Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cerebellum ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748348

RESUMO

Essential tremor (ET) is a heterogeneous disorder characterized by bilateral upper limbs action tremor and, possibly, neurological signs of uncertain significance, including voluntary movement abnormalities and cognitive disturbances, i.e., the so-called 'soft' signs configuring the ET-plus definition. While motor and cognitive disturbances often coexist in ET, their interrelationship remains largely unexplored. Here we aim to further investigate the relationship between motor symptoms, objectively assessed through kinematic analysis, and cognitive dysfunctions in ET. Seventy ET patients underwent clinical examination, as well as kinematic recordings of tremor and finger tapping and a thorough cognitive assessment. We then tested clinic-demographic and kinematic differences between patients with and without cognitive abnormalities, i.e., with mild cognitive impairment (MCI). Correlation analysis served to explore potential associations between kinematic and cognitive data. Forty-three ET patients (61.42%) had MCI. ET-MCI patients exhibited reduced movement velocity during finger tapping compared to those with normal cognition (p < 0.001). Lower movement velocity during finger tapping was associated with poorer cognitive performance. Namely, we observed a correlation between movement velocity and performance on the Babcock Story Immediate and Delayed Recall Test (r = 0.52 and r = 0.45, both p < 0.001), as well as the interference memory task at 10 and 30 s (r = 0.3, p = 0.008 and r = 0.2, p = 0.03). In this study, we have provided data for a better pathophysiological interpretation of motor and cognitive signs in ET, including the role played by the cerebellum or extra-cerebellar areas, which possibly underpin both signs.

2.
Cerebellum ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761352

RESUMO

Substantial evidence highlights the role of the cerebellum in the pathophysiology of tremor in essential tremor (ET), although its potential involvement in altered movement execution in this condition remains unclear. This study aims to explore potential correlations between the cerebellum and basal ganglia functional connectivity and voluntary movement execution abnormalities in ET, objectively assessed with kinematic techniques. A total of 20 patients diagnosed with ET and 18 healthy subjects were enrolled in this study. Tremor and repetitive finger tapping were recorded using an optoelectronic kinematic system. All participants underwent comprehensive 3T-MRI examinations, including 3D-T1 and blood-oxygen-level dependent (BOLD) sequences during resting state. Morphometric analysis was conducted on the 3D-T1 images, while a seed-based analysis was performed to investigate the resting-state functional connectivity (rsFC) of dorsal and ventral portions of the dentate nucleus and the external and internal segments of the globus pallidus. Finally, potential correlations between rsFC alterations in patients and clinical as well as kinematic scores were assessed. Finger tapping movements were slower in ET than in healthy subjects. Compared to healthy subjects, patients with ET exhibited altered FC of both dentate and globus pallidus with cerebellar, basal ganglia, and cortical areas. Interestingly, both dentate and pallidal FC exhibited positive correlations with movement velocity in patients, differently from that we observed in healthy subjects, indicating the higher the FC, the faster the finger tapping. The findings of this study indicate the possible role of both cerebellum and basal ganglia in the pathophysiology of altered voluntary movement execution in patients with ET.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38744708

RESUMO

BACKGROUND: Subtle parkinsonian signs, i.e., rest tremor and bradykinesia, are considered soft signs for defining essential tremor (ET) plus. OBJECTIVES: Our study aimed to further characterize subtle parkinsonian signs in a relatively large sample of ET patients from a clinical and neurophysiological perspective. METHODS: We employed clinical scales and kinematic techniques to assess a sample of 82 ET patients. Eighty healthy controls matched for gender and age were also included. The primary focus of our study was to conduct a comparative analysis of ET patients (without any soft signs) and ET-plus patients with rest tremor and/or bradykinesia. Additionally, we investigated the asymmetry and side concordance of these soft signs. RESULTS: In ET-plus patients with parkinsonian soft signs (56.10% of the sample), rest tremor was clinically observed in 41.30% of cases, bradykinesia in 30.43%, and rest tremor plus bradykinesia in 28.26%. Patients with rest tremor had more severe and widespread action tremor than other patients. Furthermore, we observed a positive correlation between the amplitude of action and rest tremor. Most ET-plus patients had an asymmetry of rest tremor and bradykinesia. There was no side concordance between these soft signs, as confirmed through both clinical examination and kinematic evaluation. CONCLUSIONS: Rest tremor and bradykinesia are frequently observed in ET and are often asymmetric but not concordant. Our findings provide a better insight into the phenomenology of ET and suggest that the parkinsonian soft signs (rest tremor and bradykinesia) in ET-plus may originate from distinct pathophysiological mechanisms.

4.
J Neural Transm (Vienna) ; 131(1): 31-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37804428

RESUMO

Parkinson's disease (PD) and Alzheimer's disease (AD) are neurodegenerative disorders with some overlapping clinical features. Hypomimia (reduced facial expressivity) is a prominent sign of PD and it is also present in AD. However, no study has experimentally assessed hypomimia in AD and compared facial expressivity between PD and AD patients. We compared facial emotion expressivity in patients with PD, AD, and healthy controls (HCs). Twenty-four PD patients, 24 AD patients and 24 HCs were videotaped during neutral facial expressions and while posing six facial emotions (anger, surprise, disgust, fear, happiness, and sadness). Fifteen raters were asked to evaluate the videos using MDS-UPDRS-III (item 3.2) and to identify the corresponding emotion from a seven-forced-choice response format. We measured the percentage of accuracy, the reaction time (RT), and the confidence level (CL) in the perceived accuracy of the raters' responses. We found the highest MDS-UPDRS 3.2 scores in PD, and higher in AD than HCs. When evaluating the posed expression captures, raters identified a lower percentage of correct answers in the PD and AD groups than HCs. There was no difference in raters' response accuracy between the PD and AD. No difference was observed in RT and CL data between groups. Hypomimia in patients correlated positively with the global MDS-UPDRS-III and negatively with Mini Mental State Examination scores. PD and AD patients have a similar pattern of reduced facial emotion expressivity compared to controls. These findings hold potential pathophysiological and clinical implications.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , Expressão Facial , Emoções/fisiologia , Face
5.
Cereb Cortex ; 33(12): 7335-7346, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882526

RESUMO

The "interlimb transfer" phenomenon consists of improved performance of the trained and untrained contralateral limbs after unilateral motor practice. We here assessed whether a visuomotor learning task can be transferred from one hemisphere to the other, whether this occurs symmetrically, and the cortical neurophysiological correlates of this phenomenon, focusing on interhemispheric connectivity measures. We enrolled 33 healthy subjects (age range: 24-73 years). Participants underwent two randomized sessions, which investigated the transfer from the dominant to the nondominant hand and vice versa. Measures of cortical and intracortical excitability and interhemispheric inhibition were assessed through transcranial magnetic stimulation before and after a visuomotor task. The execution of the visuomotor task led to an improvement in motor performance with the dominant and nondominant hands and induced a decrease in intracortical inhibition in the trained hemisphere. Participants were also able to transfer the visuomotor learned skill. The interlimb transfer, however, only occurred from the dominant to the nondominant hand and positively correlated with individual learning-related changes in interhemispheric inhibition. We here demonstrated that the "interlimb transfer" of a visuomotor task occurs asymmetrically and relates to the modulation of specific inhibitory interhemispheric connections. The study results have pathophysiological, clinical, and neuro-rehabilitative implications.


Assuntos
Lateralidade Funcional , Aprendizagem , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Lateralidade Funcional/fisiologia , Aprendizagem/fisiologia , Inibição Psicológica , Mãos/fisiologia , Desempenho Psicomotor/fisiologia , Destreza Motora/fisiologia
6.
Neurol Sci ; 45(5): 2035-2046, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38091213

RESUMO

BACKGROUND: Opicapone (OPC) is a third-generation, selective peripheral COMT inhibitor that improves peripheral L-DOPA bioavailability and reduces OFF time and end-of-dose motor fluctuations in Parkinson's disease (PD) patients. OBJECTIVES: In this study, we objectively assessed the effects of adding OPC to L-DOPA on bradykinesia in PD through kinematic analysis of finger movements. METHODS: We enrolled 20 treated patients with PD and motor fluctuations. Patients underwent two experimental sessions (L-DOPA, L-DOPA + OPC), separated by at least 1 week. In each session, patients were clinically evaluated and underwent kinematic movement analysis of repetitive finger movements at four time points: (i) before their usual morning dose of L-DOPA (T0), (ii) 30 min (T1), (iii) 1 h and 30 min (T2), and (iv) 3 h and 30 min after the L-DOPA intake (T3). RESULTS: Movement velocity and amplitude of finger movements were higher in PD patients during the session with OPC compared to the session without OPC at all the time points tested. Importantly, the variability of finger movement velocity and amplitude across T0-T3 was significantly lower in the L-DOPA + OPC than L-DOPA session. CONCLUSIONS: This study is the first objective assessment of the effects of adding OPC to L-DOPA on bradykinesia in patients with PD and motor fluctuations. OPC, in addition to the standard dopaminergic therapy, leads to significant improvements in bradykinesia during clinically relevant periods associated with peripheral L-DOPA dynamics, i.e., the OFF state in the morning, delayed-ON, and wearing-OFF periods.


Assuntos
Oxidiazóis , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Levodopa/efeitos adversos , Antiparkinsonianos/uso terapêutico , Hipocinesia/tratamento farmacológico , Hipocinesia/etiologia , Fenômenos Biomecânicos , Inibidores de Catecol O-Metiltransferase/farmacologia , Inibidores de Catecol O-Metiltransferase/uso terapêutico
7.
Neurobiol Dis ; 182: 106137, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37120094

RESUMO

Patients with Parkinson's disease (PD) show impaired short-term potentiation (STP) mechanisms in the primary motor cortex (M1). However, the role played by this neurophysiological abnormality in bradykinesia pathophysiology is unknown. In this study, we used a multimodal neuromodulation approach to test whether defective STP contributes to bradykinesia. We evaluated STP by measuring motor-evoked potential facilitation during 5 Hz-repetitive transcranial magnetic stimulation (rTMS) and assessed repetitive finger tapping movements through kinematic techniques. Also, we used transcranial alternating current stimulation (tACS) to drive M1 oscillations and experimentally modulate bradykinesia. STP was assessed during tACS delivered at beta (ß) and gamma (γ) frequency, and during sham-tACS. Data were compared to those recorded in a group of healthy subjects. In PD, we found that STP was impaired during sham- and γ-tACS, while it was restored during ß-tACS. Importantly, the degree of STP impairment was associated with the severity of movement slowness and amplitude reduction. Moreover, ß-tACS-related improvements in STP were linked to changes in movement slowness and intracortical GABA-A-ergic inhibition during stimulation, as assessed by short-interval intracortical inhibition (SICI). Patients with prominent STP amelioration had greater SICI reduction (cortical disinhibition) and less slowness worsening during ß-tACS. Dopaminergic medications did not modify ß-tACS effects. These data demonstrate that abnormal STP processes are involved in bradykinesia pathophysiology and return to normal levels when ß oscillations increase. STP changes are likely mediated by modifications in GABA-A-ergic intracortical circuits and may represent a compensatory mechanism against ß-induced bradykinesia in PD.


Assuntos
Córtex Motor , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Hipocinesia/etiologia , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor , Ácido gama-Aminobutírico
8.
Eur J Neurosci ; 57(1): 201-212, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382537

RESUMO

L-dopa variably influences transcranial magnetic stimulation (TMS) parameters of motor cortex (M1) excitability and plasticity in Parkinson's disease (PD). In patients OFF dopaminergic medication, impaired M1 plasticity and defective GABA-A-ergic inhibition can be restored by boosting gamma (γ) oscillations via transcranial alternating current stimulation (tACS) during intermittent theta-burst stimulation (iTBS). However, it is unknown whether L-dopa modifies the beneficial effects of iTBS-γ-tACS on M1 in PD. In this study, a PD patients group underwent combined iTBS-γ-tACS and iTBS-sham-tACS, each performed both OFF and ON dopaminergic therapy (four sessions in total). Motor evoked potentials (MEPs) elicited by single TMS pulses and short-interval intracortical inhibition (SICI) were assessed before and after iTBS-tACS. We also evaluated possible SICI changes during γ-tACS delivered alone in OFF and ON conditions. The amplitude of MEP elicited by single TMS pulses and the degree of SICI inhibition significantly increased after iTBS-γ-tACS. The amount of change produced by iTBS-γ-tACS was similar in patients OFF and ON therapy. Finally, γ-tACS (delivered alone) modulated SICI during stimulation and this effect did not depend on the dopaminergic condition of patients. In conclusion, boosting cortical γ oscillatory activity via tACS during iTBS improved M1 plasticity and enhanced GABA-A-ergic transmission in PD patients to the same extent regardless of dopaminergic state. These results suggest a lack of interaction between L-dopa and γ-tACS effects at the M1 level. The possible neural substrate underlying iTBS-γ tACS effects, that is, γ-resonant GABA-A-ergic interneurons activity, may explain our findings.


Assuntos
Córtex Motor , Doença de Parkinson , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Doença de Parkinson/terapia , Levodopa/farmacologia , Levodopa/uso terapêutico , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor/fisiologia , Dopamina , Ácido gama-Aminobutírico , Plasticidade Neuronal/fisiologia
9.
Mov Disord ; 38(3): 496-501, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707401

RESUMO

BACKGROUND: Bradykinesia is a cardinal feature in parkinsonisms. No study has assessed the differential features of bradykinesia in patients with pathology-proven synucleinopathies and tauopathies. OBJECTIVE: We examined whether bradykinesia features (speed, amplitude, rhythm, and sequence effect) may differ between pathology-proven synucleinopathies and tauopathies. METHODS: Forty-two cases who underwent autopsy were included and divided into synucleinopathies (Parkinson's disease and dementia with Lewy bodies) and tauopathies (progressive supranuclear palsy). Two raters blinded to the diagnosis retrospectively scored the Movement Disorders Society-Unified Parkinson's Disease Rating Scale Part III and Modified Bradykinesia Rating Scale on standardized videotaped neurological examinations. Bradykinesia scores were compared using the Mann-Whitney test and logistic regression models to adjust for disease duration. RESULTS: Demographic and clinical parameters were similar between synucleinopathies and tauopathies. There were no differences between speed, amplitude, rhythm, and sequence effect in synucleinopathies and tauopathies in unadjusted comparisons and adjusted models (all P > 0.05). CONCLUSIONS: Clinical bradykinesia features do not distinguish the underlying neuropathology in neurodegenerative parkinsonisms. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Hipocinesia , Doença de Parkinson , Sinucleinopatias , Tauopatias , Gravação em Vídeo , Humanos , Hipocinesia/complicações , Hipocinesia/fisiopatologia , Modelos Logísticos , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Estudos Retrospectivos , Estatísticas não Paramétricas , Paralisia Supranuclear Progressiva/complicações , Paralisia Supranuclear Progressiva/patologia , Paralisia Supranuclear Progressiva/fisiopatologia , Sinucleinopatias/complicações , Sinucleinopatias/patologia , Sinucleinopatias/fisiopatologia , Tauopatias/complicações , Tauopatias/patologia , Tauopatias/fisiopatologia , Autopsia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso
10.
Eur J Neurol ; 30(3): 631-640, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36437695

RESUMO

BACKGROUND AND PURPOSE: Essential tremor (ET) is a common and heterogeneous disorder characterized by postural/kinetic tremor of the upper limbs and other body segments and by non-motor symptoms, including cognitive and psychiatric abnormalities. Only a limited number of longitudinal studies have comprehensively and simultaneously investigated motor and non-motor symptom progression in ET. Possible soft signs that configure the ET-plus diagnosis are also under-investigated in follow-up studies. We aimed to longitudinally investigate the progression of ET manifestations by means of clinical and neurophysiological evaluation. METHODS: Thirty-seven ET patients underwent evaluation at baseline (T0) and at follow-up (T1; mean interval ± SD = 39.89 ± 9.83 months). The assessment included the clinical and kinematic evaluation of tremor and voluntary movement execution, as well as the investigation of cognitive and psychiatric disorders. RESULTS: A higher percentage of patients showed tremor in multiple body segments and rest tremor at T1 as compared to T0 (all p-values < 0.01). At T1, the kinematic analysis revealed reduced finger-tapping movement amplitude and velocity as compared to T0 (both p-values < 0.001). The prevalence of cognitive and psychiatric disorders did not change between T0 and T1. Female sex, absence of family history, and rest tremor at baseline were identified as predictive factors of worse disease progression. CONCLUSIONS: ET progression is characterized by the spread of tremor in multiple body segments and by the emergence of soft signs. We also identified possible predictors of disease worsening. The results contribute to a better understanding of ET classification and pathophysiology.


Assuntos
Tremor Essencial , Transtornos Mentais , Humanos , Feminino , Tremor Essencial/diagnóstico , Tremor/diagnóstico , Estudos Longitudinais , Extremidade Superior
11.
Semin Neurol ; 43(1): 156-165, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36913973

RESUMO

The approach and diagnosis of patients with tremor may be challenging for clinicians. According to the most recent consensus statement by the Task Force on Tremor of the International Parkinson Movement Disorder Society, the differentiation between action (i.e., kinetic, postural, intention), resting, and other task- and position-specific tremors is crucial to this goal. In addition, patients with tremor must be carefully examined for other relevant features, including the topography of the tremor, since it can involve different body areas and possibly associate with neurological signs of uncertain significance. Following the characterization of major clinical features, it may be useful to define, whenever possible, a particular tremor syndrome and to narrow down the spectrum of possible etiologies. First, it is important to distinguish between physiological and pathological tremor, and, in the latter case, to differentiate between the underlying pathological conditions. A correct approach to tremor is particularly relevant for appropriate referral, counseling, prognosis definition, and therapeutic management of patients. The purpose of this review is to outline the possible diagnostic uncertainties that may be encountered in clinical practice in the approach to patients with tremor. In addition to an emphasis on a clinical approach, this review discusses the important ancillary role of neurophysiology and innovative technologies, neuroimaging, and genetics in the diagnostic process.


Assuntos
Tremor Essencial , Doença de Parkinson , Humanos , Tremor/diagnóstico , Tremor/terapia , Doença de Parkinson/complicações , Síndrome
12.
Brain ; 145(1): 224-236, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34245244

RESUMO

In patients with Parkinson's disease, beta (ß) and gamma (γ) oscillations are altered in the basal ganglia, and this abnormality contributes to the pathophysiology of bradykinesia. However, it is unclear whether ß and γ rhythms at the primary motor cortex (M1) level influence bradykinesia. Transcranial alternating current stimulation (tACS) can modulate cortical rhythms by entraining endogenous oscillations. We tested whether ß- and γ-tACS on M1 modulate bradykinesia in patients with Parkinson's disease by analysing the kinematic features of repetitive finger tapping, including movement amplitude, velocity and sequence effect, recorded during ß-, γ- and sham tACS. We also verified whether possible tACS-induced bradykinesia changes depended on modifications in specific M1 circuits, as assessed by short-interval intracortical inhibition and short-latency afferent inhibition. Patients were studied OFF and ON dopaminergic therapy. Results were compared to those obtained in a group of healthy subjects. In patients, movement velocity significantly worsened during ß-tACS and movement amplitude improved during γ-tACS, while the sequence effect did not change. In addition, short-latency afferent inhibition decreased (reduced inhibition) during ß-tACS and short-interval intracortical inhibition decreased during both γ- and ß-tACS in Parkinson's disease. The effects of tACS were comparable between OFF and ON sessions. In patients OFF therapy, the degree of short-interval intracortical inhibition modulation during ß- and γ-tACS correlated with movement velocity and amplitude changes. Moreover, there was a positive correlation between the effect of γ-tACS on movement amplitude and motor symptoms severity. Our results show that cortical ß and γ oscillations are relevant in the pathophysiology of bradykinesia in Parkinson's disease and that changes in inhibitory GABA-A-ergic interneuronal activity may reflect compensatory M1 mechanisms to counteract bradykinesia. In conclusion, abnormal oscillations at the M1 level of the basal ganglia-thalamo-cortical network play a relevant role in the pathophysiology of bradykinesia in Parkinson's disease.


Assuntos
Córtex Motor , Doença de Parkinson , Estimulação Transcraniana por Corrente Contínua , Potencial Evocado Motor/fisiologia , Ritmo Gama/fisiologia , Humanos , Hipocinesia/etiologia , Doença de Parkinson/complicações , Estimulação Transcraniana por Corrente Contínua/métodos
13.
Cerebellum ; 21(6): 1029-1051, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34657271

RESUMO

Essential tremor (ET) is one of the most common movement disorders. Over the last 10 years, magnetic resonance imaging (MRI) has shed light on the structural and functional abnormalities possibly involved in ET pathophysiology. In this systematic review, we aimed to identify the cortical and subcortical structures involved and the role that different brain areas play in the pathophysiology of motor and non-motor ET features. We found that structural (grey and white matter) cerebellar damage and connectivity alterations between the cerebellum and various cortical areas play a role in both motor and non-motor symptoms of ET. In particular, many studies found an association between MRI findings and non-motor symptoms.


Assuntos
Tremor Essencial , Humanos , Tremor Essencial/patologia , Neuroimagem , Imageamento por Ressonância Magnética/métodos , Encéfalo , Cerebelo
14.
J Neural Transm (Vienna) ; 129(8): 1011-1021, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35829818

RESUMO

No studies have investigated voluntary movement abnormalities and their neurophysiological correlates in patients with parkinsonism due to inherited primary monoamine neurotransmitter (NT) disorders. Nine NT disorders patients and 16 healthy controls (HCs) were enrolled. Objective measurements of repetitive finger tapping were obtained using a motion analysis system. Primary motor cortex (M1) excitability was assessed by recording the input/output (I/O) curve of motor-evoked potentials (MEP) and using a conditioning test paradigm for short-interval intracortical inhibition (SICI) assessment. M1 plasticity-like mechanisms were indexed according to MEPs amplitude changes after the paired associative stimulation protocol. Patient values were considered abnormal if they were greater or lower than two standard deviations from the average HCs value. Patients with aromatic amino acid decarboxylase, tyrosine hydroxylase, and 6-pyruvoyl-tetrahydropterin synthase defects showed markedly reduced velocity (5/5 patients), reduced movement amplitude, and irregular rhythm (4/5 patients). Conversely, only 1 out of 3 patients with autosomal-dominant GTPCH deficiency showed abnormal movement parameters. Interestingly, none of the patients had a progressive reduction in movement amplitude or velocity during the tapping sequence (no sequence effect). Reduced SICI was the most prominent neurophysiological abnormality in patients (5/9 patients). Finally, the I/O curve slope correlated with movement velocity and rhythm in patients. We provided an objective assessment of finger tapping abnormalities in monoamine NT disorders. We also demonstrated M1 excitability changes possibly related to alterations in motor execution. Our results may contribute to a better understanding of the pathophysiology of juvenile parkinsonism due to dopamine deficiency.


Assuntos
Córtex Motor , Transtornos Parkinsonianos , Potencial Evocado Motor/fisiologia , Humanos , Córtex Motor/fisiologia , Inibição Neural , Neurotransmissores , Estimulação Magnética Transcraniana/métodos
15.
Neurol Sci ; 43(12): 6929-6945, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36190683

RESUMO

The diagnostic framework and the therapeutic management of patients with adult dystonia can represent a challenge for clinical neurologists. The objective of the present paper is to delineate diagnostic and therapeutic recommendations for dystonia provided by a panel of Italian experts afferent to the Italian Society of Neurology, the Italian Academy for the Study of Parkinson's Disease and Movement Disorders, and the Italian Network on Botulinum Toxin. We first discuss the clinical approach and the instrumental assessment useful for diagnostic purpose. Then, we analyze the pharmacological, surgical, and rehabilitative therapeutic options for adult dystonia. Finally, we propose a hospital-territory network model for adult dystonia management.


Assuntos
Toxinas Botulínicas , Distonia , Distúrbios Distônicos , Neurologia , Doença de Parkinson , Humanos , Adulto , Distonia/diagnóstico , Distonia/tratamento farmacológico , Toxinas Botulínicas/uso terapêutico , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Distúrbios Distônicos/diagnóstico , Distúrbios Distônicos/tratamento farmacológico
16.
Neurol Sci ; 43(9): 5369-5376, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35608737

RESUMO

INTRODUCTION: The recently released classification has revised the nosology of tremor, defining essential tremor (ET) as a syndrome and fueling an enlightened debate about some newly conceptualized entities such as ET-plus. As a result, precise information of demographics, clinical features, and about the natural history of these conditions are lacking. METHODS: The ITAlian tremor Network (TITAN) is a multicenter data collection platform, the aim of which is to prospectively assess, according to a standardized protocol, the phenomenology and natural history of tremor syndromes. RESULTS: In the first year of activity, 679 patients have been recruited. The frequency of tremor syndromes varied from 32% of ET and 41% of ET-plus to less than 3% of rare forms, including focal tremors (2.30%), task-specific tremors (1.38%), isolated rest tremor (0.61%), and orthostatic tremor (0.61%). Patients with ET-plus were older and had a higher age at onset than ET, but a shorter disease duration, which might suggest that ET-plus is not a disease stage of ET. Familial aggregation of tremor and movement disorders was present in up to 60% of ET cases and in about 40% of patients with tremor combined with dystonia. The body site of tremor onset was different between tremor syndromes, with head tremor being most commonly, but not uniquely, associated with dystonia. CONCLUSIONS: The TITAN study is anticipated to provide clinically relevant prospective information about the clinical correlates of different tremor syndromes and their specific outcomes and might serve as a basis for future etiological, pathophysiological, and therapeutic research.


Assuntos
Distonia , Distúrbios Distônicos , Tremor Essencial , Distonia/complicações , Humanos , Itália/epidemiologia , Estudos Prospectivos , Síndrome , Tremor/complicações , Tremor/diagnóstico , Tremor/epidemiologia
17.
J Neurosci ; 40(24): 4788-4796, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32430296

RESUMO

In humans, γ oscillations in cortical motor areas reflect asynchronous synaptic activity and contribute to plasticity processes. In Parkinson's disease (PD), γ oscillatory activity in the basal ganglia-thalamo-cortical network is altered and the LTP-like plasticity elicited by intermittent theta burst stimulation (iTBS) is reduced in the primary motor cortex (M1). In this study, we tested whether transcranial alternating current stimulation (tACS) delivered at γ frequency promotes iTBS-induced LTP-like plasticity in M1 in PD patients. Sixteen patients (OFF condition) and 16 healthy subjects (HSs) underwent iTBS during γ-tACS (iTBS-γ tACS) and during sham-tACS (iTBS-sham tACS) in two sessions. Motor-evoked potentials (MEPs) evoked by single-pulse transcranial magnetic stimulation and short-interval intracortical inhibition (SICI) were recorded before and after the costimulation. A subgroup of patients also underwent iTBS during ß tACS. iTBS-sham tACS facilitated single-pulse MEPs in HSs, but not in patients. iTBS-γ tACS induced a larger MEP facilitation than iTBS-sham tACS in both groups, with similar values in patients and HSs. In patients, SICI improved after iTBS-γ tACS. The effect produced by iTBS-γ tACS on single-pulse MEPs correlated with disease duration, while changes in SICI correlated with Unified Parkinson's Disease Rating Scale Part III scores. The effect of iTBS-ß tACS on both single-pulse MEPs and SICI was similar to that obtained in the iTBS-sham tACS session. Our data suggest that γ oscillations have a role in the pathophysiology of the abnormal LTP-like plasticity in PD. Entraining M1 neurons at the γ rhythm through tACS may be an effective method to restore impaired plasticity.SIGNIFICANCE STATEMENT In Parkinson's disease, the LTP-like plasticity of the primary motor cortex is impaired, and γ oscillations are altered in the basal ganglia-thalamo-cortical network. Using a combined transcranial magnetic stimulation-transcranial alternating current stimulation approach (iTBS-γ tACS costimulation), we demonstrate that driving γ oscillations restores the LTP-like plasticity in patients with Parkinson's disease. The effects correlate with clinical characteristics of patients, being more evident in less affected patients and weaker in patients with longer disease duration. These findings suggest that cortical γ oscillations play a beneficial role in modulating the LTP-like plasticity of M1 in Parkinson's disease. The iTBS-γ tACS approach may be potentially useful in rehabilitative settings in patients.


Assuntos
Ritmo Gama/fisiologia , Córtex Motor/fisiopatologia , Plasticidade Neuronal/fisiologia , Doença de Parkinson/fisiopatologia , Estimulação Transcraniana por Corrente Contínua , Idoso , Idoso de 80 Anos ou mais , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
Cerebellum ; 20(3): 374-383, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33200286

RESUMO

Tremor is a common movement disorder that can be induced by medications, including valproate, which is used for the treatment of epilepsy. However, the clinical and neurophysiological features of valproate-induced tremor are still under-investigated. We performed a clinical and kinematic assessment of valproate-induced tremor by considering tremor body distribution and activation conditions. We investigated possible correlations between demographic and clinical data and kinematic features. Valproate-induced tremor results were also compared with those collected in a large sample of patients with essential tremor. Sixteen valproate-induced tremor patients and 93 essential tremor patients were enrolled. All participants underwent a standardised neurological examination and video recording. Patients also underwent an objective assessment of postural, kinetic and rest tremor of the upper limbs and head tremor through kinematic analysis. Nonparametric tests were used for statistical comparisons between the two groups. Clinical evaluation showed a higher occurrence of rest tremor as well as head or voice, and lower limb involvement in patients with valproate-induced tremor. Kinematic analysis showed a substantial variability in the tremor features of patients with valproate-induced tremor. Compared to essential tremor, we found a higher occurrence of rest tremor of the upper limbs and the involvement of more body segments in valproate-induced tremor patients. Valproate-induced tremor has distinctive clinical and kinematic features, which may suggest that valproate interferes with the cerebellar functions.


Assuntos
Anticonvulsivantes/efeitos adversos , Tremor Essencial/fisiopatologia , Tremor/induzido quimicamente , Tremor/fisiopatologia , Ácido Valproico/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Diagnóstico Diferencial , Epilepsia/complicações , Feminino , Movimentos da Cabeça , Humanos , Extremidade Inferior , Masculino , Pessoa de Meia-Idade , Postura , Tremor/classificação , Extremidade Superior
19.
Eur J Neurol ; 28(7): 2403-2422, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33793037

RESUMO

BACKGROUND AND PURPOSE: Bradykinesia is one of the cardinal motor symptoms of Parkinson's disease. However, clinical and experimental studies indicate that bradykinesia may also be observed in various neurological diseases not primarily characterized by parkinsonism. These conditions include hyperkinetic movement disorders, such as dystonia, chorea, and essential tremor. Bradykinesia may also be observed in patients with neurological conditions that are not seen as "movement disorders," including those characterized by the involvement of the cerebellum and corticospinal system, dementia, multiple sclerosis, and psychiatric disorders. METHODS: We reviewed clinical reports and experimental studies on bradykinesia in non-parkinsonian conditions and discussed the major findings. RESULTS: Bradykinesia is a common motor abnormality in non-parkinsonian conditions. From a pathophysiological standpoint, bradykinesia in neurological conditions not primarily characterized by parkinsonism may be explained by brain network dysfunction. CONCLUSION: In addition to the pathophysiological implications, the present paper highlights important terminological issues and the need for a new, more accurate, and more widely used definition of bradykinesia in the context of movement disorders and other neurological conditions.


Assuntos
Distonia , Tremor Essencial , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Hipocinesia/etiologia , Doença de Parkinson/complicações
20.
Brain ; 143(3): 727-750, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31834375

RESUMO

Bradykinesia is one of the cardinal motor symptoms of Parkinson's disease and other parkinsonisms. The various clinical aspects related to bradykinesia and the pathophysiological mechanisms underlying bradykinesia are, however, still unclear. In this article, we review clinical and experimental studies on bradykinesia performed in patients with Parkinson's disease and atypical parkinsonism. We also review studies on animal experiments dealing with pathophysiological aspects of the parkinsonian state. In Parkinson's disease, bradykinesia is characterized by slowness, the reduced amplitude of movement, and sequence effect. These features are also present in atypical parkinsonisms, but the sequence effect is not common. Levodopa therapy improves bradykinesia, but treatment variably affects the bradykinesia features and does not significantly modify the sequence effect. Findings from animal and patients demonstrate the role of the basal ganglia and other interconnected structures, such as the primary motor cortex and cerebellum, as well as the contribution of abnormal sensorimotor processing. Bradykinesia should be interpreted as arising from network dysfunction. A better understanding of bradykinesia pathophysiology will serve as the new starting point for clinical and experimental purposes.


Assuntos
Hipocinesia/fisiopatologia , Vias Neurais/fisiopatologia , Transtornos Parkinsonianos/fisiopatologia , Animais , Humanos , Hipocinesia/complicações , Hipocinesia/tratamento farmacológico , Levodopa/uso terapêutico , Transtornos Parkinsonianos/complicações , Transtornos Parkinsonianos/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA