Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 100: 101-108, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31669132

RESUMO

The lung is susceptible to damage from a variety of sources throughout development and in adulthood. As a result, the lung has great capacities for repair and regeneration, directed by precisely controlled sequences of molecular and signaling pathways. Impairments or alterations in these signaling events can have deleterious effects on lung structure and function, ultimately leading to chronic lung disorders. When lung injury is too severe for the normal pathways to repair, or if those pathways do not function properly, lung regenerative medicine is needed to restore adequate structure and function. Great progress has been made in recent years in the number of regenerative techniques and their efficacy. This review will address recent progress in lung regenerative medicine focusing on pharmacotherapy including the expanding role of nanotechnology, stem cell-based therapies, and bioengineering techniques. The use of these techniques individually and collectively has the potential to significantly improve morbidity and mortality associated with congenital and acquired lung disorders.


Assuntos
Bioengenharia , Lesão Pulmonar , Pulmão/citologia , Pulmão/metabolismo , Regeneração , Animais , Humanos , Lesão Pulmonar/patologia
2.
Am J Respir Crit Care Med ; 202(1): 100-111, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32240596

RESUMO

Rationale: Advances in neonatal critical care have greatly improved the survival of preterm infants, but the long-term complications of prematurity, including bronchopulmonary dysplasia (BPD), cause mortality and morbidity later in life. Although VEGF (vascular endothelial growth factor) improves lung structure and function in rodent BPD models, severe side effects of VEGF therapy prevent its use in patients with BPD.Objectives: To test whether nanoparticle delivery of proangiogenic transcription factor FOXM1 (forkhead box M1) or FOXF1 (forkhead box F1), both downstream targets of VEGF, can improve lung structure and function after neonatal hyperoxic injury.Methods: Newborn mice were exposed to 75% O2 for the first 7 days of life before being returned to a room air environment. On Postnatal Day 2, polyethylenimine-(5) myristic acid/polyethylene glycol-oleic acid/cholesterol nanoparticles containing nonintegrating expression plasmids with Foxm1 or Foxf1 cDNAs were injected intravenously. The effects of the nanoparticles on lung structure and function were evaluated using confocal microscopy, flow cytometry, and the flexiVent small-animal ventilator.Measurements and Main Results: The nanoparticles efficiently targeted endothelial cells and myofibroblasts in the alveolar region. Nanoparticle delivery of either FOXM1 or FOXF1 did not protect endothelial cells from apoptosis caused by hyperoxia but increased endothelial proliferation and lung angiogenesis after the injury. FOXM1 and FOXF1 improved elastin fiber organization, decreased alveolar simplification, and preserved lung function in mice reaching adulthood.Conclusions: Nanoparticle delivery of FOXM1 or FOXF1 stimulates lung angiogenesis and alveolarization during recovery from neonatal hyperoxic injury. Delivery of proangiogenic transcription factors has promise as a therapy for BPD in preterm infants.


Assuntos
Indutores da Angiogênese/administração & dosagem , Sistemas de Liberação de Medicamentos , Proteína Forkhead Box M1/administração & dosagem , Fatores de Transcrição Forkhead/administração & dosagem , Hiperóxia/tratamento farmacológico , Nanopartículas , Alvéolos Pulmonares/efeitos dos fármacos , Indutores da Angiogênese/farmacologia , Indutores da Angiogênese/uso terapêutico , Animais , Animais Recém-Nascidos , Western Blotting , Feminino , Citometria de Fluxo , Proteína Forkhead Box M1/farmacologia , Proteína Forkhead Box M1/uso terapêutico , Fatores de Transcrição Forkhead/farmacologia , Fatores de Transcrição Forkhead/uso terapêutico , Hiperóxia/patologia , Hiperóxia/fisiopatologia , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Resultado do Tratamento
3.
Am J Respir Crit Care Med ; 200(9): 1164-1176, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31233341

RESUMO

Rationale: Disruption of alveologenesis is associated with severe pediatric lung disorders, including bronchopulmonary dysplasia (BPD). Although c-KIT+ endothelial cell (EC) progenitors are abundant in embryonic and neonatal lungs, their role in alveolar septation and the therapeutic potential of these cells remain unknown.Objectives: To determine whether c-KIT+ EC progenitors stimulate alveologenesis in the neonatal lung.Methods: We used single-cell RNA sequencing of neonatal human and mouse lung tissues, immunostaining, and FACS analysis to identify transcriptional and signaling networks shared by human and mouse pulmonary c-KIT+ EC progenitors. A mouse model of perinatal hyperoxia-induced lung injury was used to identify molecular mechanisms that are critical for the survival, proliferation, and engraftment of c-KIT+ EC progenitors in the neonatal lung.Measurements and Main Results: Pulmonary c-KIT+ EC progenitors expressing PECAM-1, CD34, VE-Cadherin, FLK1, and TIE2 lacked mature arterial, venal, and lymphatic cell-surface markers. The transcriptomic signature of c-KIT+ ECs was conserved in mouse and human lungs and enriched in FOXF1-regulated transcriptional targets. Expression of FOXF1 and c-KIT was decreased in the lungs of infants with BPD. In the mouse, neonatal hyperoxia decreased the number of c-KIT+ EC progenitors. Haploinsufficiency or endothelial-specific deletion of Foxf1 in mice increased apoptosis and decreased proliferation of c-KIT+ ECs. Inactivation of either Foxf1 or c-Kit caused alveolar simplification. Adoptive transfer of c-KIT+ ECs into the neonatal circulation increased lung angiogenesis and prevented alveolar simplification in neonatal mice exposed to hyperoxia.Conclusions: Cell therapy involving c-KIT+ EC progenitors can be beneficial for the treatment of BPD.


Assuntos
Células Progenitoras Endoteliais/fisiologia , Fatores de Transcrição Forkhead/fisiologia , Pulmão/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Recém-Nascido , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Técnicas de Cultura de Tecidos
4.
Am J Respir Crit Care Med ; 200(8): 1045-1056, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31199666

RESUMO

Rationale: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal congenital disorder causing respiratory failure and pulmonary hypertension shortly after birth. There are no effective treatments for ACDMPV other than lung transplant, and new therapeutic approaches are urgently needed. Although ACDMPV is linked to mutations in the FOXF1 gene, molecular mechanisms through which FOXF1 mutations cause ACDMPV are unknown.Objectives: To identify molecular mechanisms by which S52F FOXF1 mutations cause ACDMPV.Methods: We generated a clinically relevant mouse model of ACDMPV by introducing the S52F FOXF1 mutation into the mouse Foxf1 gene locus using CRISPR/Cas9 technology. Immunohistochemistry, whole-lung imaging, and biochemical methods were used to examine vasculature in Foxf1WT/S52F lungs and identify molecular mechanisms regulated by FOXF1.Measurements and Main Results: FOXF1 mutations were identified in 28 subjects with ACDMPV. Foxf1WT/S52F knock-in mice recapitulated histopathologic findings in ACDMPV infants. The S52F FOXF1 mutation disrupted STAT3-FOXF1 protein-protein interactions and inhibited transcription of Stat3, a critical transcriptional regulator of angiogenesis. STAT3 signaling and endothelial proliferation were reduced in Foxf1WT/S52F mice and human ACDMPV lungs. S52F FOXF1 mutant protein did not bind chromatin and was transcriptionally inactive. Furthermore, we have developed a novel formulation of highly efficient nanoparticles and demonstrated that nanoparticle delivery of STAT3 cDNA into the neonatal circulation restored endothelial proliferation and stimulated lung angiogenesis in Foxf1WT/S52F mice.Conclusions: FOXF1 acts through STAT3 to stimulate neonatal lung angiogenesis. Nanoparticle delivery of STAT3 is a promising strategy to treat ACDMPV associated with decreased STAT3 signaling.


Assuntos
Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Mutação , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Síndrome da Persistência do Padrão de Circulação Fetal/fisiopatologia , Alvéolos Pulmonares/anormalidades , Transdução de Sinais/genética , Animais , Humanos , Camundongos , Modelos Animais , Alvéolos Pulmonares/fisiopatologia
5.
Dev Biol ; 443(1): 50-63, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30153454

RESUMO

Organogenesis is regulated by mesenchymal-epithelial signaling events that induce expression of cell-type specific transcription factors critical for cellular proliferation, differentiation and appropriate tissue patterning. While mesenchymal transcription factors play a key role in mesenchymal-epithelial interactions, transcriptional networks in septum transversum and splanchnic mesenchyme remain poorly characterized. Forkhead Box F1 (FOXF1) transcription factor is expressed in mesenchymal cell lineages; however, its role in organogenesis remains uncharacterized due to early embryonic lethality of Foxf1-/- mice. In the present study, we generated mesenchyme-specific Foxf1 knockout mice (Dermo1-Cre Foxf1-/-) and demonstrated that FOXF1 is required for development of respiratory, cardiovascular and gastrointestinal organ systems. Deletion of Foxf1 from mesenchyme caused embryonic lethality in the middle of gestation due to multiple developmental defects in the heart, lung, liver and esophagus. Deletion of Foxf1 inhibited mesenchyme proliferation and delayed branching lung morphogenesis. Gene expression profiling of micro-dissected distal lung mesenchyme and ChIP sequencing of fetal lung tissue identified multiple target genes activated by FOXF1, including Wnt2, Wnt11, Wnt5A and Hoxb7. FOXF1 decreased expression of the Wnt inhibitor Wif1 through direct transcriptional repression. Furthermore, using a global Foxf1 knockout mouse line (Foxf1-/-) we demonstrated that FOXF1-deficiency disrupts the formation of the lung bud in foregut tissue explants. Finally, deletion of Foxf1 from smooth muscle cell lineage (smMHC-Cre Foxf1-/-) caused hyper-extension of esophagus and trachea, loss of tracheal and esophageal muscle, mispatterning of esophageal epithelium and decreased proliferation of smooth muscle cells. Altogether, FOXF1 promotes lung morphogenesis by regulating mesenchymal-epithelial signaling and stimulating cellular proliferation in fetal lung mesenchyme.


Assuntos
Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Pulmão/embriologia , Animais , Proliferação de Células , Fatores de Transcrição Forkhead/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Pulmão/citologia , Pulmão/metabolismo , Mesoderma/metabolismo , Camundongos/embriologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organogênese/fisiologia , Fatores de Transcrição/metabolismo , Transcriptoma/genética
6.
Adv Anat Embryol Cell Biol ; 228: 1-20, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29288383

RESUMO

Lung morphogenesis is a highly orchestrated process beginning with the appearance of lung buds on approximately embryonic day 9.5 in the mouse. Endodermally derived epithelial cells of the primitive lung buds undergo branching morphogenesis to generate the tree-like network of epithelial-lined tubules. The pulmonary vasculature develops in close proximity to epithelial progenitor cells in a process that is regulated by interactions between the developing epithelium and underlying mesenchyme. Studies in transgenic and knockout mouse models demonstrate that normal lung morphogenesis requires coordinated interactions between cells lining the tubules, which end in peripheral saccules, juxtaposed to an extensive network of capillaries. Multiple growth factors, microRNAs, transcription factors, and their associated signaling cascades regulate cellular proliferation, migration, survival, and differentiation during formation of the peripheral lung. Dysregulation of signaling events caused by gene mutations, teratogens, or premature birth causes severe congenital and acquired lung diseases in which normal alveolar architecture and the pulmonary capillary network are disrupted. Herein, we review scientific progress regarding signaling and transcriptional mechanisms regulating the development of pulmonary vasculature during lung morphogenesis.


Assuntos
Capilares/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/embriologia , Artéria Pulmonar/embriologia , Veias Pulmonares/embriologia , Fatores de Transcrição/metabolismo , Animais , Desenvolvimento Embrionário/genética , Células Epiteliais/fisiologia , Humanos , Pulmão/irrigação sanguínea , Camundongos , Modelos Animais , Mucosa Respiratória/citologia , Mucosa Respiratória/embriologia
7.
J Biol Chem ; 290(12): 7563-75, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25631042

RESUMO

Alterations in the forkhead box F2 gene expression have been reported in numerous pathologies, and Foxf2(-/-) mice are perinatal lethal with multiple malformations; however, molecular mechanisms pertaining to Foxf2 signaling are severely lacking. In this study, Foxf2 requirements in murine smooth muscle cells were examined using a conditional knock-out approach. We generated novel Foxf2-floxed mice, which we bred to smMHC-Cre-eGFP mice to generate a mouse line with Foxf2 deleted specifically from smooth muscle. These mice exhibited growth retardation due to reduced intestinal length as well as inflammation and remodeling of the small intestine. Colons of Tg(smMHC-Cre-eGFP(+/-));Foxf2(-/-) mice had expansion of the myenteric nerve plexus and increased proliferation of smooth muscle cells leading to thickening of the longitudinal smooth muscle layer. Foxf2 deficiency in colonic smooth muscle was associated with increased expression of Foxf1, PDGFa, PDGFb, PDGF receptor α, and myocardin. FOXF2 bound to promoter regions of these genes indicating direct transcriptional regulation. Foxf2 repressed Foxf1 promoter activity in co-transfection experiments. We also show that knockdown of Foxf2 in colonic smooth muscle cells in vitro and in transgenic mice increased myocardin/serum response factor signaling and increased expression of contractile proteins. Foxf2 attenuated myocardin/serum response factor signaling in smooth muscle cells through direct binding to the N-terminal region of myocardin. Our results indicate that Foxf2 signaling in smooth muscle cells is essential for intestinal development and serum response factor signaling.


Assuntos
Fatores de Transcrição Forkhead/fisiologia , Intestinos/embriologia , Proteínas Nucleares/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Resposta Sérica/metabolismo , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Animais , Sequência de Bases , Imunoprecipitação da Cromatina , Primers do DNA , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Morfogênese , Músculo Liso/metabolismo , Fator de Crescimento Derivado de Plaquetas/genética , Regiões Promotoras Genéticas
8.
Circ Res ; 115(8): 709-20, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25091710

RESUMO

RATIONALE: Inactivating mutations in the Forkhead Box transcription factor F1 (FOXF1) gene locus are frequently found in patients with alveolar capillary dysplasia with misalignment of pulmonary veins, a lethal congenital disorder, which is characterized by severe abnormalities in the respiratory, cardiovascular, and gastrointestinal systems. In mice, haploinsufficiency of the Foxf1 gene causes alveolar capillary dysplasia and developmental defects in lung, intestinal, and gall bladder morphogenesis. OBJECTIVE: Although FOXF1 is expressed in multiple mesenchyme-derived cell types, cellular origins and molecular mechanisms of developmental abnormalities in FOXF1-deficient mice and patients with alveolar capillary dysplasia with misalignment of pulmonary veins remain uncharacterized because of lack of mouse models with cell-restricted inactivation of the Foxf1 gene. In the present study, the role of FOXF1 in endothelial cells was examined using a conditional knockout approach. METHODS AND RESULTS: A novel mouse line harboring Foxf1-floxed alleles was generated by homologous recombination. Tie2-Cre and Pdgfb-CreER transgenes were used to delete Foxf1 from endothelial cells. FOXF1-deficient embryos exhibited embryonic lethality, growth retardation, polyhydramnios, cardiac ventricular hypoplasia, and vascular abnormalities in the lung, placenta, yolk sac, and retina. Deletion of FOXF1 from endothelial cells reduced endothelial proliferation, increased apoptosis, inhibited vascular endothelial growth factor signaling, and decreased expression of endothelial genes critical for vascular development, including vascular endothelial growth factor receptors Flt1 and Flk1, Pdgfb, Pecam1, CD34, integrin ß3, ephrin B2, Tie2, and the noncoding RNA Fendrr. Chromatin immunoprecipitation assay demonstrated that Flt1, Flk1, Pdgfb, Pecam1, and Tie2 genes are direct transcriptional targets of FOXF1. CONCLUSIONS: FOXF1 is required for the formation of embryonic vasculature by regulating endothelial genes critical for vascular development and vascular endothelial growth factor signaling.


Assuntos
Vasos Sanguíneos/metabolismo , Células Endoteliais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose/genética , Sequência de Bases , Vasos Sanguíneos/embriologia , Western Blotting , Linhagem Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imuno-Histoquímica , Pulmão/irrigação sanguínea , Pulmão/embriologia , Pulmão/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
9.
Am J Respir Cell Mol Biol ; 52(5): 611-21, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25275225

RESUMO

Current treatments for inflammation associated with bronchopulmonary dysplasia (BPD) fail to show clinical efficacy. Foxm1, a transcription factor of the Forkhead box family, is a critical mediator of lung development and carcinogenesis, but its role in BPD-associated pulmonary inflammation is unknown. Immunohistochemistry and RNA analysis were used to assess Foxm1 in lung tissue from hyperoxia-treated mice and patients with BPD. LysM-Cre/Foxm1(-/-) mice, in which Foxm1 was deleted from myeloid-derived inflammatory cells, including macrophages, monocytes, and neutrophils, were exposed to neonatal hyperoxia, causing lung injury and remodeling. Measurements of lung function and flow cytometry were used to evaluate the effects of Foxm1 deletion on pulmonary inflammation and repair. Increased Foxm1 expression was observed in pulmonary macrophages of hyperoxia-exposed mice and in lung tissue from patients with BPD. After hyperoxia, deletion of Foxm1 from the myeloid cell lineage decreased numbers of interstitial macrophages (CD45(+)CD11b(+)Ly6C(-)Ly6G(-)F4/80(+)CD68(-)) and impaired alveologenesis and lung function. The exaggerated BPD-like phenotype observed in hyperoxia-exposed LysM-Cre/Foxm1(-/-) mice was associated with increased expression of neutrophil-derived myeloperoxidase, proteinase 3, and cathepsin g, all of which are critical for lung remodeling and inflammation. Our data demonstrate that Foxm1 influences pulmonary inflammatory responses to hyperoxia, inhibiting neutrophil-derived enzymes and enhancing monocytic responses that limit alveolar injury and remodeling in neonatal lungs.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Hiperóxia/complicações , Lesão Pulmonar/metabolismo , Pulmão/metabolismo , Pneumonia/metabolismo , Remodelação das Vias Aéreas , Células Epiteliais Alveolares/metabolismo , Animais , Displasia Broncopulmonar/metabolismo , Estudos de Casos e Controles , Catepsina G/metabolismo , Modelos Animais de Doenças , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/genética , Humanos , Hiperóxia/metabolismo , Hiperóxia/fisiopatologia , Recém-Nascido , Pulmão/patologia , Pulmão/fisiopatologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Lesão Pulmonar/fisiopatologia , Macrófagos/metabolismo , Camundongos Knockout , Mieloblastina/metabolismo , Neutrófilos/metabolismo , Peroxidase/metabolismo , Pneumonia/etiologia , Pneumonia/patologia , Pneumonia/fisiopatologia
10.
J Mol Cell Cardiol ; 47(4): 493-503, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19573531

RESUMO

The opioidergic system, an endogenous stress pathway, modulates cardiac function. Furthermore, opioid peptide and receptor expression is altered in a number of cardiac pathologies. However, whether the response of myocardial opioid receptor signaling is altered in heart failure progression is currently unknown. Elucidating possible alterations in and effects of opioidergic signaling in the failing myocardium is of critical importance as opioids are commonly used for pain management, including in patients at risk for cardiovascular disease. A hamster model of cardiomyopathy and heart failure (Bio14.6) was used to investigate cardiac opioidergic signaling in heart failure development. This study found an augmented negative inotropic and lusitropic response to administration of agonists selective for the kappa opioid receptor and delta opioid receptor in the failing heart that was mediated by a pertussis toxin-sensitive G-protein. The augmented decrease in cardiac function was manifested by increased inhibition of cAMP accumulation and the amplitude of the systolic Ca(2+) transient. Furthermore, increased depression of cardiac function and of two important second messengers, cAMP and intracellular Ca(2+), were independent of changes in cardiac opioid peptide or receptor expression. Thus, the cardiomyopathy-induced failing heart experiences increased cardiac depressant effects following opioid receptor stimulation which could exacerbate diminished cardiac function in end-stage heart failure. As cardiac function is already depressed in heart failure patients, administration of opioids could exacerbate the degree of cardiac dysfunction and worsen disease progression.


Assuntos
Insuficiência Cardíaca/metabolismo , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Transdução de Sinais , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Cardiomegalia/sangue , Cardiomegalia/complicações , Cardiomegalia/fisiopatologia , Cardiomiopatias/sangue , Cardiomiopatias/complicações , Cardiomiopatias/fisiopatologia , Cricetinae , AMP Cíclico/metabolismo , Fentanila/administração & dosagem , Fentanila/farmacologia , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/fisiopatologia , Testes de Função Cardíaca , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Técnicas In Vitro , Contração Miocárdica/efeitos dos fármacos , Peptídeos Opioides/sangue , Toxina Pertussis/farmacologia , Quinolinas/farmacologia , Receptores Opioides kappa/agonistas , Transdução de Sinais/efeitos dos fármacos , Sístole/efeitos dos fármacos
11.
Biol Open ; 8(2)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30670377

RESUMO

Hepatic fibrosis is the common end stage to a variety of chronic liver injuries and is characterized by an excessive deposition of extracellular matrix (ECM), which disrupts the liver architecture and impairs liver function. The fibrous lesions are produced by myofibroblasts, which differentiate from hepatic stellate cells (HSC). The myofibroblast's transcriptional networks remain poorly characterized. Previous studies have shown that the Forkhead box F1 (FOXF1) transcription factor is expressed in HSCs and stimulates their activation during acute liver injury; however, the role of FOXF1 in the progression of hepatic fibrosis is unknown. In the present study, we generated αSMACreER;Foxf1fl/fl mice to conditionally inactivate Foxf1 in myofibroblasts during carbon tetrachloride-mediated liver fibrosis. Foxf1 deletion increased collagen depositions and disrupted liver architecture. Timp2 expression was significantly increased in Foxf1-deficient mice while MMP9 activity was reduced. RNA sequencing of purified liver myofibroblasts demonstrated that FOXF1 inhibits expression of pro-fibrotic genes, Col1α2, Col5α2, and Mmp2 in fibrotic livers and binds to active repressors located in promotors and introns of these genes. Overexpression of FOXF1 inhibits Col1a2, Col5a2, and MMP2 in primary murine HSCs in vitro Altogether, FOXF1 prevents aberrant ECM depositions during hepatic fibrosis by repressing pro-fibrotic gene transcription in myofibroblasts and HSCs.

12.
Sci Rep ; 7(1): 10690, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878348

RESUMO

FOXF1, a member of the forkhead box family of transcription factors, has been previously shown to be critical for lung development, homeostasis, and injury responses. However, the role of FOXF1 in lung regeneration is unknown. Herein, we performed partial pneumonectomy, a model of lung regeneration, in mice lacking one Foxf1 allele in endothelial cells (PDGFb-iCre/Foxf1 fl/+ mice). Endothelial cell proliferation was significantly reduced in regenerating lungs from mice deficient for endothelial Foxf1. Decreased endothelial proliferation was associated with delayed lung regeneration as shown by reduced respiratory volume in Foxf1-deficient lungs. FACS-sorted endothelial cells isolated from regenerating PDGFb-iCre/Foxf1 fl/+ and control lungs were used for RNAseq analysis to identify FOXF1 target genes. Foxf1 deficiency altered expression of numerous genes including those regulating extracellular matrix remodeling (Timp3, Adamts9) and cell cycle progression (Cdkn1a, Cdkn2b, Cenpj, Tubb4a), which are critical for lung regeneration. Deletion of Foxf1 increased Timp3 mRNA and protein, decreasing MMP14 activity in regenerating lungs. ChIPseq analysis for FOXF1 and histone methylation marks identified DNA regulatory regions within the Cd44, Cdkn1a, and Cdkn2b genes, indicating they are direct FOXF1 targets. Thus FOXF1 stimulates lung regeneration following partial pneumonectomy via direct transcriptional regulation of genes critical for extracellular matrix remodeling and cell cycle progression.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Pulmão/fisiologia , Pneumonectomia , Regeneração , Alelos , Animais , Sítios de Ligação , Imunoprecipitação da Cromatina , Células Endoteliais/metabolismo , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Deleção de Genes , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Pulmão/cirurgia , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Camundongos , Modelos Biológicos , Motivos de Nucleotídeos , Ligação Proteica , Regeneração/genética , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo
13.
Sci Signal ; 9(424): ra40, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27095594

RESUMO

Multiple signaling pathways, structural proteins, and transcription factors are involved in the regulation of endothelial barrier function. The forkhead protein FOXF1 is a key transcriptional regulator of embryonic lung development, and we used a conditional knockout approach to examine the role of FOXF1 in adult lung homeostasis, injury, and repair. Tamoxifen-regulated deletion of both Foxf1 alleles in endothelial cells of adult mice (Pdgfb-iCreER/Foxf1(-/-)) caused lung inflammation and edema, leading to respiratory insufficiency and death. Deletion of a single Foxf1 allele made heterozygous Pdgfb-iCreER/Foxf1(+/-)mice more susceptible to acute lung injury. FOXF1 abundance was decreased in pulmonary endothelial cells of human patients with acute lung injury. Gene expression analysis of pulmonary endothelial cells with homozygous FOXF1 deletion indicated reduced expression of genes critical for maintenance and regulation of adherens junctions. FOXF1 knockdown in vitro and in vivo disrupted adherens junctions, enhanced lung endothelial permeability, and increased the abundance of the mRNA and protein for sphingosine 1-phosphate receptor 1 (S1PR1), a key regulator of endothelial barrier function. Chromatin immunoprecipitation and luciferase reporter assays demonstrated that FOXF1 directly bound to and induced the transcriptional activity of the S1pr1 promoter. Pharmacological administration of S1P to injured Pdgfb-iCreER/Foxf1(+/-)mice restored endothelial barrier function, decreased lung edema, and improved survival. Thus, FOXF1 promotes normal lung homeostasis and repair, in part, by enhancing endothelial barrier function through activation of the S1P/S1PR1 signaling pathway.


Assuntos
Edema/genética , Endotélio/metabolismo , Fatores de Transcrição Forkhead/genética , Lesão Pulmonar/genética , Animais , Western Blotting , Células Cultivadas , Edema/metabolismo , Edema/prevenção & controle , Células Endoteliais/metabolismo , Endotélio/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica/métodos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Estimativa de Kaplan-Meier , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/prevenção & controle , Lisofosfolipídeos/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Interferência de RNA , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Receptores de Esfingosina-1-Fosfato
14.
Circulation ; 108(25): 3140-8, 2003 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-14656920

RESUMO

BACKGROUND: Preconditioning the heart before an ischemic insult has been shown to protect against contractile dysfunction, arrhythmias, and infarction. Pharmacological studies have suggested that fibroblast growth factor-2 (FGF2) is involved in cardioprotection. However, because of the number of FGFs expressed in the heart and the promiscuity of FGF ligand-receptor interactions, the specific role of FGF2 during ischemia-reperfusion injury remains unclear. METHODS AND RESULTS: FGF2-deficient (Fgf2 knockout) mice and mice with a cardiac-specific overexpression of all 4 isoforms of human FGF2 (FGF2 transgenic [Tg]) were compared with wild-type mice to test whether endogenous FGF2 elicits cardioprotection. An ex vivo work-performing heart model of ischemia was developed in which murine hearts were subjected to 60 minutes of low-flow ischemia and 120 minutes of reperfusion. Preischemic contractile function was similar among the 3 groups. After ischemia-reperfusion, contractile function of Fgf2 knockout hearts recovered to 27% of its baseline value compared with a 63% recovery in wild-type hearts (P<0.05). In FGF2 Tg hearts, an 88% recovery of postischemic function occurred (P<0.05). Myocardial infarct size was also reduced in FGF2 Tg hearts compared with wild-type hearts (13% versus 30%, P<0.05). There was a 2-fold increase in FGF2 release from Tg hearts compared with wild-type hearts (P<0.05). No significant alterations in coronary flow or capillary density were detected in any of the groups, implying that the protective effect of FGF2 is not mediated by coronary perfusion changes. CONCLUSIONS: These results provide evidence that endogenous FGF2 plays a significant role in the cardioprotective effect against ischemia-reperfusion injury.


Assuntos
Fator 2 de Crescimento de Fibroblastos/fisiologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Animais , Circulação Coronária , Citoproteção , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Coração/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/metabolismo
15.
PLoS One ; 7(11): e48713, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144938

RESUMO

Heart disease remains a leading cause of morbidity and mortality in the industrialized world. Hypertrophic cardiomyopathy is the most common genetic cardiovascular disorder and the most common cause of sudden cardiac death. Foxm1 transcription factor (also known as HFH-11B, Trident, Win or MPP2) plays an important role in the pathogenesis of various cancers and is a critical mediator of post-injury repair in multiple organs. Foxm1 has been previously shown to be essential for heart development and proliferation of embryonic cardiomyocytes. However, the role of Foxm1 in postnatal heart development and in cardiac injury has not been evaluated. To delete Foxm1 in postnatal cardiomyocytes, αMHC-Cre/Foxm1(fl/fl) mice were generated. Surprisingly, αMHC-Cre/Foxm1(fl/fl) mice exhibited normal cardiomyocyte proliferation at postnatal day seven and had no defects in cardiac structure or function but developed cardiac hypertrophy and fibrosis late in life. The development of cardiomyocyte hypertrophy and cardiac fibrosis in aged Foxm1-deficient mice was associated with reduced expression of Hey2, an important regulator of cardiac homeostasis, and increased expression of genes critical for cardiac remodeling, including MMP9, αSMA, fibronectin and vimentin. We also found that following aortic constriction Foxm1 mRNA and protein were induced in cardiomyocytes. However, Foxm1 deletion did not exacerbate cardiac hypertrophy or fibrosis following chronic pressure overload. Our results demonstrate that Foxm1 regulates genes critical for age-induced cardiomyocyte hypertrophy and cardiac fibrosis.


Assuntos
Cardiomegalia/etiologia , Fatores de Transcrição Forkhead/genética , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/fisiologia , Actinas/genética , Actinas/metabolismo , Fatores Etários , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Proliferação de Células , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose/genética , Fibrose/patologia , Proteína Forkhead Box M1 , Regulação da Expressão Gênica no Desenvolvimento , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Miocárdio/citologia , Miocárdio/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Vimentina/genética , Vimentina/metabolismo
16.
PLoS One ; 6(7): e22217, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21779394

RESUMO

Forkhead Box M1 (Foxm1) is a transcription factor essential for organ morphogenesis and development of various cancers. Although complete deletion of Foxm1 in Foxm1(-/-) mice caused embryonic lethality due to severe abnormalities in multiple organ systems, requirements for Foxm1 in cardiomyocytes remain to be determined. This study was designed to elucidate the cardiomyocyte-autonomous role of Foxm1 signaling in heart development. We generated a new mouse model in which Foxm1 was specifically deleted from cardiomyocytes (Nkx2.5-Cre/Foxm1(fl/f) mice). Deletion of Foxm1 from cardiomyocytes was sufficient to disrupt heart morphogenesis and induce embryonic lethality in late gestation. Nkx2.5-Cre/Foxm1(fl/fl) hearts were dilated with thinning of the ventricular walls and interventricular septum, as well as disorganization of the myocardium which culminated in cardiac fibrosis and decreased capillary density. Cardiomyocyte proliferation was diminished in Nkx2.5-Cre/Foxm1(fl/fl) hearts owing to altered expression of multiple cell cycle regulatory genes, such as Cdc25B, Cyclin B(1), Plk-1, nMyc and p21(cip1). In addition, Foxm1 deficient hearts displayed reduced expression of CaMKIIδ, Hey2 and myocardin, which are critical mediators of cardiac function and myocardial growth. Our results indicate that Foxm1 expression in cardiomyocytes is critical for proper heart development and required for cardiomyocyte proliferation and myocardial growth.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Coração/embriologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Ciclina B1/genética , Ciclina B1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Miócitos Cardíacos/citologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo , Quinase 1 Polo-Like
17.
Am J Physiol Heart Circ Physiol ; 296(4): H967-75, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19181965

RESUMO

Opioids/opiates are commonly administered to alleviate pain, unload the heart, or decrease breathlessness in patients with advanced heart failure. As such, it is important to evaluate whether the myocardial opioidergic system is altered in cardiac disease. A hamster model of spontaneous hypertension was investigated before the development of hypertension (1 mo of age) and in the hypertensive state (10 mo of age) to evaluate the effect of prolonged hypertension on myocardial opioidergic activity. Plasma beta-endorphin was decreased before the development of hypertension and in the hypertensive state (P < 0.05). There was no change in cardiac beta-endorphin content at either time point. No differences were detected in cardiac or plasma dynorphin A, Met-enkephalin, or Leu-enkephalin, or in cardiac peptide expression of kappa- or delta-opioid receptors. mu-Opioid receptor was not detected in either model. To determine how hypertension affects myocardial opioid signaling, the ex vivo work-performing heart was used to assess the cardiac response to opioid administration in healthy hearts and those subjected to chronic hypertension. Agonists selective for the kappa- and delta-opioid receptors, but not mu-opioid receptors, induced a concentration-dependent decrease in cardiac function. The decrease in left ventricular systolic pressure on administration of the kappa-opioid receptor-selective agonist, U50488H, was attenuated in hearts from hamsters subjected to chronic, untreated hypertension (P < 0.05) compared with control. These results show that peripheral and myocardial opioid expression and signaling are altered in hypertension.


Assuntos
Hipertensão/fisiopatologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Miocárdio/metabolismo , Receptores Opioides kappa/metabolismo , Sístole/fisiologia , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida , Animais , Anti-Hipertensivos , Benzamidas/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Cricetinae , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Dinorfinas/metabolismo , Encefalina Leucina , Encefalina Metionina/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Piperazinas/farmacologia , Receptores Opioides delta/agonistas , Receptores Opioides delta/efeitos dos fármacos , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/efeitos dos fármacos , Remodelação Ventricular/fisiologia , beta-Endorfina/sangue
18.
Artigo em Inglês | MEDLINE | ID: mdl-17897043

RESUMO

Cardiovascular disease is the leading cause of death in the United States and developing world. Experimental and clinical studies have demonstrated that a number of interventions including brief periods of ischemia or hypoxia and certain endogenous factors such as opioids, bradykinin, growth factors or pharmacological agents are capable of protecting the heart against post-ischemic contractile dysfunction, arrhythmias and myocardial infarction. This conventional cardioprotection occurs via an autocrine or paracrine action in which these protective factors are released from the heart to act upon itself. Over the last ten years, a growing body of evidence indicates that a brief ischemic insult on one organ releases endogenous factors that protect other organs against a prolonged ischemic insult. This phenomenon, termed remote preconditioning or preconditioning at a distance, implicates an endocrine action, and may involve humoral or neural-endocrine signaling. This review will summarize the endocrine factors identified and implicated in this inter-organ cytoprotection.


Assuntos
Glândulas Endócrinas/fisiologia , Isquemia/patologia , Precondicionamento Isquêmico , Adenosina/fisiologia , Animais , História do Século XX , Humanos , Precondicionamento Isquêmico/história , Sistemas Neurossecretores/fisiologia , Óxido Nítrico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA