Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Glob Chang Biol ; 20(8): 2580-95, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24677382

RESUMO

Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins' Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate-resolution imaging spectro-radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape-induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape-induced phenological patterns are easily observed over wide areas and may be used as a unique diagnostic for sources of ecosystem vulnerability and sensitivity to hydroclimate change.


Assuntos
Altitude , Mudança Climática , Secas , Florestas , Folhas de Planta/crescimento & desenvolvimento , Ecossistema , Magnoliopsida/crescimento & desenvolvimento , Modelos Teóricos , North Carolina , Imagens de Satélites , Árvores/crescimento & desenvolvimento , Abastecimento de Água
2.
Sci Data ; 10(1): 255, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149676

RESUMO

The manipulation of water resources is a common human solution to water-related problems. Of particular interest because of impacts on both source and destination is the anthropogenic movement of water from one basin to another, or inter-basin transfers (IBTs). In the United States, IBTs occur widely in both wet and dry regions, but IBT data are not collated and served in a coordinated way. Thus researchers wishing to account for transfers between basins have faced difficulty in doing so. Here we present the outcome of a systematic investigation into inter-basin surface water transfers connected with public water supplies in the conterminous United States (CONUS), 1986 to 2015. The present open-access geodatabase includes transfer volumes collected, evaluated, and compiled from disparate sources. We provide an updated snapshot of CONUS IBTs at a higher spatial resolution of points of withdrawal and delivery than previous datasets. This paper puts the national inter-basin transfer data in context, and shows how we acquired, structured, and validated the locations and volumes of surface water transfers in public water systems.

3.
Sci Data ; 7(1): 225, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647314

RESUMO

The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.

4.
Environ Monit Assess ; 156(1-4): 17-36, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18704730

RESUMO

A proactive sampling strategy was designed and implemented in 2000 to document changes in streams whose catchment land uses were predicted to change over the next two decades due to increased building density. Diatoms, macroinvertebrates, fishes, suspended sediment, dissolved solids, and bed composition were measured at two reference sites and six sites where a socioeconomic model suggested new building construction would influence stream ecosystems in the future; we label these "hazard sites." The six hazard sites were located in catchments with forested and agricultural land use histories. Diatoms were species-poor at reference sites, where riparian forest cover was significantly higher than all other sites. Cluster analysis, Wishart's distance function, non-metric multidimensional scaling, indicator species analysis, and t-tests show that macroinvertebrate assemblages, fish assemblages, in situ physical measures, and catchment land use and land cover were different between streams whose catchments were mostly forested, relative to those with agricultural land use histories and varying levels of current and predicted development. Comparing initial results with other regional studies, we predict homogenization of fauna with increased nutrient inputs and sediment associated with agricultural sites where more intense building activities are occurring. Based on statistical separability of sampled sites, catchment classes were identified and mapped throughout an 8,600 km(2) region in western North Carolina's Blue Ridge physiographic province. The classification is a generalized representation of two ongoing trajectories of land use change that we suggest will support streams with diverging biota and physical conditions over the next two decades.


Assuntos
Monitoramento Ambiental/métodos , Rios , Animais , Biodiversidade , Ecossistema , North Carolina , Árvores , Estados Unidos
5.
Sci Total Environ ; 694: 133551, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756787

RESUMO

Topography exerts control on eco-hydrologic processes via alteration of energy inputs due to slope angle and orientation. Further, water availability varies with drainage position in response to topographic water redistribution and the catena effect on soil depth and thus soil water storage capacity. Our understanding of the spatio-temporal dynamics and drivers of transpiration patterns in complex terrain is still limited by lacking knowledge of how systematic interactions of energy and moisture patterns shape ecosystem state and water fluxes and adaptation of the vegetation to these patterns. To untangle the effects of slope orientation and hillslope position on forest structure and transpiration patterns, we measured forest structure, sap flux, soil moisture, throughfall and incoming shortwave radiation along two downslope transects in a forested head water catchment in south-east Australia. Our plot locations controlled for three systematically varying drainage position levels (topographic wetness index: 5.0, 6.5 and 8.0) and two levels of energy input (aridity index: 1.2 and 1.8). Vegetation patterns were generally stronger related to drainage position than slope orientation, whereas sap velocity variations were less pronounced. However, in combination with stand sapwood area, consistent spatio-temporal transpiration patterns emerged in relation to landscape position, where slope orientation was the primary and drainage position the secondary controlling factor. On short temporal scales, radiation and vapor pressure deficit were most important in regulating transpiration rates, whereas soil water limitation only occurred on shallow soils during summer. The importance of stand structural parameters increased on longer time scales, indicating optimization of vegetation in response to the long-term hydro-climatic conditions at a given landscape position. Thus, vegetation patterns can be conceptualized as a 'time-integrated' predictor variable that captures large fractions of other factors contributing to transpiration patterns.


Assuntos
Ecossistema , Monitoramento Ambiental , Transpiração Vegetal
6.
Data Brief ; 23: 103786, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31372433

RESUMO

We report data on the projections of annual surface water demand and supply in the conterminous United States at a high spatial resolution from 2010s to the end of the 21st century, including: 1) water withdrawal and consumption in the water-use sectors of domestic, thermoelectric power generation, and irrigation; 2) availability of surface water generated from local watershed runoff, accumulated from upstream areas, and artificially transferred from other basins. These data were derived from the projected changes in climate, population, energy structure, technology and water uses. These data are related to the original article "Understanding the role of regional water connectivity in mitigating climate change impacts on surface water supply stress in the United States" (Duan et al., 2019) [1].

8.
PLoS One ; 10(10): e0138450, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26426532

RESUMO

A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C.


Assuntos
Ar , Carbono/análise , Lasers , Taiga , Biomassa , Compostos Orgânicos/química , Solo/química , Árvores/química
9.
Tree Physiol ; 7(1_2_3_4): 115-124, 1990 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14972910

RESUMO

Projected leaf area index (LAI) and Beer-Lambert Law extinction coefficients (K) were estimated for 28-year-old Picea abies (L.) Karst., Larix decidua Mill., Pinus resinosa Ait., and Pinus strobus L. plantations using vertical profile data obtained with a portable integrating radiometer (sunfleck ceptometer). Predicted LAI values were compared with direct measures of LAI. Based on dimensional analysis, LAI ranged from 5.0 for Larix decidua to 10.5 for Picea abies. Significant inverse relationships between cumulative LAI and canopy transmitted radiation were observed for the four species (R(2) = 0.92-0.97). Beer-Lambert extinction coefficients ranged from 0.39 for Picea abies to 0.84 for Pinus strobus. Stand-level predictions of LAI based on the Beer-Lambert Law were compared with measured LAI values for eight conifer and six broadleaf stands. Using local K estimates resulted in predicted LAI values with an average 6% error. Using published K values resulted in an average error of 20%. High LAI and concomitantly low light levels below the canopy of Picea abies stands resulted in large overestimation errors in predicted LAI, rendering the sunfleck ceptometer inappropriate for forests with large LAIs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA