Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mikrochim Acta ; 189(9): 337, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35978146

RESUMO

An innovative research has been conducted focused on demonstrating the ability of novel dual-emissive glutathione-stabilized gold nanoclusters (GSH-AuNCs) to perform bright near-infrared (NIR)-emitting contrast agents inside tissue-mimicking agarose-phantoms via two complementary confocal fluorescence imaging techniques. First, using a new and fast microwave-assisted approach, we synthesized photostable dual-emitting GSH-AuNCs with an average size of 3.2 ± 0.4 nm and NIR emission quantum yield of 9.9%. Steady-state fluorescence measurements coupled with fluorescence lifetime imaging microscopy (FLIM) assays performed on lyophilized GSH-AuNCs revealed that the obtained GSH-AuNCs exhibit PL emissions at 610 nm (red PL) and, respectively, 800 nm (NIR PL) in both solution and powder solid-state. Time-resolved fluorescence measurements showed that the two PL components are characterized by average lifetimes of 407 ns (red PL) and 1821 ns (NIR PL), respectively. Additionally, due to a partial overlap between the red PL and the absorption of the NIR PL, an energy transfer between the two coexisting emissive centers was discovered and confirmed via steady-state and time-resolved fluorescence measurements. Furthermore, the FLIM analysis performed on powder GSH-AuNCs under 640 nm, an excitation more suitable for bioimaging applications, revealed a homogeneous and photostable NIR PL signal from GSH-AuNCs. Finally, the ability of GSH-AuNCs to operate as reliable NIR-emitting contrast agents inside tissue-mimicking agarose-phantoms was demonstrated here for the first time via complementary FLIM and re-scan confocal fluorescence imaging techniques. In consequence, GSH-AuNCs show great promise for future in vivo imaging applications via confocal fluorescence microscopy.


Assuntos
Ouro , Nanopartículas Metálicas , Meios de Contraste , Glutationa , Imagem Óptica , Pós , Sefarose
2.
Materials (Basel) ; 14(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576531

RESUMO

Preventing and controlling the spread of multidrug-resistant (MDR) bacteria implicated in healthcare-associated infections is the greatest challenge of the health systems. In recent decades, research has shown the need for passive antibacterial protection of surfaces in order to reduce the microbial load and microbial biofilm development, frequently associated with transmission of infections. The aim of the present study is to analyze the efficiency of photocatalytic antimicrobial protection methods of surfaces using the new photocatalytic paint activated by light in the visible spectrum. The new composition is characterized by a wide range of analytical methods, such as UV-VIS spectroscopy, electron microscopy (SEM), X-ray powder diffraction (PXRD) or X-ray photoelectron spectroscopy (XPS). The photocatalytic activity in the UV-A was compared with the one in the visible light spectrum using an internal method developed on the basis of DIN 52980: 2008-10 standard and ISO 10678-2010 standard. Migration of metal ions in the composition was tested based on SR EN1186-3: 2003 standard. The new photocatalytic antimicrobial method uses a type of photocatalytic paint that is active in the visible spectral range and generates reactive oxygen species with inhibitory effect against all tested microbial strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA