Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 40(26): 13709-13715, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38899859

RESUMO

We analyze numerically a new ratchet system: a liquid drop is sitting on a heterogeneous ratchet-structured solid plate. The coated plate is subject to a lateral harmonic oscillation. The systematic investigation performed in the frame of a phase field model shows the possibility of realizing a long-distance net-driven motion for isolated domains of the forcing parameters. The studied problem might be of considerable interest for controlled motion in micro- and nanofluidics.

2.
Langmuir ; 35(4): 928-934, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30649885

RESUMO

We investigate numerically the role of the correlation length in drop behavior on noisy surfaces. To this aim, a phase field tool has been used. Theoretical results are confirmed by experiments of distilled water drops sitting on stainless steel and silicon surfaces textured by laser-induced periodic self-organized structures: an increase of the noise amplitude results in an amplification of the original behavior (i.e., hydrophobic is getting more hydrophobic, hydrophilic is getting more hydrophilic). Furthermore, computer simulations in two and three spatial dimensions allow for predictions of drop behavior on noisy sloped substrates under a gravitational force, a problem of large interest in controlled motion in micro- and nanofluidics.

3.
Langmuir ; 30(47): 14113-7, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25398095

RESUMO

We discuss a mechanism for controlled motion of drops with applications for microfluidics and microgravity. The mechanism is the following: a solid plate supporting a liquid droplet is simultaneously subject to lateral and vertical harmonic oscillations. In this way the symmetry of the back-and-forth droplet movement along the substrate under inertial effects is broken and thus will induce a net driven motion of the drop. We study the dependency of the traveled distance on the oscillation parameters (forcing amplitude, frequency, and phase shift between the two perpendicular oscillations) via phase field simulations. The internal flow structure inside the droplet is also investigated. We make predictions on resonance frequencies for drops on a substrate with a varying wettability.

4.
Sci Rep ; 11(1): 19951, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620925

RESUMO

Pronounced global cooling around the Eocene-Oligocene transition (EOT) was a pivotal event in Earth's climate history, controversially associated with the opening of the Drake Passage. Using a physical laboratory model we revisit the fluid dynamics of this marked reorganization of ocean circulation. Here we show, seemingly contradicting paleoclimate records, that in our experiments opening the pathway yields higher values of mean water surface temperature than the "closed" configuration. This mismatch points to the importance of the role ice albedo feedback plays in the investigated EOT-like transition, a component that is not captured in the laboratory model. Our conclusion is supported by numerical simulations performed in a global climate model (GCM) of intermediate complexity, where both "closed" and "open" configurations were explored, with and without active sea ice dynamics. The GCM results indicate that sea surface temperatures would change in the opposite direction following an opening event in the two sea ice dynamics settings, and the results are therefore consistent both with the laboratory experiment (slight warming after opening) and the paleoclimatic data (pronounced cooling after opening). It follows that in the hypothetical case of an initially ice-free Antarctica the continent could have become even warmer after the opening, a scenario not indicated by paleotemperature reconstructions.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(6 Pt 2): 066307, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19256945

RESUMO

We propose a scheme for studying thin liquid films on a solid substrate using a phase field model. For a van der Waals fluid-far from criticality-the most natural phase field function is the fluid density. The theoretical description is based on the Navier-Stokes equation with extra phase field terms and the continuity equation. In this model free of interface conditions, the contact angle can be controlled through the boundary conditions for the density field at the solid walls [L. M. Pismen and Y. Pomeav, Phys. Rev. E 62, 2480 (2000)]. We investigate the stability of a thin liquid film on a flat homogeneous solid support with variable wettability. For almost hydrophobic surfaces, the liquid film breaks up and transitions from a flat film to drops occur. Finally, we report on two-dimensional numerical simulations for static liquid drops resting on a flat horizontal solid support and for drops sliding down on inclined substrates under gravity effects.

6.
Sci Rep ; 7(1): 254, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28325927

RESUMO

There is an ongoing debate in the literature about whether the present global warming is increasing local and global temperature variability. The central methodological issues of this debate relate to the proper treatment of normalised temperature anomalies and trends in the studied time series which may be difficult to separate from time-evolving fluctuations. Some argue that temperature variability is indeed increasing globally, whereas others conclude it is decreasing or remains practically unchanged. Meanwhile, a consensus appears to emerge that local variability in certain regions (e.g. Western Europe and North America) has indeed been increasing in the past 40 years. Here we investigate the nature of connections between external forcing and climate variability conceptually by using a laboratory-scale minimal model of mid-latitude atmospheric thermal convection subject to continuously decreasing 'equator-to-pole' temperature contrast ΔT, mimicking climate change. The analysis of temperature records from an ensemble of experimental runs ('realisations') all driven by identical time-dependent external forcing reveals that the collective variability of the ensemble and that of individual realisations may be markedly different - a property to be considered when interpreting climate records.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(5 Pt 2): 056319, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23214887

RESUMO

Recently, we systematically derived a system of two coupled conservation equations governing a thin liquid layer with a deformable surface composed of two completely miscible components [Phys. Fluids 22, 104102 (2010)]. One equation describes the location of the free surface and the second one the evolution of the mean concentration. This lubrication model was investigated previously in linearized form. The study is now extended to the fully nonlinear case of thin liquid films of a binary mixture (in one and two horizontal spatial dimensions) with and without heat transport. For an initially flat and motionless film heated from below, we analyze the component separation induced by the Soret effect. Nonlinear simulations show that the Soret effect can cause a multitude of interesting behaviors, such as oscillatory patterns and solitonlike structures (localized traveling drops or holes). A stronger component separation induced by stronger Soret effects favors faster-moving localized structures. For isothermal systems, we study the fusion and the mixing of two thin liquid films of different but perfectly miscible liquids. Marangoni-driven forces can cause delayed coalescence, ripple formation, and fingering patterns at the borderline between the two liquid layers. A systematic analysis for ripple pattern formation and finger instabilities at different diffusion constants shows that these phenomena appear more pronounced for lower diffusion in the system.


Assuntos
Membranas Artificiais , Modelos Químicos , Modelos Moleculares , Dinâmica não Linear , Soluções/química , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA