose metabolism. To follow-up on the GWAS, tag SNPs across PFKFB2 were genotyped in American Indians (AI) who had longitudinal data on BMI (n = 6839), type 2 diabetes (T2D; n = 7710), diabetic nephropathy (DN; n = 2452), % body fat (n = 555) and insulin secretion (n = 298). Two SNPs were further genotyped in urban AI to assess replication for DN (n = 864). PFKFB2 expression was measured in 201 adipose biopsies using real-time RT-PCR and 61 kidney biopsies using the Affymetrix U133 array. Two SNPs (rs17258746 and rs11120137), which capture the same signal, were associated with maximum BMI in adulthood (ß = 1.02 per risk allele, P = 7.3 × 10(-4)), maximum BMI z-score in childhood (ß = 0.079, P = 0.03) and % body fat in adulthood (ß = 3.4%, P = 3 × 10(-7)). The adiposity-increasing allele correlated with lower PFKFB2 adipose expression (ß = 0.81, P = 9.4 × 10(-4)). Lower expression of PFKFB2 further correlated with higher % body fat (r = -0.16, P = 0.02) and BMI (r = -0.17, P = 0.02). This allele was also associated with increased risk for DN in both cohorts of AI [odds ratio = 1.64 (1.32-2.02), P = 5.8 × 10(-6)], and similarly correlated with lower PFKFB2 expression in kidney glomeruli (ß = 0.87, P = 0.03). The same allele was also associated with lower insulin secretion assessed by acute insulin response (ß = 0.78, P = 0.03) and 30-min plasma insulin concentrations (ß = 0.78, P = 1.1 × 10(-4)). Variation in PFKFB2 appears to reduce PFKFB2 expression in adipose and kidney tissues, and thereby increase risk for adiposity and DN.


Assuntos
Adiposidade/genética , Nefropatias Diabéticas/genética , Indígenas Norte-Americanos/genética , Insulina/metabolismo , Fosfofrutoquinase-2/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tecido Adiposo , Adolescente , Adulto , Idoso , Índice de Massa Corporal , Criança , Pré-Escolar , Feminino , Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Insulina/genética , Secreção de Insulina , Rim , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Diabetes Metab Res Rev ; 33(8)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28731290

RESUMO

BACKGROUND: The adaptive immune system is involved in type 2 diabetes mellitus (T2DM), indicating the presence of unidentified autoantibodies that might be useful biomarkers for emerging immunomodulatory therapy. A prior microarray study with a small number of participants suggested the association of novel autoantibodies with T2DM in Southwest American Indians. We therefore sought to determine whether antibodies against 14 target proteins are associated with T2DM in a large case-control study. METHODS: Participants were adults (age 20-59 y) of Southwest American Indian heritage. Plasma antibodies against 14 possible target proteins were measured in 476 cases with T2DM of less than 5 years duration and compared with 424 controls with normal glucose regulation. RESULTS: Higher levels of antibodies against prefoldin subunit 2 (PFDN2) were associated with T2DM (P = .0001; Bonferroni-corrected threshold for multiple tests = 0.0036 [α = 0.05]). The association between anti-PFDN2 antibodies and T2DM remained in multivariable logistic regression (odds ratio 1.27; 95% confidence interval, 1.09-1.49; per one SD difference in anti-PFDN2 antibody). The odds of T2DM were increased in the highest anti-PFDN2 antibody quintile by 66% compared with the lowest quintile. Differences in anti-PFDN2 antibodies were most prominent among cases with earlier onset of disease (ie, age 20-39 y) compared with controls. CONCLUSIONS: Anti-PFDN2 antibodies are associated with T2DM and might be a useful biomarker. These findings indicate that autoimmunity may play a role in T2DM in Southwest American Indians, especially among adults presenting with young onset of disease.


Assuntos
Autoanticorpos/imunologia , Diabetes Mellitus Tipo 2/imunologia , Chaperonas Moleculares/imunologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Diabetes Metab Res Rev ; 33(4)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27862917

RESUMO

BACKGROUND: Eight new loci for type 2 diabetes mellitus (T2DM) were identified in an East Asian genome-wide association study meta-analysis. We assess tag SNPs across these loci for associations with T2DM in American Indians. METHODS: A total of 435 SNPs that tag (R2  ≥ .85) common variation across the 8 loci were analyzed for association with T2DM (n = 7710), early onset T2DM (n = 1060), body mass index (n = 6839), insulin sensitivity (n = 555), and insulin secretion (n = 298). RESULTS: Tag SNPs within FITM2-R3HDML-HNF4A, GLIS3, KCNK16, and ZFAND3 associated with T2DM after accounting for locus-wide multiple testing. The T2DM association in FITM2-R3HDML-HNF4A (rs3212183; P = .0002; OR = 1.19 [1.09-1.30]) was independent from the East Asian lead SNP (rs6017317), which did not associate with T2DM in American Indians. The top signals in GLIS3 (rs7875253; P = .0004; OR = 1.23 [1.10-1.38]) and KCNK16 (rs1544050; P = .002; OR = 1.16 [1.06-1.27]) were attenuated after adjustment for the East Asian lead SNPs (rs7041847 in GLIS3; rs1535500 in KCNK16), both of which also associated with T2DM in American Indians (P = .02; OR = 1.11 [1.01-1.21]; P = .007; OR = 1.19 [1.05-1.36] respectively). The top SNP in ZFAND3 (rs9470794; P = .002; OR = 1.43 [1.14-1.80]) was the identical East Asian lead SNP. Additional SNPs in GLIS3 (rs180867004) and ZFAND3 (rs4714120 and rs9470701) had significant genotype × sex interactions (P ≤ .008). The GLIS3 SNP (rs180867004) associated with T2DM only in men (P = .00006, OR = 1.94 [1.40-2.68]). The ZFAND3 SNPs (rs4714120 and rs9470701) associated with T2DM only in women (P = .0002, OR = 1.35 [1.16-1.59]; P = .0003, OR = 1.37 [1.16-1.63] respectively). CONCLUSIONS: Replication of lead T2DM SNPs in GLIS3, KCNK16, and ZFAND3 was observed in American Indians. Sex-specific T2DM signals in GLIS3 and ZFAND3, which are distinct from the East Asian GWAS signals, were also identified.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Indígenas Norte-Americanos/genética , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Adolescente , Adulto , Idoso , Proteínas de Ligação a DNA , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Repressoras , Fatores Sexuais , Transativadores , Adulto Jovem
9.
Diabetologia ; 59(3): 481-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26670163

RESUMO

AIMS/HYPOTHESIS: Epidemiological studies in Pima Indians identified elevated levels of HDL-cholesterol (HDL-C) as a protective factor against type 2 diabetes risk in women. We assessed whether HDL-C-associated single-nucleotide polymorphisms (SNPs) also associate with type 2 diabetes in female Pima Indians. METHODS: Twenty-one SNPs in established HDL-C loci were initially analysed in 2,675 full-heritage Pima Indians. SNPs shown to associate with HDL-C (12 SNPs) were assessed for association with type 2 diabetes in 7,710 Pima Indians (55.6% female sex). The CETP locus provided the strongest evidence for association with HDL-C and was further interrogated by analysing tag SNPs. RESULTS: Twelve of the 21 SNPs analysed had a significant association with HDL-C in Pima Indians; five SNPs representing four loci (CETP, DOCK6, PPP1R3B and ABCA1) reached genome-wide significance. Three SNPs, at CETP, KLF14 and HNF4A, associated with type 2 diabetes only in female participants with the HDL-C-lowering allele increasing diabetes risk (p values: 3.2 × 10(-4) to 7.7 × 10(-5)); the association remained significant even after adjustment for HDL-C. Additional analysis across CETP identified rs6499863 as having the strongest association with type 2 diabetes in female participants (p = 5.0 × 10(-6)) and this association remained independent of the HDL-C association. CONCLUSIONS/INTERPRETATION: SNPs at the CETP, HNF4A and KLF14 locus are associated with HDL-C levels and type 2 diabetes (in female participants). However, since HNF4A and KLF14 are established loci for type 2 diabetes, it is unlikely that HDL-C solely mediates these associations.


Assuntos
HDL-Colesterol/sangue , Diabetes Mellitus Tipo 2/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Proteínas de Transferência de Ésteres de Colesterol/genética , HDL-Colesterol/genética , Diabetes Mellitus Tipo 2/genética , Feminino , Predisposição Genética para Doença/genética , Fator 4 Nuclear de Hepatócito/genética , Humanos , Indígenas Norte-Americanos/genética , Fatores de Transcrição Kruppel-Like , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores Sexuais , Fatores de Transcrição Sp/genética , Adulto Jovem
10.
Diabetes Metab Res Rev ; 32(3): 297-307, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26408818

RESUMO

BACKGROUND: Recent work in Pima Indians, a population with high rates of obesity and type 2 diabetes mellitus (T2DM), demonstrated that human leukocyte antigen haplotype DRB1*02 carriers have an increased acute insulin response and decreased risk for the development of T2DM, implicating loss of self-tolerance in the pathogenesis of T2DM. Advances in genomic sequencing have made T-cell receptor repertoire analysis a practical mode of investigation. METHODS: High-throughput sequencing of T-cell receptor complementarity-determining region 3 was carried out in male Pima Indians with normal glucose regulation (n = 11; age = 31 ± 8 years; %fat = 30.2 ± 8.7%) and the protective DRB1*02 haplotype versus those with T2DM without DRB1*02 (n = 7; age = 34 ± 8 years; %fat = 31.2 ± 4.7%). Findings were partially replicated in another cohort by assessing the predictive ability of T-cell receptor variation on risk of T2DM in Pima Indian men (n = 27; age = 28.9 ± 7.1 years; %fat = 28.8 ± 7.1%) and women (n = 20; age = 29 ± 7.0 years; %fat = 37.1 ± 6.8%) with baseline normal glucose regulation but without the protective haplotype who were invited to follow-up examinations as frequently as every 2 years where diabetes status was assessed by a 75-g oral glucose tolerance test. Of these subjects, 13 developed diabetes. RESULTS: T-cell receptor complementarity-determining region 3 length was shorter in those with T2DM, and a one-nucleotide decrease in complementarity-determining region 3 length was associated with a nearly threefold increase in risk for future diabetes. The frequency of one variable gene, TRBV7-8, was higher in those with T2DM. A 1% increase in TRBV7-8 frequency was associated with a greater than threefold increase in diabetes risk. CONCLUSIONS: These results indicate that T-cell autoimmunity may be an important component in progression to T2DM in Pima Indians.


Assuntos
Regiões Determinantes de Complementaridade/genética , Diabetes Mellitus Tipo 2/genética , Cadeias HLA-DRB1/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores de Antígenos de Linfócitos T/genética , Adulto , Feminino , Teste de Tolerância a Glucose , Haplótipos/genética , Humanos , Indígenas Norte-Americanos , Estudos Longitudinais , Masculino
11.
Hum Mol Genet ; 22(21): 4438-49, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23825110

RESUMO

To identify genes that affect body mass index (BMI) in American Indians who are predominately of Pima Indian heritage, we previously completed a genome-wide association study in 1120 American Indians. That study also included follow-up genotyping for 9 SNPs in 2133 additional subjects. A comprehensive follow-up study has subsequently been completed where 292 SNPs were genotyped in 3562 subjects, of which 128 SNPs were assessed for replication in 3238 additional subjects. In the combined subjects (n = 6800), BMI associations for two SNPs, rs12882548 and rs11652094, approached genome-wide significance (P = 6.7 × 10(-7) and 8.1 × 10(-7), respectively). Rs12882548 is located in a gene desert on chromosome 14 and rs11652094 maps near MAP2K3. Several SNPs in the MAP2K3 region including rs11652094 were also associated with BMI in Caucasians from the GIANT consortium (P = 10(-2)-10(-5)), and the combined P-values across both American Indians and Caucasian were P = 10(-4)-10(-9). Follow-up sequencing across MAP2K3 identified several paralogous sequence variants indicating that the region may have been duplicated. MAP2K3 expression levels in adipose tissue biopsies were positively correlated with BMI, although it is unclear if this correlation is a cause or effect. In vitro studies with cloned MAP2K3 promoters suggest that MAP2K3 expression may be up-regulated during adipogenesis. Microarray analyses of mouse hypothalamus cells expressing constitutively active MAP2K3 identified several up-regulated genes involved in immune/inflammatory pathways and a gene, Hap1, thought to play a role in appetite regulation. We conclude that MAP2K3 is a reproducible obesity locus that may affect body weight via complex mechanisms involving appetite regulation and hypothalamic inflammation.


Assuntos
Índice de Massa Corporal , Hipotálamo/metabolismo , Inflamação/genética , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 3/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Peso Corporal , Linhagem Celular , Criança , Pré-Escolar , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Hipotálamo/citologia , Hipotálamo/embriologia , Indígenas Norte-Americanos/genética , Estudos Longitudinais , Camundongos , Pessoa de Meia-Idade , Obesidade/genética , Polimorfismo de Nucleotídeo Único , População Branca/genética , Adulto Jovem
12.
Diabetologia ; 57(7): 1382-90, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24728127

RESUMO

AIMS/HYPOTHESIS: Glucokinase (GCK) plays a role in glucose metabolism and glucose-stimulated insulin secretion. Rare mutations in GCK cause MODY. We investigated whether common variation (minor allele frequency ≥0.01) in GCK is associated with metabolic traits and type 2 diabetes. METHODS: Four exonic single-nucleotide polymorphisms (SNPs) and three SNPs predicted to cause loss of promoter function were identified in whole-genome sequence data from 234 Pima Indians. These seven tag SNPs and rs4607517, a type 2 diabetes variant established in other studies, were analysed in 415 full-heritage non-diabetic Pima Indians characterised for metabolic traits, and 7,667 American Indians who had data on type 2 diabetes and BMI. RESULTS: A novel 3' untranslated region (3'UTR) SNP, chr7:44184184-G/A, was associated with the rate of carbohydrate oxidation post-absorptively (ß = 0.22 mg [kg estimated metabolic body size (EMBS)](-1) min(-1), p = 0.005) and during a hyperinsulinaemic-euglycaemic clamp (ß = 0.24 mg [kg EMBS](-1) min(-1), p = 0.0002), the rate of carbohydrate oxidation in a respiratory chamber (ß = 311 kJ/day, p = 0.03) and 24 h energy expenditure, which was attributable to the thermic effect of food (ß = 520 kJ/day, p = 3.39 × 10(-6)). This 3'UTR SNP was also associated with diabetes (OR 1.36, 95% CI 1.11, 1.65, p = 0.002), where the A allele (allele frequency 0.05) was associated with a lower rate of carbohydrate oxidation, lower 24 h energy expenditure and higher risk for diabetes. In a Cox proportional hazards model, a rate of insulin-stimulated carbohydrate oxidation lower than the mean rate at baseline predicted a higher risk for developing diabetes than for those above the mean (hazard rate ratio 2.2, 95% CI 1.3, 3.6, p = 0.002). CONCLUSIONS/INTERPRETATION: Common variation in GCK influences the rate of carbohydrate oxidation, 24 h energy expenditure and diabetes risk in Pima Indians.


Assuntos
Metabolismo dos Carboidratos/genética , Diabetes Mellitus Tipo 2/genética , Metabolismo Energético/genética , Glucoquinase/genética , Polimorfismo de Nucleotídeo Único , Adulto , Alelos , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Indígenas Norte-Americanos/genética , Masculino , Adulto Jovem
13.
Hum Genet ; 133(11): 1431-41, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25103139

RESUMO

Six rare functional coding mutations were previously identified in melanocortin 4 receptor (MC4R) in 6,760 American Indians. Individuals heterozygous for one of these mutations become obese while young. We now investigate whether common non-coding variation near MC4R also contributes to obesity. Fifty-six tag single-nucleotide polymorphisms (SNPs) were genotyped in 3,229 full-heritage Pima Indians, and nine of these SNPs which showed evidence for association were genotyped in additional 3,852 mixed-heritage American Indians. Associations of SNPs with maximum body mass index (BMI) in adulthood (n = 5,918), BMI z score in childhood (n = 5,350), percent body fat (n = 864), energy expenditure (n = 358) and ad libitum food intake (n = 178) were assessed. Conditional analyses demonstrated that SNPs, rs74861148 and rs483125, were independently associated with BMI in adulthood (ß = 0.68 kg/m(2) per risk allele, p = 5 × 10(-5); ß = 0.58 kg/m(2), p = 0.002, respectively) and BMI z score in childhood (ß = 0.05, p = 0.02; ß = 0.07, p = 0.01, respectively). One haplotype (frequency = 0.35) of the G allele at rs74861148 and the A allele at rs483125 provided the strongest evidence for association with adult BMI (ß = 0.89 kg/m(2), p = 5.5 × 10(-7)), and was also associated with childhood BMI z score (ß = 0.08, p = 0.001). In addition, a promoter SNP rs11872992 was nominally associated with adult BMI (ß = 0.61 kg/m(2), p = 0.05) and childhood BMI z score (ß = 0.11, p = 0.01), where the risk allele also modestly decreased transcription in vitro by 12 % (p = 0.005). This risk allele was further associated with increased percent body fat (ß = 2.2 %, p = 0.002), increased food intake (ß = 676 kcal/day, p = 0.007) and decreased energy expenditure (ß = -53.4 kcal/day, p = 0.054). Common and rare variation in MC4R contributes to obesity in American Indians.


Assuntos
Variação Genética , Indígenas Norte-Americanos/genética , Obesidade/genética , Receptor Tipo 4 de Melanocortina/genética , Adolescente , Adulto , Arizona , Composição Corporal/genética , Índice de Massa Corporal , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Genótipo , Haplótipos , Humanos , Estudos Longitudinais , Masculino , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Risco , Adulto Jovem
14.
Artigo em Inglês | MEDLINE | ID: mdl-39018443

RESUMO

CONTEXT: The locus CELSR2-PSRC1-SORT1, a primary genetic signal for lipids, has recently been implicated in different metabolic processes. Our investigation identified its association with energy metabolism. OBJECTIVE: To determine biological mechanisms that govern diverse functions of this locus. METHODS: Genotypes for 491,265 variants in 7,000 clinically characterized American Indians were previously determined using a custom-designed array specific for this longitudinally studied American Indian population. Among the genotyped individuals, 5,205 had measures of fasting lipid levels and 509 had measures of resting metabolic rate (RMR) and substrate oxidation rate assessed through indirect calorimetry. A genome-wide association study (GWAS) for LDL-C levels identified a variant in CELSR2 and the molecular impact of this variant on gene expression was assessed in skeletal muscle biopsies from 207 participants, followed by functional validation in mouse myoblasts using a luciferase assay. RESULTS: A GWAS in American Indians identified rs12740374 in CELSR2 as the top signal for LDL-C levels (P = 1 × 10-22); further analysis of this variant identified an unexpected correlation with reduced RMR (effect = -44.3 kcal/day/minor-allele) and carbohydrate oxidation rate (effect = -5.21 mg/hour/kg-EMBS). Tagged variants showed a distinct linkage disequilibrium architecture in American Indians, highlighting a potential functional variant, rs6670347 (minor-allele frequency = 0.20). Positioned in the glucocorticoid receptor's core binding motif, rs6670347 is part of a skeletal muscle-specific enhancer. Human skeletal muscle transcriptome analysis showed CELSR2 as the most differentially expressed gene (P = 1.9 × 10-7), with the RMR-lowering minor allele elevating gene expression. Experiments in mouse myoblasts confirmed enhancer-based regulation of CELSR2 expression, dependent on glucocorticoids. Rs6670347 also associated with increased oxidative phosphorylation gene expression; CELSR2 as a regulator of these genes, suggests potential influence on energy metabolism through muscle oxidative capacity. CONCLUSION: Variants in the CELSR2/PSRC1/SORT1 locus exhibit tissue-specific effects on metabolic traits, with an independent role in muscle metabolism through glucocorticoid signaling.

15.
Diabetes ; 73(6): 1002-1011, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38530923

RESUMO

We sought to identify genetic/immunologic contributors of type 2 diabetes (T2D) in an indigenous American community by genotyping all study participants for both high-resolution HLA-DRB1 alleles and SLC16A11 to test their risk and/or protection for T2D. These genes were selected based on independent reports that HLA-DRB1*16:02:01 is protective for T2D and that SLC16A11 associates with T2D in individuals with BMI <35 kg/m2. Here, we test the interaction of the two loci with a more complete data set and perform a BMI sensitivity test. We defined the risk protection haplotype of SLC16A11, T-C-G-T-T, as allele 2 of a diallelic genetic model with three genotypes, SLC16A11*11, *12, and *22, where allele 1 is the wild type. Both earlier findings were confirmed. Together in the same logistic model with BMI ≥35 kg/m2, DRB1*16:02:01 remains protective (odds ratio [OR] 0.73), while SLC16A11 switches from risk to protection (OR 0.57 [*22] and 0.78 [*12]); an added interaction term was statistically significant (OR 0.49 [*12]). Bootstrapped (b = 10,000) statistical power of interaction, 0.4801, yielded a mean OR of 0.43. Sensitivity analysis demonstrated that the interaction is significant in the BMI range of 30-41 kg/m2. To investigate the epistasis, we used the primary function of the HLA-DRB1 molecule, peptide binding and presentation, to search the entire array of 15-mer peptides for both the wild-type and ancient human SLC16A11 molecules for a pattern of strong binding that was associated with risk and protection for T2D. Applying computer binding algorithms suggested that the core peptide at SLC16A11 D127G, FSAFASGLL, might be key for moderating risk for T2D with potential implications for type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Epistasia Genética , Predisposição Genética para Doença , Cadeias HLA-DRB1 , Transportadores de Ácidos Monocarboxílicos , Humanos , Diabetes Mellitus Tipo 2/genética , Cadeias HLA-DRB1/genética , Feminino , Masculino , Pessoa de Meia-Idade , Transportadores de Ácidos Monocarboxílicos/genética , Indígenas Norte-Americanos/genética , Adulto , Genótipo , Alelos , Índice de Massa Corporal , Haplótipos , Polimorfismo de Nucleotídeo Único , Idoso
16.
Diabetes ; 73(8): 1361-1371, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776413

RESUMO

Genetic determinants of interindividual differences in energy expenditure (EE) are largely unknown. Sphingolipids, such as ceramides, have been implicated in the regulation of human EE via mitochondrial uncoupling. In this study, we investigated whether genetic variants within enzymes involved in sphingolipid synthesis and degradation affect EE and insulin-related traits in a cohort of American Indians informative for 24-h EE and glucose disposal rates during a hyperinsulinemic-euglycemic clamp. Association analysis of 10,084 genetic variants within 28 genes involved in sphingolipid pathways identified a missense variant (rs267738, A>C, E115A) in exon 4 of CERS2 that was associated with higher sleeping EE (116 kcal/day) and increased rates of endogenous glucose production during basal (5%) and insulin-stimulated (43%) conditions, both indicators of hepatic insulin resistance. The rs267738 variant did not affect ceramide synthesis in HepG2 cells but resulted in a 30% decrease in basal mitochondrial respiration. In conclusion, we provide evidence that the CERS2 rs267738 missense variant may influence hepatic glucose production and postabsorptive sleeping metabolic rate.


Assuntos
Metabolismo Energético , Indígenas Norte-Americanos , Resistência à Insulina , Fígado , Proteínas de Membrana , Mutação de Sentido Incorreto , Esfingosina N-Aciltransferase , Humanos , Resistência à Insulina/genética , Metabolismo Energético/genética , Esfingosina N-Aciltransferase/genética , Esfingosina N-Aciltransferase/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Masculino , Feminino , Adulto , Fígado/metabolismo , Indígenas Norte-Americanos/genética , Sono/genética , Sono/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Células Hep G2 , Técnica Clamp de Glucose , Pessoa de Meia-Idade
17.
Hum Genet ; 132(6): 697-707, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23468175

RESUMO

A prior linkage scan in Pima Indians identified a putative locus for type two diabetes (T2D) and body mass index (BMI) on chromosome 11q23-25. Association mapping across this region identified single nucleotide polymorphisms (SNPs) in the trehalase gene (TREH) that were associated with T2D. To assess the putative connection between trehalase activity and T2D, we performed a linkage study for trehalase activity in 570 Pima Indians who had measures of trehalase activity. Strong evidence of linkage of plasma trehalase activity (LOD = 7.0) was observed in the TREH locus. Four tag SNPs in TREH were genotyped in these subjects and plasma trehalase activity was highly associated with three SNPs: rs2276064, rs117619140 and rs558907 (p = 2.2 × 10(-11)-1.4 × 10(-23)), and the fourth SNP, rs10790256, was associated conditionally on these three (p = 2.9 × 10(-7)). Together, the four tag SNPs explained 51 % of the variance in plasma trehalase activity and 79 % of the variance attributed to the linked locus. These four tag SNPs were further genotyped in 828 subjects used for association mapping of T2D, and rs558907 was associated with T2D (odds ratio (OR) 1.94, p = 0.002). To assess replication of the T2D association, all four tag SNPs were additionally genotyped in two non-overlapping samples of Native Americans. Rs558907 was reproducibly associated with T2D in 2,942 full-heritage Pima Indians (OR 1.27 p = 0.03) and 3,897 "mixed" heritage Native Americans (OR 1.21, p = 0.03), and the strongest evidence for association came from combining all samples (OR 1.27 p = 1.6 × 10(-4), n = 7,667). However, among 320 longitudinally studied subjects, measures of trehalase activity from a non-diabetic exam did not predict those who would eventually develop diabetes versus those who would remain non-diabetic (hazard ratio 0.94 per SD of trehalase activity, p = 0.29). We conclude that variants in TREH control trehalase activity, and although one of these variants is also reproducibly associated with T2D, it is likely that the effect of the SNP on risk of T2D occurs by a mechanism different than affecting trehalase activity. Alternatively, TREH variants may be tagging a nearby T2D locus.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Trealase/sangue , Adulto , Feminino , Estudos de Associação Genética , Ligação Genética , Predisposição Genética para Doença , Haplótipos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Risco , Trealase/genética
18.
Diabetes Res Clin Pract ; 203: 110839, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37482221

RESUMO

AIMS: The timing of increase in 1-hour PG and its utility as an earlier predictor of both prediabetes (PreDM) and type 2 diabetes (T2D) compared to 2-hour PG (2 h-PG) are unknown. To evaluate the timing of crossing of the 1 h-PG ≥ 155 mg/dl (8.6 mmol/L) for PreDM and 209 mg/dl (11.6 mmol/L) for T2D and respective current 2 h-PG thresholds of 140 mg/dl (7.8 mmol/L) and 200 mg/dl (11.1 mmol/L). METHODS: Secondary analysis of 201 Southwest Native Americans who were followed longitudinally for 6-10 years and had at least 3 OGTTs. RESULTS: We identified a subset of 43 individuals who first developed PreDM by both 1 h-PG and 2 h-PG criteria during the study. For most (32/43,74%), 1 h-PG ≥ 155 mg/dl was observed before 2 h-PG reached 140 mg/dl (median [IQR]: 1.7 [-0.25, 4.59] y; mean ± SEM: 5.3 ± 1.9 y). We also identified a subset of 33 individuals who first developed T2D during the study. For most (25/33, 75%), 1 h-PG reached 209 mg/dl earlier (median 1.0 [-0.56, 2.02] y; mean ± SEM: 1.6 ± 0.8 y) than 2 h-PG reached 200 mg/dl, diagnostic of T2D. CONCLUSIONS: 1 h-PG ≥ 155 mg/dl is an earlier marker of elevated risk for PreDM and T2D than 2 h-PG ≥ 140 mg/dl.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Humanos , Glucose , Glicemia , Diabetes Mellitus Tipo 2/diagnóstico , Estado Pré-Diabético/diagnóstico , Teste de Tolerância a Glucose
19.
Obesity (Silver Spring) ; 30(2): 546-552, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35043601

RESUMO

OBJECTIVE: This study aimed to identify genetic variants enriched in Southwest American Indian (SWAI) individuals that associate with BMI. METHODS: Whole genome sequencing data (n = 296) were used to identify potentially functional variants that are common in SWAI individuals (minor allele frequency ≥10%) but rare in other ethnic groups (minor allele frequency < 0.1%). Enriched variants were tested for association with BMI in 5,870 SWAI individuals. One variant was studied using a luciferase reporter, and haplotypes that included this variant were analyzed for association with various measures of obesity (n = 917-5,870), 24-hour energy expenditure (24-h EE; n = 419), and skeletal muscle biopsy expression data (n = 207). RESULTS: A 5' untranslated region variant in cytochrome b5 type A (CYB5A), rs548402150, met the enrichment criteria and associated with increased BMI (ß = 2%, p = 0.004). Functionally, rs548402150 decreased luciferase expression by 30% (p = 0.003) and correlated with decreased skeletal muscle CYB5A expression (ß = -0.5 SD, p = 0.0008). Combining rs548402150 with two splicing quantitative trait loci in CYB5A identified a haplotype carried almost exclusively in SWAI individuals that associated with increased BMI (ß = 3%, p = 0.0003) and decreased CYB5A expression, whereas the most common haplotype in all ethnic groups associated with lower BMI and percentage of body fatness, increased 24-h EE, and increased CYB5A expression. CONCLUSIONS: Further studies on the effects of CYB5A on 24-h EE and BMI may provide insights into obesity-related physiology.


Assuntos
Citocromos b5 , Obesidade , Índice de Massa Corporal , Citocromos b5/genética , Citocromos b5/metabolismo , Frequência do Gene , Humanos , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Indígena Americano ou Nativo do Alasca
20.
Cells ; 11(9)2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563754

RESUMO

The top genetic association signal for type 2 diabetes (T2D) in Southwestern American Indians maps to intron 15 of KCNQ1, an imprinted gene. We aim to understand the biology whereby variation at this locus affects T2D specifically in this genomic background. To do so, we obtained human induced pluripotent stem cells (hiPSC) derived from American Indians. Using these iPSCs, we show that imprinting of KCNQ1 and CDKN1C during pancreatic islet-like cell generation from iPSCs is consistent with known imprinting patterns in fetal pancreas and adult islets and therefore is an ideal model system to study this locus. In this report, we detail the use of allele-specific guide RNAs and CRISPR to generate isogenic hiPSCs that differ only at multiple T2D associated intronic SNPs at this locus which can be used to elucidate their functional effects. Characterization of these isogenic hiPSCs identified a few aberrant cell lines; namely cell lines with large hemizygous deletions in the putative functional region of KCNQ1 and cell lines hypomethylated at the KCNQ1OT1 promoter. Comparison of an isogenic cell line with a hemizygous deletion to the parental cell line identified CDKN1C and H19 as differentially expressed during the endocrine progenitor stage of pancreatic-islet development.


Assuntos
Diabetes Mellitus Tipo 2 , Células-Tronco Pluripotentes Induzidas , Adulto , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Impressão Genômica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Indígena Americano ou Nativo do Alasca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA