Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 19(20): 3640-3651, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37162535

RESUMO

Revealing the ion distributions on a charged lipid membrane in aqueous solution under the influence of long-range interactions is essential for understanding the origin of the stability of the bilayer structure and the interaction between biomembranes and various electrolytes. However, the ion distributions and their dynamics associated with the phase separation process of the lipid bilayer membrane are still unclear. We perform coarse-grained molecular dynamics simulations to reveal the Na+ and Cl- distributions on charged phospholipid bilayer membranes during phase separation. During the phase separation, cations closely follow the position of negatively charged lipids on a microsecond timescale and are rapidly redistributed parallel to the lipid bilayer. In the homogenous mixture of zwitterionic and negatively charged lipids, cations weakly follow negatively charged lipids, indicating the strong interaction between cations and negatively charged lipids. We also compare cation concentrations as a function of surface charge density obtained by our simulation with those obtained by a modified Poisson-Boltzmann theory. Including the ion finite size makes the statistical results consistent, suggesting the importance of the ion-ion interactions in aqueous solution. Our simulation results advance our understanding of ion distribution during phase separation.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Fosfolipídeos/química , Cátions
2.
Langmuir ; 37(32): 9683-9693, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34288679

RESUMO

We investigated the phase separation of dioleoylphosphatidylserine (DOPS) and dipalmitoylphosphatidylcholine (DPPC) in giant unilamellar vesicles in a hypotonic solution using fluorescence and confocal laser scanning microscopy. Although phase separation in charged lipid membranes is generally suppressed by the electrostatic repulsion between the charged headgroups, osmotic stress can promote the formation of charged lipid domains. Interestingly, we observed a three-phase coexistence even in the DOPS/DPPC binary lipid mixtures. The three phases were DPPC-rich, dissociated DOPS-rich, and nondissociated DOPS-rich phases. The two forms of DOPS were found to coexist owing to the ionization of the DOPS headgroup, such that the system could be regarded as quasi-ternary. The three formed phases with differently ionized DOPS domains were successfully identified experimentally by monitoring the adsorption of positively charged particles. In addition, coarse-grained molecular dynamics simulations confirmed the stability of the three-phase coexistence. Attraction mediated by hydrogen bonding between protonated DOPS molecules and reduction of the electrostatic interactions at the domain boundaries stabilized the three-phase coexistence.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Lipossomas Unilamelares , Soluções Hipotônicas , Bicamadas Lipídicas , Microscopia Confocal , Simulação de Dinâmica Molecular , Eletricidade Estática
3.
Molecules ; 26(4)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33670043

RESUMO

The aim of this study was to investigate and understand bacterial adhesion to different dental material surfaces like amalgam, Chromasit, an Co-Cr alloy, an IPS InLine ceramic, yttrium stabilized tetragonal polycrystalline zirconia (TPZ), a resin-based composite, an Au-Pt alloy, and a tooth. For all materials, the surface roughness was assessed by profilometry, the surface hydrophobicity was determined by tensiometry, and the zeta potential was measured by electrokinetic phenomena. The arithmetic average roughness was the lowest for the TPZ ceramic (Ra = 0.23 µm ± 0.02 µm), while the highest value was observed for the Au-Pt alloy (Ra = 0.356 µm ± 0.075 µm). The hydrophobicity was the lowest on the TPZ ceramic and the highest on the Co-Cr alloy. All measured streaming potentials were negative. The most important cause of tooth caries is the bacterium Streptococcus mutans, which was chosen for this study. The bacterial adhesion to all material surfaces was determined by scanning electron microscopy. We showed that the lowest bacterial extent was on the amalgam, whereas the greatest extent was on tooth surfaces. In general, measurements showed that surface properties like roughness, hydrophobicity and charge have a significant influence on bacterial adhesion extent. Therefore, dental material development should focus on improving surface characteristics to reduce the risk of secondary caries.


Assuntos
Ligas/química , Cerâmica/química , Resinas Compostas/química , Amálgama Dentário/química , Metacrilatos/química , Streptococcus mutans/crescimento & desenvolvimento , Uretana/química , Aderência Bacteriana , Humanos , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Propriedades de Superfície
4.
Langmuir ; 35(8): 3215-3230, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30673246

RESUMO

We propose the statistical thermodynamic model for the prediction of the liquid-liquid extraction efficiency in the case of rare-earth metal cations using the common bis(2-ethyl-hexyl)phosphoric acid (HDEHP) extractant. In this soft matter-based approach, the solutes are modeled as colloids. The leading terms in free-energy representation account for: the complexation, the formation of a highly curved extractant film, lateral interactions between the different extractant head groups in the film, configurational entropy of ions and water molecules, the dimerization, and the acidity of the HDEHP extractant. We provided a full framework for the multicomponent study of extraction systems. By taking into account these different contributions, we are able to establish the relation between the extraction and general complexation at any pH in the system. This further allowed us to rationalize the well-defined optimum in the extraction engineering design. Calculations show that there are multiple extraction regimes even in the case of lanthanide/acid system only. Each of these regimes is controlled by the formation of different species in the solvent phase, ranging from multiple metal cation-filled aggregates (at the low acid concentrations in the aqueous phase), to the pure acid-filled aggregates (at the high acid concentrations in the aqueous phase). These results are contrary to a long-standing opinion that liquid-liquid extraction can be modeled with only a few species. Therefore, a traditional multiple equilibria approach is abandoned in favor of polydisperse spherical aggregate formations, which are in dynamic equilibrium.

5.
Biofouling ; 35(3): 273-283, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31025585

RESUMO

There is a wide range of factors affecting bacterial adhesion and biofilm formation. However, in both food processing and medical settings, it is very hard to obtain suitably controlled conditions so that the factors that reduce surface colonisation and biofouling can be studied. The aim of this study was to evaluate the effect of glucose concentration, temperature and stainless steel (SS) surface roughness on biofouling by four common pathogens (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and L. monocytogenes). Among the tested variables, the untreated SS surface (3C) was shown to be fouled more than 3D polished, brushed or electropolished SS surfaces. Although an array of parameters influenced biofouling, the most promising control measure was the influence of low temperature (4 °C) that reduced biofouling even in the case of the psychrophilic Listeria monocytogenes. The study findings could significantly contribute to the prevention of SS surface contamination and consequential biofouling by food and healthcare associated pathogens.


Assuntos
Incrustação Biológica , Glucose/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Aço Inoxidável , Aderência Bacteriana , Temperatura
6.
Langmuir ; 34(35): 10434-10447, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30081639

RESUMO

We develop a minimal model for the prediction of solvent extraction. We consider a rare earth extraction system for which the solvent phase is similar to water-poor microemulsions. All physical molecular quantities used in the calculation can be measured separately. The model takes into account competition complexation, mixing entropy of complexed species, differences of salt concentrations between the two phases, and the surfactant nature of extractant molecules. We consider the practical case where rare earths are extracted from iron nitrates in the presence of acids with a common neutral complexing extractant. The solvent wetting of the reverse aggregates is taken into account via the spontaneous packing. All the water-in-oil reverse aggregates are supposed to be spherical on average. The minimal model captures several features observed in practice: reverse aggregates with different water and extractant content coexist dynamically with monomeric extractant molecules at and above a critical aggregate concentration (CAC). The CAC decreases upon the addition of electrolytes in the aqueous phase. The free energy of transfer of an ion to the organic phase is lower than the driving complexation. The commonly observed log-log relation used to determine the apparent stoichiometry of complexation is valid as a guideline but should be used with care. The results point to the fact that stoichiometry, as well as the probabilities of a particular aggregate, is dependent on the composition of the entire system, namely the extractant and the target solutes' concentrations. Moreover, the experimentally observed dependence of the extraction efficiency on branching of the extractant chains in a given solvent can be quantified. The evolution of the distribution coefficient of particular rare earth, acid, or other different metallic cations can be studied as a function of initial extractant concentration through the whole region that is typically used by chemical engineers. For every chemical species involved in the calculation, the model is able to predict the exact equilibrium concentration in both the aqueous and the solvent phases at a given thermodynamic temperature.

7.
Eur Phys J E Soft Matter ; 41(9): 113, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30259300

RESUMO

Mean-field electrostatics is used to calculate the differential capacitance of an electric double layer formed at a planar electrode in a symmetric 1:1 electrolyte. Assuming the electrolyte is also ion-size symmetric, we derive analytic expressions for the differential capacitance valid up to fourth order in the surface charge density or surface potential. Our mean-field model accounts exclusively for electrostatic interactions but includes an arbitrary non-ideality in the mixing entropy of the mobile ions. The ensuing criterion for the camel-to-bell shape transition of the differential capacitance is analyzed using commonly used mixing models (one based on a lattice gas and the other based on the Carnahan-Starling equation of state) and compared with Monte Carlo simulations. We observe a reasonable agreement between all our mean-field models and the simulation data for the camel-to-bell shape transition. The absolute value of the differential capacitance for an uncharged (or weakly charged) electrode is, however, not reproduced by our mean-field approaches, not even upon introducing a Stern layer with a thickness equal of the ion radius. We show that, if a Stern layer is introduced, its thickness dependence on the ion size is non-monotonic or, depending on the salt concentration, even inversely proportional.

8.
Phys Chem Chem Phys ; 20(46): 29249-29263, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30427341

RESUMO

Charged lipids in cell membranes and subcellular organelles are arranged in the form of a bilayer with the hydrocarbon tails sequestered away from the water and the polar head groups exposed to the aqueous environment. Most of them bear net negative charges leading to the negatively charged cell membranes. Charged lipid-lipid and lipid-protein interactions are generally dynamic and heavily depend on their local molecular concentrations. To examine the electrostatic properties of charged lipid layers in contact with an electrolyte solution, we incorporate the single chain mean field theory with Poisson-Boltzmann theory to explore the equilibrium structure of charged phospholipid membranes. Using the three bead coarse-grained model we reproduced the essential equilibrium properties of the charged phospholipid bilayer. We also investigate the influence of the mobile ions on the thickness of the layer, the area per lipid (APL), and the electrostatic potential of the membrane. Then we investigate the attraction-repulsion property of two charged nanoparticles which are stuck on the charged lipid molecules surrounded with mobile ions. After that we simulated the interaction between the Pleckstrin homology domain (PH domain) of Akt and the cytoplasmic membrane. Taking into account the electrostatic interaction, we observe the structure changes of the membrane at different concentrations of mobile ions in its equilibrium state. Also we discuss the influence of mobile ions on the size of the pore opened in the membrane by the charged protein. Such an observation may shed light on the activation of oncogenic Akt (or protein kinase B) around the membrane at the molecular level.


Assuntos
Bicamadas Lipídicas/química , Nanopartículas/química , Fosfolipídeos/química , Entropia , Distribuição de Poisson , Eletricidade Estática
9.
Int J Environ Health Res ; 28(1): 55-63, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29232959

RESUMO

The aim of this study was to analyze the impact of hydrodynamic forces on the multiplication of E. coli, and biofilm formation and dispersion. The experiments were provided in a flow chamber simulating a cleaning-in-place system. Biofilm biomass was measured using a crystal violet dye method. The results show that hydrodynamic forces affect not only biofilm formation and dispersion but the multiplication of E. coli in the first place. We found more biofilm biomass on the rough surface than on the smooth one. The results of the biofilm formation test show that laminar flow promotes the biofilm growth over 72 h, meanwhile turbulent flow after 48 h causes decrease in biomass. The results of the biofilm dispersion test, in contrast, show that laminar flow removed less biofilm from both materials that turbulent flow did. Therefore, taking into account these findings in cleaning-in-place technology can substantially reduce E. coli multiplication and biofilm formation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Aço Inoxidável , Hidrodinâmica
10.
Int J Environ Health Res ; 27(3): 169-178, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28347157

RESUMO

The aim of this study was to analyse the adhesion of E. coli, P. aeruginosa and S. aureus on food contact materials, such as polyethylene terephthalate, silicone, aluminium, Teflon and glass. Surface roughness, streaming potential and contact angle were measured. Bacterial properties by contact angle and specific charge density were characterised. The bacterial adhesion analysis using staining method and scanning electron microscopy showed the lowest adhesion on smooth aluminium and hydrophobic Teflon for most of the bacteria. However, our study indicates that hydrophobic bacteria with high specific charge density attach to those surfaces more intensively. In food services, safety could be increased by selecting material with low adhesion to prevent cross contamination.


Assuntos
Aderência Bacteriana , Escherichia coli/fisiologia , Contaminação de Alimentos/prevenção & controle , Serviços de Alimentação/normas , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Utensílios de Alimentação e Culinária/normas , Embalagem de Alimentos/normas , Vidro , Plásticos , Aço Inoxidável , Propriedades de Superfície
11.
Soft Matter ; 12(19): 4397-405, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27087406

RESUMO

The interaction between like-charged objects in electrolyte solutions can be heavily altered by the presence of multivalent ions which possess a spatially distributed charge. In this work, we examine the influence of stiff, multivalent zwitterionic polymers on the interaction between charged surfaces using a splitting field theory previously shown to be accurate for the weak to the intermediate to the strong electrostatic coupling regimes. The theory is compared to Monte Carlo simulations and good agreement is found between both approaches. For surface separations shorter than the polymer length, the polymers are mainly oriented parallel to the surfaces, and the surface-surface interaction is repulsive. When the surface separation is comparable to the length of polymers, the polymers have two main orientations. The first corresponds to the polymers adsorbed onto the surface with their centers located near to or in contact with the surface; the second corresponds to polymers which are perpendicular to the charged surfaces, bridging both surfaces and leading to an attractive force between them. Increasing the surface charge density leads to more pronounced attraction via bridging. At surface separations greater than the polymer length, the polymers in the center of the system are still mainly perpendicular to the surfaces, due to "chaining" between zwitterions that enable them to bridge the surfaces at larger separations. This leads to an attractive interaction between the surfaces with a range significantly longer than the length of the polymers.

12.
Soft Matter ; 12(18): 4229-40, 2016 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-27049110

RESUMO

Charged spherical nanoparticles trapped at the interface between water and air or water and oil exhibit repulsive electrostatic forces that contain a long-ranged dipolar and a short-ranged exponentially decaying component. The former are induced by the unscreened electrostatic field through the non-polar low-permittivity medium, and the latter result from the overlap of the diffuse ion clouds that form in the aqueous phase close to the nanoparticles. The magnitude of the long-ranged dipolar interaction is largely determined by the residual charges that remain attached to the air- (or oil-) exposed region of the nanoparticle. In the present work we address the question to what extent the charges on the water-immersed part of the nanoparticle provide an additional contribution to the dipolar interaction. To this end, we model the electrostatic properties of a spherical particle - a nanoparticle or a colloid - that partitions equatorially to the air-water interface, thereby employing nonlinear Poisson-Boltzmann theory in the aqueous solution and accounting for the propagation of the electric field through the interior of the particle. We demonstrate that the apparent charge density on the air-exposed region of the particle, which determines the dipole potential, is influenced by the electrostatic properties in the aqueous solution. We also show that this electrostatic coupling through the particle can be reproduced qualitatively by a simple analytic planar capacitor model. Our results help to rationalize the experimentally observed weak but non-vanishing salt dependence of the forces that stabilize ordered two-dimensional arrays of interface-trapped nanoparticles or colloids.

13.
J Chem Phys ; 145(23): 234901, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27984866

RESUMO

Like-charged macromolecules typically repel each other in aqueous solutions that contain small mobile ions. The interaction tends to turn attractive if mobile ions with spatially extended charge distributions are added. Such systems can be modeled within the mean-field Poisson-Boltzmann formalism by explicitly accounting for charge-charge correlations within the spatially extended ions. We consider an aqueous solution that contains a mixture of spherical nanoparticles with uniform surface charge density and small mobile salt ions, sandwiched between two like-charged planar surfaces. We perform the minimization of an appropriate free energy functional, which leads to a non-linear integral-differential equation for the electrostatic potential that we solve numerically and compare with predictions from Monte Carlo simulations. Nanoparticles with uniform surface charge density are contrasted with nanoparticles that have all their charges relocated at the center. Our mean-field model predicts that only the former (especially when large and highly charged particles) but not the latter are able to mediate attractive interactions between like-charged planar surfaces. We also demonstrate that at high salt concentration attractive interactions between like-charged planar surfaces turn into repulsion.

14.
Int J Environ Health Res ; 25(5): 469-79, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25307889

RESUMO

The adhesion of bacterial cells to various surfaces is based on physical and chemical interactions between the micro-organisms and the surfaces. The main purpose of this research is to determine the effect of material roughness and incubation temperature on the adhesion of bacteria. To determine the adhesion of the bacterial strain of Legionella pneumophila ATCC 33153 to the glass coupons, a spectrophotometric method of measuring the optical density of crystal violet dye that is released from pre-stained bacterial cells attached to the test surface was used. The intensity of adhesion is in positive correlation to the increase in surface roughness (p < 0.05). The adhesion is the greatest at an optimal temperature of 36 °C, whereas the temperature of 15 °C has a bacteriostatic effect and the temperature of 55 °C a bactericidal effect.


Assuntos
Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Legionella pneumophila/fisiologia , Vidro/análise , Legionella pneumophila/crescimento & desenvolvimento , Propriedades de Superfície , Temperatura , Purificação da Água
15.
Int J Environ Health Res ; 25(6): 656-69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25693913

RESUMO

Environmental parameters dictate the conditions for both biofilm formation and deconstruction. The aim of this study is to analyse the impact of hydrodynamic and thermodynamic effects on bacterial detachment. Escherichia coli grown on two stainless steel metal surfaces with different roughness (brushed with roughness of 0.05 µm and electropolished with roughness of 0.29 µm) are exposed to laminar and turbulent (shower) flows of phosphate buffered saline media at temperatures of 8, 20 and 37 °C. Results show that the turbulent flow removes significantly more bacterial cells than laminar flow (p <0.05) on both materials. This indicates that the shear force determines the rate of detached bacteria. It is also observed that detachment of cells is more efficient on brushed than on electropolished contact surfaces because on the latter surface, fewer cells were attached before exposure. Moreover, we demonstrate that the temperature of the washing agent has an impact on bacterial detachment. At the same flow conditions, the exposure to higher temperature results in greater detachment rate.


Assuntos
Aderência Bacteriana , Biofilmes , Escherichia coli/fisiologia , Aço Inoxidável/análise , Hidrodinâmica , Propriedades de Superfície , Temperatura , Termodinâmica
16.
Acta Chim Slov ; 62(3): 582-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26454592

RESUMO

A coarse-grained model of simple monovalent electrolyte solution in contact with a zwitterionic lipid layer in continuum solvent is studied by canonical Monte Carlo computer simulations and extended Poisson-Boltzmann theory. A structure of zwitterionic layer as well as concentration profiles of positively and negatively charged monovalent ions were obtained from simulations and compared to theoretical predictions. A relatively good agreement between the Monte Carlo computer simulations and theory was observed.


Assuntos
Eletrólitos/química , Lipídeos/química , Método de Monte Carlo , Distribuição de Poisson , Soluções
17.
Langmuir ; 30(32): 9717-25, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25036697

RESUMO

The silica particle interactions in the presence of spermidine were systematically investigated both from experimental and theoretical points of view. The hydrodynamic radii and the corresponding polydispersity indices of the colloidal silica particles were determined by dynamic light scattering (DLS) as a function of spermidine concentration. Whereas the effective size of the silica particles increases with increasing spermidine concentration (pointing to the particle aggregation), the polydispersity index first increases reaches a maximum and then further decreases with the increasing spermidine concentration. From the mobility measurements it was concluded that the increase in spermidine concentration causes less negative values of zeta potential, meaning that the adsorption of spermidine leads to the less negative silica surface. Moreover, Monte Carlo (MC) simulations also confirmed that the addition of spermidine reduces the repulsion between silica particles. The MC concentration profiles of spermidine close to the charged silica particle are in a very good agreement with the results obtained by theory. An important motivation for our study is the effectiveness of multivalent ions to coagulate colloidal suspensions; e.g., the multivalent ions are exploited in the water purification process.


Assuntos
Íons/química , Dióxido de Silício/química , Método de Monte Carlo , Tamanho da Partícula
18.
Langmuir ; 30(31): 9466-76, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25019516

RESUMO

It is well-known that a number of surface characteristics affect the extent of adhesion between two adjacent materials. One of such parameters is the surface roughness as surface asperities at the nanoscale level govern the overall adhesive forces. For example, the extent of bacterial adhesion is determined by the surface topography; also, once a bacteria colonizes a surface, proliferation of that species will take place and a biofilm may form, increasing the resistance of bacterial cells to removal. In this study, borosilicate glass was employed with varying surface roughness and coated with bovine serum albumin (BSA) in order to replicate the protein layer that covers orthopedic devices on implantation. As roughness is a scale-dependent process, relevant scan areas were analyzed using atomic force microscope (AFM) to determine Ra; furthermore, appropriate bacterial species were attached to the tip to measure the adhesion forces between cells and substrates. The bacterial species chosen (Staphylococci and Streptococci) are common pathogens associated with a number of implant related infections that are detrimental to the biomedical devices and patients. Correlation between adhesion forces and surface roughness (Ra) was generally better when the surface roughness was measured through scanned areas with size (2 × 2 µm) comparable to bacteria cells. Furthermore, the BSA coating altered the surface roughness without correlation with the initial values of such parameter; therefore, better correlations were found between adhesion forces and BSA-coated surfaces when actual surface roughness was used instead of the initial (nominal) values. It was also found that BSA induced a more hydrophilic and electron donor characteristic to the surfaces; in agreement with increasing adhesion forces of hydrophilic bacteria (as determined through microbial adhesion to solvents test) on BSA-coated substrates.


Assuntos
Compostos de Boro/química , Silicatos/química , Streptococcaceae/química , Streptococcus/química , Animais , Aderência Bacteriana , Bovinos , Vidro/química , Tamanho da Partícula , Soroalbumina Bovina/química , Propriedades de Superfície
19.
Int J Biol Macromol ; 267(Pt 1): 131288, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565365

RESUMO

The unpredictable release behavior of metal nanoparticles/metal ions from metal nanoparticle-loaded hydrogels, without a suitable in situ detection method, is resulting in serious cytotoxicity. To optimize the preparation and design of antibacterial hydrogels for in situ detection of metal nanoparticles, an in-situ detection platform based on the fluorescence signal change caused by the potential surface energy transfer of silver nanoparticles (AgNPs) and carbon dots (CD) through silver mirror reaction and Schiff base reaction was established. The antimicrobial test results show that the composite antimicrobial hydrogel, with lower dosages of AgNPs and CD, exhibited a higher inhibition rate of 99.1 % against E. coli and 99.8 % against S. aureus compared to the single antimicrobial component. This suggests a potential synergistic antimicrobial activity. Furthermore, the fluorescence detection platform was established with a difference of <3 µg between detected values and actual values over a period of 72 h. This demonstrates the excellent in situ detection capability of the hydrogel in antimicrobial-related applications.


Assuntos
Antibacterianos , Dextranos , Escherichia coli , Hidrogéis , Nanopartículas Metálicas , Prata , Staphylococcus aureus , Prata/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Dextranos/química , Testes de Sensibilidade Microbiana , Corantes Fluorescentes/química , Técnicas Biossensoriais/métodos
20.
Heliyon ; 10(1): e23849, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192822

RESUMO

Prosthetic liners are mainly used as an interface between residual limbs and prosthetic sockets to minimize physical and biological damage to soft tissue. However, the closed and moist conditions within liners and the amputee's skin provide a suitable environment for bacterial growth to cause infections. This study aimed to coat a comprehensive variant material with copper oxide nanoparticles (CuO NPs) and compare their surface analysis and antibacterial properties. These materials were covered with CuO NPs solution at a concentration of 70 µg mL-1 to achieve this purpose. After drying, their surface characteristics were analyzed by measuring zeta potential, contact angle, surface roughness, and fiber arrangement. Cu-released concentration from the coatings into the acetate buffer solution by inductively coupled plasma mass spectrometry indicated that lycra and nylon quickly released Cu ions to concentrations up to ∼0.2 µg mL-1 after 24 h, causing low metabolic activity of human bone-marrow mesenchymal stem cells (bMSC) in the indirect assay. Antibacterial activity of the coated specimens was evaluated by infecting their surfaces with the Gram-positive bacteria Staphylococcus epidermidis, reporting a significant ∼40 % reduction of metabolic activity for x-dry after 24 h; in addition, the number of viable bacterial colonies adhered to the surface of this material was reduced by ∼23 times in comparison with non-treated x-dry that were visually confirmed by scanning electron microscope. In conclusion, CuO NPs x-dry shows optimistic results to pursue further experiments due to its slow speed of Cu release and prolonged antibacterial activity, as well as its compatibility with human cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA