Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell Biol Int ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169545

RESUMO

Shikonin, an herbal naphthoquinone, demonstrates a broad spectrum of pharmacological properties. Owing to increasingly adverse environmental conditions, human skin is vulnerable to harmful influences from dust particles. This study explored the antioxidant capabilities of shikonin and its ability to protect human keratinocytes from oxidative stress induced by fine particulate matter (PM2.5). We found that shikonin at a concentration of 3 µM was nontoxic to human keratinocytes and effectively scavenged reactive oxygen species (ROS) while increasing the production of reduced glutathione (GSH). Furthermore, shikonin enhanced GSH level by upregulating glutamate-cysteine ligase catalytic subunit and glutathione synthetase mediated by nuclear factor-erythroid 2-related factor. Shikonin reduced ROS levels induced by PM2.5, leading to recovering PM2.5-impaired cellular biomolecules and cell viability. Shikonin restored the GSH level in PM2.5-exposed keratinocytes via enhancing the expression of GSH-synthesizing enzymes. Notably, buthionine sulphoximine, an inhibitor of GSH synthesis, diminished effect of shikonin against PM2.5-induced cell damage, confirming the role of GSH in shikonin-induced cytoprotection. Collectively, these findings indicated that shikonin could provide substantial cytoprotection against the adverse effects of PM2.5 through direct ROS scavenging and modulation of cellular antioxidant system.

3.
Inflamm Regen ; 44(1): 31, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902841

RESUMO

BACKGROUND: Tobacco smoking causes pulmonary inflammation, resulting in emphysema, an independent risk factor for lung cancer. Induction of insulin-like growth factor 2 (IGF2) in response to lung injury by tobacco carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and polycyclic aromatic hydrocarbon benzo[a]pyrene in combination (NB), is critical for the proliferation of alveolar type 2 cells (AT2s) for lung repair. However, persistent IGF2 overexpression during NB-induced severe injury results in hyperproliferation of AT2s without coordinated AT2-to-AT1 differentiation, disrupting alveolar repair, which leads to the concurrent development of emphysema and lung cancer. The current study aims to verify the role of IGF2 signaling in the associated development of emphysema and cancer and develop effective pharmaceuticals for the diseases using animal models that recapitulate the characteristics of these chronic diseases. METHODS: The pathogenesis of pulmonary emphysema and cancer was analyzed by lung function testing, histological evaluation, in situ zymography, dihydroethidium staining, and immunofluorescence and immunohistochemistry analyses utilizing mouse models of emphysema and cancer established by moderate exposure to NB for up to seven months. RESULTS: Moderate NB exposure induced IGF2 expression in AT2s during the development of pulmonary emphysema and lung cancer in mice. Using AT2-specific insulin receptor knockout mice, we verified the causative role of sustained IGF2 signaling activation in AT2s in emphysema development. IGF2-targeting strategies, including voltage-dependent calcium channel blocker (CCB) and a neutralizing antibody, significantly suppressed the NB-induced development of emphysema and lung cancer. A publicly available database revealed an inverse correlation between the use of calcium channel blockers and a COPD diagnosis. CONCLUSIONS: Our work confirms sustained IGF2 signaling activation in AT2s couples impaired lung repair to the concurrent development of emphysema and cancer in mice. Additionally, CCB and IGF2-specific neutralizing antibodies are effective pharmaceuticals for the two diseases.

4.
Biomol Ther (Seoul) ; 32(1): 136-145, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37424516

RESUMO

People with obesity maintain low levels of inflammation; therefore, their exposure to foreign antigens can trigger an excessive immune response. In people with obesity or allergic contact dermatitis (ACD), symptoms are exacerbated by a reduction in the number of regulatory T cells (Tregs) and IL-10/TGF-ß-modified macrophages (M2 macrophages) at the inflammatory site. Benefits of intermittent fasting (IF) have been demonstrated for many diseases; however, the immune responses regulated by macrophages and CD4+T cells in obese ACD animal models are poorly understood. Therefore, we investigated whether IF suppresses inflammatory responses and upregulates the generation of Tregs and M2 macrophages in experimental ACD animal models of obese mice. The IF regimen relieved various ACD symptoms in inflamed and adipose tissues. We showed that the IF regimen upregulates Treg generation in a TGF-ß-dependent manner and induces CD4+T cell hypo-responsiveness. IF-M2 macrophages, which strongly express TGF-ß and inhibit CD4+T cell proliferation, directly regulated Treg differentiation from CD4+T cells. These results indicate that the IF regimen enhances the TGF-ß-producing ability of M2 macrophages and that the development of Tregs keeps mice healthy against ACD exacerbated by obesity. Therefore, the IF regimen may ameliorate inflammatory immune disorders caused by obesity.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38683453

RESUMO

Runt domain transcription factor 3 (RUNX3) suppresses many different cancer types and is disabled by mutations, epigenetic repression, or cytoplasmic mislocalization. In this study, we investigated whether oxidative stress is associated with RUNX3 accumulation from the nucleus to the cytoplasm in terms of histone modification. Oxidative stress elevated histone deacetylase (HDAC) level and lowered that of histone acetyltransferase. In addition, oxidative stress decreased the expression of mixed lineage leukemia (MLL), a histone methyltransferase, but increased the expression of euchromatic histone-lysine N-methyltransferase 2 (EHMT2/G9a), which is also a histone methyltransferase. Moreover, oxidative stress-induced RUNX3 phosphorylation, Src activation, and Jun activation domain-binding protein 1 (JAB1) expression were inhibited by knockdown of HDAC and G9a, restoring the nuclear localization of RUNX3 under oxidative stress. Cytoplasmic RUNX3 localization was followed by oxidative stress-induced histone modification, activated Src along with RUNX3 phosphorylation, and induction of JAB1, resulting in RUNX3 inactivation.

6.
Nat Commun ; 15(1): 4909, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851766

RESUMO

Tobacco smoking (TS) is implicated in lung cancer (LC) progression through the development of metabolic syndrome. However, direct evidence linking metabolic syndrome to TS-mediated LC progression remains to be established. Our findings demonstrate that 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene (NNK and BaP; NB), components of tobacco smoke, induce metabolic syndrome characteristics, particularly hyperglycemia, promoting lung cancer progression in male C57BL/6 J mice. NB enhances glucose uptake in tumor-associated macrophages by increasing the expression and surface localization of glucose transporter (GLUT) 1 and 3, thereby leading to transcriptional upregulation of insulin-like growth factor 2 (IGF2), which subsequently activates insulin receptor (IR) in LC cells in a paracrine manner, promoting its nuclear import. Nuclear IR binds to nucleophosmin (NPM1), resulting in IR/NPM1-mediated activation of the CD274 promoter and expression of programmed death ligand-1 (PD-L1). Restricting glycolysis, depleting macrophages, or blocking PD-L1 inhibits NB-mediated LC progression. Analysis of patient tissues and public databases reveals elevated levels of IGF2 and GLUT1 in tumor-associated macrophages, as well as tumoral PD-L1 and phosphorylated insulin-like growth factor 1 receptor/insulin receptor (pIGF-1R/IR) expression, suggesting potential poor prognostic biomarkers for LC patients. Our data indicate that paracrine IGF2/IR/NPM1/PD-L1 signaling, facilitated by NB-induced dysregulation of glucose levels and metabolic reprogramming of macrophages, contributes to TS-mediated LC progression.


Assuntos
Antígeno B7-H1 , Benzo(a)pireno , Progressão da Doença , Hiperglicemia , Fator de Crescimento Insulin-Like II , Neoplasias Pulmonares , Proteínas Nucleares , Nucleofosmina , Receptor de Insulina , Animais , Humanos , Masculino , Camundongos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Benzo(a)pireno/toxicidade , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Hiperglicemia/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like II/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Nitrosaminas/toxicidade , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Comunicação Parácrina , Receptor de Insulina/metabolismo , Receptor de Insulina/genética , Fumar/efeitos adversos , Macrófagos Associados a Tumor/metabolismo
7.
Anticancer Res ; 44(3): 1079-1086, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423648

RESUMO

BACKGROUND/AIM: Melanoma is a prevalent malignant tumor that arises from melanocytes. The treatment of malignant melanoma has become challenging due to the development of drug resistance. It is, therefore, imperative to identify novel therapeutic drug candidates for controlling malignant melanoma. Naringenin is a flavonoid abundant in oranges and other citrus fruits and recognized for its numerous medicinal benefits. The objective of the study was to assess the anti-carcinogenic potential of naringenin by evaluating its ability to regulate the cellular production of reactive oxygen species (ROS) and its effect on mitochondrial function and apoptosis in melanoma cells. MATERIALS AND METHODS: Cell viability, intracellular ROS levels, cell apoptosis, and mitochondrial functions were evaluated. RESULTS: Naringenin decreased melanoma cell viability and triggered generation of ROS, leading to cell apoptosis. In addition, it stimulated mitochondrial damage in melanoma cells by elevating the levels of Ca2+ and ROS in the mitochondria and decreasing cellular ATP. Naringenin stimulated the expression of proapoptotic proteins, including phospho p53, B-cell lymphoma-2 (Bcl-2)-associated X protein, cleaved caspase-3, and cleaved caspase-9, in melanoma cells in a time-dependent manner. Furthermore, it reduced the expression of the anti-apoptotic protein Bcl-2. Naringenin triggered cell apoptosis by phosphorylating c-Jun N-terminal kinase and stimulating cellular autophagy. CONCLUSION: Naringenin caused oxidative stress and mitochondrial damage, and activated autophagy in melanoma cells, leading to cell apoptosis. These findings indicate the potential of naringenin as a new therapeutic candidate for melanoma.


Assuntos
Flavanonas , Melanoma , Humanos , Espécies Reativas de Oxigênio/metabolismo , Melanoma/patologia , Linhagem Celular Tumoral , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Potencial da Membrana Mitocondrial
8.
Mar Drugs ; 11(8): 2982-99, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23966032

RESUMO

Fucoidan, a sulfated polysaccharide, has a variety of biological activities, such as anti-cancer, anti-angiogenic and anti-inflammatory. However, the mechanisms of action of fucoidan as an anti-cancer agent have not been fully elucidated. The present study examined the anti-cancer effect of fucoidan obtained from Undaria pinnatifida in PC-3 cells, human prostate cancer cells. Fucoidan induced the apoptosis of PC-3 cells by activating both intrinsic and extrinsic pathways. The induction of apoptosis was accompanied by the activation of extracellular signal-regulated kinase mitogen-activated protein kinase (ERK1/2 MAPK) and the inactivation of p38 MAPK and phosphatidylinositol 3-kinase (PI3K)/Akt. In addition, fucoidan also induced the up-regulation of p21Cip1/Waf and down-regulation of E2F-1 cell-cycle-related proteins. Furthermore, in the Wnt/ß-catenin pathway, fucoidan activated GSK-3ß that resulted in the decrease of ß-catenin level, followed by the decrease of c-myc and cyclin D1 expressions, target genes of ß-catenin in PC-3 cells. These results suggested that fucoidan treatment could induce intrinsic and extrinsic apoptosis pathways via the activation of ERK1/2 MAPK, the inactivation of p38 MAPK and PI3K/Akt signaling pathway, and the down-regulation of Wnt/ß-catenin signaling pathway in PC-3 prostate cancer cells. These data support that fucoidan might have potential for the treatment of prostate cancer.


Assuntos
Antineoplásicos/farmacologia , Polissacarídeos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Undaria/química , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Fosfatidilinositol 3-Quinase/metabolismo , Polissacarídeos/isolamento & purificação , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
9.
Life Sci ; 329: 121925, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37423377

RESUMO

AIM: The prevalence of metabolic syndrome (MetS), a cluster of serious medical conditions that raise the risk of lung cancer, has increased worldwide. Tobacco smoking (TS) potentially increases the risk of developing MetS. Despite the potential association of MetS with lung cancer, preclinical models that mimic human diseases, including TS-induced MetS, are limited. Here we evaluated the impact of exposure to tobacco smoke condensate (TSC) and two representative tobacco carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNK) and benzo[a]pyrene (BaP), on MetS development in mice. MATERIALS AND METHODS: FVB/N or C57BL/6 mice were exposed to vehicle, TSC, or NNK and BaP (NB) twice weekly for 5 months. The serum levels of total cholesterol (TCHO), triglycerides, high-density lipoprotein (HDL), blood glucose, and metabolites, along with glucose tolerance and body weight, were measured. KEY FINDINGS: Compared with those of vehicle-treated mice, mice with TSC or NB exposure displayed major phenotypes associated with MetS, including increased serum levels of TCHO, triglycerides, and fasting and basal blood glucose and decreased glucose tolerance, and serum levels of HDL. These MetS-associated changes were found in both FVB/N and C57BL/6 mice that were susceptible or resistant to carcinogen-induced tumorigenesis, respectively, indicating that tumor formation is not involved in the TSC- or NB-mediated MetS. Moreover, oleic acid and palmitoleic acid, which are known to be associated with MetS, were significantly upregulated in the serum of TSC- or NB-treated mice compared with those in vehicle-treated mice. SIGNIFICANCE: Both TSC and NB caused detrimental health problems, leading to the development of MetS in experimental mice.


Assuntos
Neoplasias Pulmonares , Síndrome Metabólica , Nitrosaminas , Camundongos , Animais , Humanos , Benzo(a)pireno/toxicidade , 1-Butanol/efeitos adversos , Glicemia , Síndrome Metabólica/induzido quimicamente , Camundongos Endogâmicos C57BL , Nitrosaminas/toxicidade , Nitrosaminas/metabolismo , Carcinógenos/toxicidade , Carcinógenos/metabolismo , Neoplasias Pulmonares/induzido quimicamente
10.
Biochem Pharmacol ; 211: 115507, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36958677

RESUMO

The heat shock protein (HSP) system is essential for the conformational stability and function of several proteins. Therefore, the development of efficacious HSP-targeting anticancer agents with minimal toxicity is required. We previously demonstrated that evodiamine is an anticancer agent that targets HSP70 in non-small cell lung cancer (NSCLC) cells. In this study, we synthesized a series of evodiamine derivatives with improved efficacy and limited toxicity. Among the 14 evodiamine derivatives, EV408 (10-hydroxy-14-methyl-8,13,13b,14-tetrahydroindolo[2',3':3,4]pyrido[2,1-b]quinazolin-5(7H)-one) exhibited the most potent inhibitory effects on viability and colony formation under anchorage-dependent and -independent culture conditions in various human NSCLC cells, including those that are chemoresistant, by inducing apoptosis. In addition, EV408 suppressed the cancer stem-like cell (CSC) population of NSCLC cells and the expression of stemness-associated markers. Mechanistically, EV408 inhibited HSP70 function by directly binding and destabilizing the HSP70 protein. Furthermore, EV408 significantly inhibited the growth of NSCLC cell line tumor xenografts without overt toxicity. Additionally, EV408 had a negligible effect on the viability of normal cells. These results suggest the potential of EV408 as an efficacious HSP70-targeting evodiamine derivative with limited toxicity that inhibits both non-CSC and CSC populations in NSCLC.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proteínas de Choque Térmico
11.
Cancer Res ; 83(11): 1782-1799, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36971490

RESUMO

Pulmonary emphysema is a destructive inflammatory disease primarily caused by cigarette smoking (CS). Recovery from CS-induced injury requires proper stem cell (SC) activities with a tightly controlled balance of proliferation and differentiation. Here we show that acute alveolar injury induced by two representative tobacco carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene (N/B), increased IGF2 expression in alveolar type 2 (AT2) cells to promote their SC function and facilitate alveolar regeneration. Autocrine IGF2 signaling upregulated Wnt genes, particularly Wnt3, to stimulate AT2 proliferation and alveolar barrier regeneration after N/B-induced acute injury. In contrast, repetitive N/B exposure provoked sustained IGF2-Wnt signaling through DNMT3A-mediated epigenetic control of IGF2 expression, causing a proliferation/differentiation imbalance in AT2s and development of emphysema and cancer. Hypermethylation of the IGF2 promoter and overexpression of DNMT3A, IGF2, and the Wnt target gene AXIN2 were seen in the lungs of patients with CS-associated emphysema and cancer. Pharmacologic or genetic approaches targeting IGF2-Wnt signaling or DNMT prevented the development of N/B-induced pulmonary diseases. These findings support dual roles of AT2 cells, which can either stimulate alveolar repair or promote emphysema and cancer depending on IGF2 expression levels. SIGNIFICANCE: IGF2-Wnt signaling plays a key role in AT2-mediated alveolar repair after cigarette smoking-induced injury but also drives pathogenesis of pulmonary emphysema and cancer when hyperactivated.


Assuntos
Enfisema , Neoplasias Pulmonares , Enfisema Pulmonar , Humanos , Enfisema/metabolismo , Enfisema/patologia , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Pulmão/patologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/genética , Células-Tronco/metabolismo , Neoplasias Pulmonares/patologia
12.
Exp Mol Med ; 55(6): 1131-1144, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37258578

RESUMO

The renin-angiotensin (RA) system has been implicated in lung tumorigenesis without detailed mechanistic elucidation. Here, we demonstrate that exposure to the representative tobacco-specific carcinogen nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) promotes lung tumorigenesis through deregulation of the pulmonary RA system. Mechanistically, NNK binding to the nicotinic acetylcholine receptor (nAChR) induces Src-mediated signal transducer and activator of transcription 3 (STAT3) activation, resulting in transcriptional upregulation of angiotensinogen (AGT) and subsequent induction of the angiotensin II (AngII) receptor type 1 (AGTR1) signaling pathway. In parallel, NNK concurrently increases insulin-like growth factor 2 (IGF2) production and activation of IGF-1R/insulin receptor (IR) signaling via a two-step pathway involving transcriptional upregulation of IGF2 through STAT3 activation and enhanced secretion from intracellular storage through AngII/AGTR1/PLC-intervened calcium release. NNK-mediated crosstalk between IGF-1R/IR and AGTR1 signaling promoted tumorigenic activity in lung epithelial and stromal cells. Lung tumorigenesis caused by NNK exposure or alveolar type 2 cell-specific Src activation was suppressed by heterozygous Agt knockout or clinically available inhibitors of the nAChR/Src or AngII/AGTR1 pathways. These results demonstrate that NNK-induced stimulation of the lung RA system leads to IGF2-mediated IGF-1R/IR signaling activation in lung epithelial and stromal cells, resulting in lung tumorigenesis in smokers.


Assuntos
Neoplasias Pulmonares , Nitrosaminas , Receptores Nicotínicos , Carcinógenos/toxicidade , Nicotiana/metabolismo , Nitrosaminas/toxicidade , Nitrosaminas/metabolismo , Receptores Nicotínicos/metabolismo , Sistema Renina-Angiotensina , Fator de Transcrição STAT3/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transdução de Sinais , Pulmão/metabolismo , Carcinogênese
13.
Biol Pharm Bull ; 35(7): 1054-63, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22791152

RESUMO

We observed that (1S,2S,3E,7E,11E)-3,7,11,15-Cembratetraen-17,2-olide (LS-1), marine cembrenolide diterpene, inhibited growth and induced apoptosis in colon cancer cells via a reactive oxygen species (ROS) dependent mechanism. Treatment of HT-29 cells with LS-1 resulted in ROS generation, which was accompanied by disruption of mitochondrial membrane potential, cytosolic release of cytochrome c, sub-G1 peak accumulation, activation of Bid, caspase-3, -8, and -9, and cleavage of poly(ADP-ribose) polymerase (PARP) along with the suppressive expression of B cell lymphoma-2 (Bcl-2). All these effects were significantly blocked on pretreatment with the ROS inhibitor N-acetylcysteine (NAC), indicating the involvement of increased ROS in the proapoptotic activity of LS-1. Moreover, we showed that LS-1 induced the phosphorylation of c-Jun N-terminal kinase (JNK) and dephosphorylation of p38, extracellular signal-regulated kinase (ERK), Akt, Src and signal transducer and activator of transcription (STAT)3, which were effectively attenuated by NAC. In addition, the expressions of antioxidant catalase and glutathione peroxidase were abrogated by treatment using LS-1 with or without NAC. These findings reveal the novel anticancer efficacy of LS-1 mediated by the induction of apoptosis via ROS generation in human colon cancer cells.


Assuntos
Antozoários , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diterpenos/farmacologia , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Caspases/metabolismo , Catalase/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo , Glutationa Peroxidase/metabolismo , Células HT29 , Heme Oxigenase-1/metabolismo , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase GPX1
14.
Int J Mol Sci ; 13(5): 6407-6423, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22754373

RESUMO

This study was conducted to evaluate the effect of Ecklonia cava, a marine alga native to Jeju Island in Korea, on the promotion of hair growth. When vibrissa follicles were cultured in the presence of E. cava enzymatic extract (which contains more than 35% of dieckol) for 21 days, E. cava enzymatic extract increased hair-fiber length. In addition, after topical application of the 0.5% E. cava enzymatic extract onto the back of C57BL/6 mice, anagen progression of the hair-shaft was induced. The treatment with E. cava enzymatic extract resulted in the proliferation of immortalized vibrissa dermal papilla cells (DPC). Especially, dieckol, among the isolated compounds from the E. cava enzymatic extract, showed activity that increased the proliferation of DPC. When NIH3T3 fibroblasts were treated with the E. cava enzymatic extract and the isolated compounds from the E. cava enzymatic extract, the E. cava enzymatic extract increased the proliferation of NIH3T3 fibroblasts, but the isolated compounds such as eckol, dieckol, phloroglucinol and triphlorethol-A did not affect the proliferation of NIH3T3 fibroblasts. On the other hand, the E. cava enzymatic extract and dieckol significantly inhibited 5α-reductase activity. These results suggest that dieckol from E. cava can stimulate hair growth by the proliferation of DPC and/or the inhibition of 5α-reductase activity.


Assuntos
Benzofuranos/administração & dosagem , Folículo Piloso/efeitos dos fármacos , Laminaria/química , Vibrissas/citologia , Administração Tópica , Animais , Benzofuranos/farmacologia , Extratos Celulares , Proliferação de Células , Folículo Piloso/enzimologia , Folículo Piloso/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Oxirredutases/metabolismo , Ratos , Ratos Wistar , Vibrissas/efeitos dos fármacos
15.
J Exp Clin Cancer Res ; 41(1): 133, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395804

RESUMO

BACKGROUND: Cancer stem-like cells (CSCs) play a pivotal role in lung tumor formation and progression. Nerve injury-induced protein 1 (Ninjurin1, Ninj1) has been implicated in lung cancer; however, the pathological role of Ninj1 in the context of lung tumorigenesis remains largely unknown. METHODS: The role of Ninj1 in the survival of non-small cell lung cancer (NSCLC) CSCs within microenvironments exhibiting hazardous conditions was assessed by utilizing patient tissues and transgenic mouse models where Ninj1 repression and oncogenic KrasG12D/+ or carcinogen-induced genetic changes were induced in putative pulmonary stem cells (SCs). Additionally, NSCLC cell lines and primary cultures of patient-derived tumors, particularly Ninj1high and Ninj1low subpopulations and those with gain- or loss-of-Ninj1 expression, and also publicly available data were all used to assess the role of Ninj1 in lung tumorigenesis. RESULTS: Ninj1 expression is elevated in various human NSCLC cell lines and tumors, and elevated expression of this protein can serve as a biomarker for poor prognosis in patients with NSCLC. Elevated Ninj1 expression in pulmonary SCs with oncogenic changes promotes lung tumor growth in mice. Ninj1high subpopulations within NSCLC cell lines, patient-derived tumors, and NSCLC cells with gain-of-Ninj1 expression exhibited CSC-associated phenotypes and significantly enhanced survival capacities in vitro and in vivo in the presence of various cell death inducers. Mechanistically, Ninj1 forms an assembly with lipoprotein receptor-related protein 6 (LRP6) through its extracellular N-terminal domain and recruits Frizzled2 (FZD2) and various downstream signaling mediators, ultimately resulting in transcriptional upregulation of target genes of the LRP6/ß-catenin signaling pathway. CONCLUSIONS: Ninj1 may act as a driver of lung tumor formation and progression by protecting NSCLC CSCs from hostile microenvironments through ligand-independent activation of LRP6/ß-catenin signaling.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Moléculas de Adesão Celular Neuronais , Neoplasias Pulmonares , Fatores de Crescimento Neural , Via de Sinalização Wnt , Animais , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Moléculas de Adesão Celular Neuronais/genética , Linhagem Celular Tumoral , Receptores Frizzled , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Neoplasias Pulmonares/patologia , Camundongos , Fatores de Crescimento Neural/genética , Microambiente Tumoral , beta Catenina/metabolismo
16.
Clin Transl Med ; 12(7): e986, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35858011

RESUMO

BACKGROUND: Programmed death-ligand 1 (PD-L1) has functional roles in cancer stem-like cell (CSC) phenotypes and chemoresistance besides immune evasion. Chemotherapy is a common treatment choice for colorectal cancer (CRC) patients; however, chemoresistance limits its effectiveness of treatment. METHODS: We examined the role of S100A14 (SA14) in CRC by adopting PD-L1high subpopulations within CRC cell lines and patient tumours, by establishing PD-L1high chemoresistant CRC sublines through prolonged exposure to 5-fluorouracil/oxaliplatin-based chemotherapy in vitro and in vivo, and by analysing a public database. RESULTS: We identified a novel function of SA14 as a regulator of immune surveillance, major CSC phenotypes, and survival capacity under hostile microenvironments, including those harbouring chemotherapeutics, and as a prognostic biomarker in CRC. Mechanistically, SA14 inhibits PD-L1 expression by directly interacting with signal transducer and activator of transcription 3 (STAT3) and inducing its proteasome-mediated degradation. While gain-of-SA14 causes loss of PD-L1 expression and tumourigenic potential and sensitisation to chemotherapy-induced apoptosis in chemoresistant CRC cells, loss-of-SA14 causes increases in PD-L1 expression, tumourigenic potential, and chemoresistance in vitro and in vivo. We further show that a combinatorial treatment with chemotherapy and recombinant SA14 protein effectively induces apoptosis in PD-L1high chemoresistant CRC cells. CONCLUSIONS: Our results suggest that SA14-based therapy is an effective strategy to prevent tumour progression and that SA14 is a predictive biomarker for anti-PD-L1 immunotherapy and chemotherapy in combination.


Assuntos
Neoplasias Colorretais , Fator de Transcrição STAT3 , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteínas de Ligação ao Cálcio , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , Evasão da Resposta Imune , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Microambiente Tumoral
17.
Neurochem Res ; 36(2): 223-31, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21057871

RESUMO

Recently, it was reported that in a 4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model, neuronal cell death is associated with the cdk5-mediated hyperphosphorylation of myocyte enhancer factor 2 (MEF2), a transcription factor that is critically required for neuronal survival. In the present study, we investigated the possible involvement of cdk5-mediated MEF2D down-regulation on 6-hydroxydopamine (6-OHDA)-induced PC12 cell death. 6-OHDA was found to significantly increase nitric oxide (NO) production and to induce apoptosis in a time-dependent manner in PC12 cells. Furthermore, 6-OHDA was found to markedly reduce MEF2D levels under conditions that could induce PC12 cell apoptosis. In addition, PC12 cell death and MEF2D degradation by 6-OHDA were prevented by the cdk5 inhibitor roscovitine, but roscovitine could not restore the 6-OHDA-induced inactivation of Akt. These results suggest that the cell death and MEF2D degradation caused by 6-OHDA are dependent on cdk5 activity. On the other hand, roscovitine enhanced the 6-OHDA-induced activations of ERK1/2 and JNK, but reduced the 6-OHDA-induced activation of p38. These results suggest that PC12 cell death by 6-OHDA appears to be regulated by the down-regulation of MEF2D via some interaction between cdk5 and MAP kinase.


Assuntos
Apoptose/efeitos dos fármacos , Fatores de Regulação Miogênica/metabolismo , Oxidopamina/farmacologia , Células PC12/efeitos dos fármacos , Células PC12/fisiologia , Animais , Apoptose/fisiologia , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Fragmentação do DNA , Regulação para Baixo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fatores de Transcrição MEF2 , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fatores de Regulação Miogênica/genética , Óxido Nítrico/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Purinas/metabolismo , Ratos , Roscovitina , Transdução de Sinais/fisiologia
18.
Bioorg Med Chem Lett ; 21(10): 2845-9, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21507644

RESUMO

A new unusual sterol, named lobophytosterol (1), and five known metabolites (2-6) were isolated from the methanol extract of the soft coral Lobophytum laevigatum. Their chemical structures were elucidated by extensive spectroscopic analysis and comparison with those reported in the literature. The absolute stereochemistry of 1 was determined using a modified Mosher's method. Compounds 1-3 showed cytotoxic activity against HCT-116 cells with IC(50) values of 3.2, 6.9 and 18.1 µM, respectively. Compound 1 additionally displayed cytotoxic effects on A549 and HL-60 cells with IC(50) values of 4.5 and 5.6 µM, respectively. Treatment of these cells with compound 1 resulted in an induction of apoptosis evident by chromatin condensation in treated cells. Besides, compounds 2, 4, and 6 significantly upregulated PPARs transcriptional activity dose-dependently in Hep-G2 cells. Taken together, these data suggest that compound 1 might inhibit the growth of the cancer cells by the induction of apoptosis, and compounds 2, 4, and 6 might act as specific agonists for PPARα, PPARδ, and PPARγ and may therefore regulate cellular glucose, lipid, and cholesterol metabolism.


Assuntos
Antozoários/química , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Esteróis/toxicidade , Animais , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Metanol/química , Modelos Moleculares , Estrutura Molecular , Esteróis/análise
19.
Phytother Res ; 25(7): 1082-6, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21452391

RESUMO

Fucoidan, a sulfated polysaccharide, has various biological activities, such as anticancer, antiangiogenic and antiinflammatory effects; however, the mechanisms of action of fucoidan on anticancer activity have not been fully elucidated. The anticancer effects of fucoidan from Undaria pinnatifida on A549 human lung carcinoma cells were examined. Treatment of A549 cells with fucoidan resulted in potent antiproliferative activity. Also, some typical apoptotic characteristics, such as chromatin condensation and an increase in the population of sub-G1 hypodiploid cells, were observed. With respect to the mechanism underlying the induction of apoptosis, fucoidan reduced Bcl-2 expression, but the expression of Bax was increased in a dose-dependent manner compared with the controls. Furthermore, fucoidan induced caspase-9 activation, but decreased the level of procaspase-3. Cleavage of poly-ADP-ribose polymerase (PARP), a vital substrate of effector caspase, was found. The study further investigated the role of the MAPK and PI3K/Akt pathways with respect to the apoptotic effect of fucoidan, and showed that fucoidan activates ERK1/2 in A549 cells. Unlike ERK1/2, however, treatment with fucoidan resulted in the down-regulation of phospho-p38 expression. In addition, fucoidan resulted in the down-regulation of phospho-PI3K/Akt. Together, these results indicate that fucoidan induces apoptosis of A549 human lung cancer cells through down-regulation of p38, PI3K/Akt, and the activation of the ERK1/2 MAPK pathway.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Polissacarídeos/farmacologia , Undaria/química , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/patologia
20.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33393490

RESUMO

Slow-cycling/dormant cancer cells (SCCs) have pivotal roles in driving cancer relapse and drug resistance. A mechanistic explanation for cancer cell dormancy and therapeutic strategies targeting SCCs are necessary to improve patient prognosis, but are limited because of technical challenges to obtaining SCCs. Here, by applying proliferation-sensitive dyes and chemotherapeutics to non-small cell lung cancer (NSCLC) cell lines and patient-derived xenografts, we identified a distinct SCC subpopulation that resembled SCCs in patient tumors. These SCCs displayed major dormancy-like phenotypes and high survival capacity under hostile microenvironments through transcriptional upregulation of regulator of G protein signaling 2 (RGS2). Database analysis revealed RGS2 as a biomarker of retarded proliferation and poor prognosis in NSCLC. We showed that RGS2 caused prolonged translational arrest in SCCs through persistent eukaryotic initiation factor 2 (eIF2α) phosphorylation via proteasome-mediated degradation of activating transcription factor 4 (ATF4). Translational activation through RGS2 antagonism or the use of phosphodiesterase 5 inhibitors, including sildenafil (Viagra), promoted ER stress-induced apoptosis in SCCs in vitro and in vivo under stressed conditions, such as those induced by chemotherapy. Our results suggest that a low-dose chemotherapy and translation-instigating pharmacological intervention in combination is an effective strategy to prevent tumor progression in NSCLC patients after rigorous chemotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Biossíntese de Proteínas , Proteínas RGS/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas RGS/genética , Recidiva , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA