Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Cancer ; 140(7): 1680-1692, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27943293

RESUMO

Current osteosarcoma therapies cause severe treatment-related side effects and chemoresistance, and have low success rates. Consequently, alternative treatment options are urgently needed. Photodynamic therapy (PDT) is a minimally invasive, local therapy with proven clinical efficacy for a variety of tumor types. PDT is cytotoxic, provokes anti-vascular effects and stimulates tumor cell targeting mechanisms of the immune system and, consequently, has potential as a novel therapy for osteosarcoma patients. This study investigated the uptake and the dark- and phototoxicity and cytotoxic mechanisms of the photosensitizer (PS) 5,10,15,20-tetrakis(meta-hydroxyphenyl) chlorine (mTHPC, Foscan) and a liposomal mTHPC formulation (Foslip) in the human 143B and a mouse K7M2-derived osteosaroma cell line (K7M2L2) in vitro. Second, the tumor- and metastasis-suppressive efficacies of mTHPC formulations based PDT and associated mechanisms in intratibial, metastasizing osteosarcoma mouse models (143B/SCID and syngeneic K7M2L2/BALB/c) were studied. The uptake of Foscan and Foslip in vitro was time- and dose-dependent and resulted in mTHPC and light dose-dependent phototoxicity associated with apoptosis. In vivo, the uptake of both i.v. administered mTHPC formulations was higher in tumor than in healthy control tissue. PDT caused significant (Foscan p < 0.05, Foslip p < 0.001) tumor growth inhibition in both models. A significant (Foscan p < 0.001, Foslip p < 0.001) immune system-dependent suppression of lung metastasis was only observed in the K7M2L2/BALB/c model and was associated with a marked infiltration of T-lymphocytes at the primary tumor site. In conclusion, mTHPC-based PDT is effective in clinically relevant experimental osteosarcoma and suppresses lung metastasis in immunocompetent mice with beneficial effects of the liposomal mTHPC formulation Foslip.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Mesoporfirinas/uso terapêutico , Osteossarcoma/tratamento farmacológico , Fotoquimioterapia , Animais , Apoptose , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Sistema Imunitário , Lipossomos/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Microscopia Confocal , Metástase Neoplásica , Transplante de Neoplasias , Osteossarcoma/metabolismo , Fármacos Fotossensibilizantes/uso terapêutico , Tíbia/patologia
2.
Biochem Biophys Res Commun ; 464(4): 1222-1227, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26210452

RESUMO

The poor outcome of osteosarcoma (OS), particularly in patients with metastatic disease and a five-year survival rate of only 20%, asks for more effective therapeutic strategies targeting malignancy-promoting mechanisms. Dysregulation of C-MET, its ligand hepatocyte growth factor (HGF) and the fusion oncogene product TPR-MET, first identified in human MNNG-HOS OS cells, have been described as cancer-causing factors in human cancers. Here, the expression of these molecules at the mRNA and the protein level and of HGF-stimulated signaling and downregulation of C-MET was compared in the parental low metastatic HOS and MG63 cell lines and the respective highly metastatic MNNG-HOS and 143B and the MG63-M6 and MG63-M8 sublines. Interestingly, expression of TPR-MET was only observed in MNNG-HOS cells. HGF stimulated the phosphorylation of Akt and Erk1/2 in all cell lines investigated, but phospho-Stat3 remained at basal levels. Downregulation of HGF-stimulated Akt and Erk1/2 phosphorylation was much faster in the HGF expressing MG63-M8 cells than in HOS cells. Degradation of HGF-activated C-MET occurred predominantly through the proteasomal and to a lesser extent the lysosomal pathway in the cell lines investigated. Thus, HGF-stimulated Akt and Erk1/2 signaling as well as proteasomal degradation of HGF activated C-MET are potential therapeutic targets in OS.


Assuntos
Fator de Crescimento de Hepatócito/farmacologia , Osteossarcoma/metabolismo , Osteossarcoma/secundário , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Osteossarcoma/patologia
3.
Biochim Biophys Acta ; 1832(2): 347-54, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23195950

RESUMO

Proteolytic degradation of the extracellular matrix (ECM) is an important process during tumor invasion. Matrix Metalloproteinase 1 (MMP-1) is one of the proteases that degrade collagen type I, a major component of bone ECM. In the present study, the biological relevance of MMP-1 in osteosarcoma (OS) tumor growth and metastasis was investigated in vitro and in vivo. Human OS cells in primary culture expressed MMP-1 encoding mRNA at considerably higher levels than normal human bone cells. In addition, MMP-1 mRNA and protein expression in the highly metastatic human osteosarcoma 143-B cell line was remarkably higher than in the non-metastatic parental HOS cell line. Stable shRNA-mediated downregulation of MMP-1 in 143-B cells impaired adhesion to collagen I and anchorage-independent growth, reflected by a reduced ability to grow in soft agar. Upon intratibial injection into SCID mice, 143-B cells with shRNA-downregulated MMP-1 expression formed smaller primary tumors and significantly lower numbers of lung micro- and macrometastases than control cells. Conversely, HOS cells stably overexpressing MMP-1 showed an enhanced adhesion capability to collagen I and accelerated anchorage-independent growth compared to empty vector-transduced control cells. Furthermore, and most importantly, individual MMP-1 overexpression in HOS cells enabled the formation of osteolytic primary tumors and lung metastasis while the HOS control cells did not develop any tumors or metastases after intratibial injection. The findings of the present study reveal an important role of MMP-1 in OS primary tumor and metastasis formation to the lung, the major organ of OS metastasis.


Assuntos
Neoplasias Ósseas/patologia , Transformação Celular Neoplásica , Neoplasias Pulmonares/secundário , Metaloproteinase 1 da Matriz/metabolismo , Osteossarcoma/patologia , Animais , Sequência de Bases , Primers do DNA , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos SCID , Reação em Cadeia da Polimerase em Tempo Real , Tíbia , Transplante Heterólogo
4.
Biochim Biophys Acta ; 1832(8): 1173-82, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23528710

RESUMO

Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents. More than 30% of patients develop lung metastasis, which is the leading cause of mortality. Recently, the extracellular matrix protein Cyr61 has been recognized as a malignancy promoting protein in OS mouse model with prognostic potential in human OS. In this study, we aimed at the identification of novel Cyr61-interacting proteins. Here we report that Cyr61 associates with Caprin-1, and confocal microscopy showed that stable ectopic expression of Caprin-1 leads to the formation of stress granules containing Caprin-1 and Cyr61, confers resistance to cisplatin-induced apoptosis, and resulted in constitutive phosphorylation of Akt and ERK1/2. Importantly, ectopic expression of Caprin-1 dramatically enhanced primary tumor growth, remarkably increased lung metastatic load in a SCID intratibial OS mouse model, and decreased significantly (p<0.0018) the survival of the mice. Although Caprin-1 expression, evaluated with a tissue microarray including samples from 59 OS patients, failed to be an independent predictor for the patients' outcome in this limited cohort of patients, increased Caprin-1 expression indicated a tendency to shortened overall survival, and more strikingly, Cyr61/Caprin-1 co-expression was associated with worse survival than that observed for patients with tumors expressing either Cyr61 or Caprin-1 alone or none of these proteins. The findings imply that Caprin-1 may have a metastasis promoting role in OS and show that through resistance to apoptosis and via the activation of Akt and ERK1/2 pathways, Caprin-1 is significantly involved in the development of OS metastasis.


Assuntos
Neoplasias Ósseas/patologia , Proteínas de Ciclo Celular/metabolismo , Proteína Rica em Cisteína 61/metabolismo , Neoplasias Pulmonares/secundário , Osteossarcoma/patologia , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Cisplatino/farmacologia , Proteína Rica em Cisteína 61/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos SCID , Dados de Sequência Molecular , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Fosforilação/genética , Prognóstico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transplante Heterólogo
5.
BMC Cancer ; 14: 559, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25085524

RESUMO

BACKGROUND: ΔNp63, a splice variant of p63, is overexpressed and exhibits oncogenic activity in many cancers including pancreatic and breast cancer and promotes cell survival by inhibiting apoptosis. Despite its role in tumorigenesis, mechanistic activity of ΔNp63 mediated oncogenic function in osteosarcoma is poorly understood. METHODS: The expression levels of p63 isoforms in osteosarcoma cell lines were identified using quantitative techniques. Expression profiling using microarray, siRNA mediated loss-of-function, and chromatin immunoprecipitation assays were employed to identify novel ΔNp63α targets in p63-null osteosarcoma SaOS-2 cells that were engineered to express ΔNp63α. The phenotype of SaOS-2-ΔNp63α cells was assessed using wound-healing, colony formation, and proliferation assays. RESULTS: The comparative expression analyses identified ΔNp63α as the predominant p63 isoform expressed by invasive OS cell lines. Phenotypic analyses of SaOS-2-ΔNp63α cells in vitro indicate that ΔNp63α imparted tumorigenic attributes upon tumor cells. Further, we show that in osteosarcoma cells ΔNp63α directly regulated the transcription factor GLI2, which is a component of the hedgehog signaling pathway, and that functional interactions between ΔNp63α and GLI2 confer oncogenic properties upon OS cells. CONCLUSIONS: Here, we report that GLI2 is the novel target gene of ΔNp63α and that ΔNp63α-GLI2 crosstalk in osteosarcoma cells is a necessary event in osteosarcoma progression. Defining the exact mechanisms involved in this interaction that mediate the pathogenesis of osteosarcoma promises to identify targets for drug therapy.


Assuntos
Fatores de Transcrição Kruppel-Like/genética , Proteínas Nucleares/genética , Osteossarcoma/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/metabolismo , Osteossarcoma/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Análise Serial de Tecidos , Proteína Gli2 com Dedos de Zinco
6.
Int J Cancer ; 131(5): E804-12, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22120774

RESUMO

Osteosarcoma (OS) is the most frequent primary bone tumor. Despite multiagent neoadjuvant chemotherapy, patients with metastatic disease have a poor prognosis. Moreover, currently used chemotherapeutics have severe toxic side effects. Thus, novel agents with improved antimetastatic activity and reduced toxicity are needed. Taurolidine, a broad-spectrum antimicrobial, has recently been shown to have antineoplastic properties against a variety of tumors and low systemic toxicity. Consequently, we investigated in our study the antineoplastic potential of taurolidine against OS in two different mouse models. Although both OS cell lines, K7M2 and LM8, were sensitive for the compound in vitro, intraperitoneal application of taurolidine failed to inhibit primary tumor growth. Moreover, it enhanced the metastatic load in both models 1.7- to 20-fold and caused severe liver deformations and up to 40% mortality. Thus, systemic toxicity was further investigated in tumor-free mice histologically, by electron microscopy and by measurements of representative liver enzymes. Taurolidine dose-dependent fibrous thickening of the liver capsule and adhesions and atrophies of the liver lobes were comparable in healthy and tumor-bearing mice. Liver toxicity was further indicated by up to eightfold elevated levels of the liver enzymes alanine transaminase, aspartate transaminase and GLDH in the circulation. Ultrastructural analysis of affected liver tissue showed swollen mitochondria with cristolysis and numerous lipid vacuoles in the cytoplasm of hepatocytes. The findings of our study question the applicability of taurolidine for OS treatment and may suggest the need for caution regarding the widespread clinical use of taurolidine as an antineoplastic agent.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Neoplasias Ósseas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Taurina/análogos & derivados , Tiadiazinas/efeitos adversos , Animais , Neoplasias Ósseas/patologia , Feminino , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Osteossarcoma/patologia , Taurina/efeitos adversos , Células Tumorais Cultivadas
7.
Cancer ; 118(8): 2117-27, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21935912

RESUMO

BACKGROUND: Metastasizing osteosarcoma has a mean 5-year survival rate of only 20% to 30%. Therefore, novel chemotherapeutics for more effective treatment of this disease are required. METHODS: The antineoplastic activity of honokiol, which was demonstrated previously in numerous malignancies, was studied in vivo in C3H mice subcutaneously injected with syngeneic ß-galactosidase bacterial gene (lacZ)-expressing LM8 osteosarcoma (LM8-lacZ) cells. In vitro cytotoxic effects of honokiol were investigated in 8 human and 2 murine osteosarcoma cell lines with different in vivo metastatic potential. RESULTS: Seven days after subcutaneous flank injection of LM8-lacZ cells, daily intraperitoneal treatment of mice with 150 mg/kg honokiol reduced the number of micrometastases in the lung by 41% and reduced the number of macrometastases in the lung and liver by 69% and 80%, respectively, compared with control. Primary tumor growth was not inhibited. In osteosarcoma cell lines, honokiol inhibited the metabolic activity with a half-maximal concentration (IC(50) ) between 8.0 µg/mL and 16 µg/mL. Cyclosporin A partially reversed the inhibition of metabolic activity in LM8-lacZ cells. Cell proliferation and wound healing migration of LM8-lacZ cells were inhibited by honokiol with an IC(50) between 5.0 µg/mL and 10 µg/mL. Higher concentrations caused rapid cell death, which was distinct from necrosis, apoptosis, or autophagy but was associated with swelling of the endoplasmic reticulum, cytoplasmic vacuolation, and morphologically altered mitochondria. CONCLUSIONS: Honokiol exhibited prominent antimetastatic activity in experimental osteosarcoma and caused rapid cell death in vitro that was unrelated to necrosis, apoptosis, or autophagy. The authors concluded that honokiol has considerable potential for the treatment of metastasizing osteosarcoma.


Assuntos
Antineoplásicos/farmacologia , Compostos de Bifenilo/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Lignanas/farmacologia , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Osteossarcoma/tratamento farmacológico , Osteossarcoma/secundário , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/uso terapêutico , Neoplasias Ósseas/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Lignanas/uso terapêutico , Neoplasias Hepáticas/prevenção & controle , Neoplasias Pulmonares/prevenção & controle , Camundongos , Camundongos Endogâmicos C3H , Osteossarcoma/patologia
8.
Sarcoma ; 2012: 937506, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23213280

RESUMO

Osteosarcoma (OS) is a rare bone neoplasm that affects mainly adolescents. It is associated with poor prognosis in case of metastases formation. The search for metastasis predicting markers is therefore imperative to optimize treatment strategies for patients at risk and important for the search of new drugs for the treatment of this devastating disease. Here, we have analyzed by microarray the differential gene expression in four human and two mouse OS cell line systems consisting of parental cell lines with low metastatic potential and derivatives thereof with increased metastatic potential. Using two osteoblastic cell line systems, the most common OS phenotype, we have identified forty-eight common genes that are differentially expressed in metastatic cell lines compared to parental cells. The identified subset of metastasis relevant genes in osteoblastic OS overlapped only minimally with differentially expressed genes in the other four preosteoblast or nonosteoblastic cell line systems. The results imply an OS phenotype specific expression pattern of metastasis regulating proteins and form a basis for further investigation of gene expression profiles in patients' samples combined with survival analysis with the aim to optimize treatment strategies to develop new drugs and to consequently improve the survival of patients with the most common form of osteoblastic OS.

9.
Cancer Med ; 10(1): 286-296, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33179858

RESUMO

Osteosarcoma is a cancer of pathological bone remodeling with high mortality and severe comorbidity. New therapies are urgently needed. Activin A, a member of the transforming growth factor ß (TGFß) superfamily, has been suggested to stimulate proliferation and invasion of osteosarcoma cells in vitro, thus representing a potential therapeutic target. In this study, inhibition of the activin receptor signaling pathway was explored as a therapy for osteosarcoma. In a murine intratibial osteosarcoma xenograft model, two types of inhibitors were tested: (a) a soluble activin type IIA decoy receptor (ActRIIA-mFc), or (b) a modified variant of follistatin (FSTΔHBS -hFc), either alone or in combination with a bisphosphonate. Both inhibitors reduced primary tumor development by nearly 50% compared to vehicle treatment. When ActRIIA-mFc was combined with bisphosphonate, the effect on tumor size became even more pronounced (78% reduction vs. vehicle). Moreover, FSTΔHBS -hFc increased body weight in the face of tumor progression (14% increase vs. vehicle), and ActRIIA-mFc reduced the number of lung metastases when combined with bisphosphonate. The present study demonstrates a novel approach to treating osteosarcoma and encourages further investigation of inhibition of the activin receptor signaling pathway as an intervention against the disease.


Assuntos
Receptores de Activinas Tipo II/antagonistas & inibidores , Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Folistatina/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Imunoglobulina G/farmacologia , Osteossarcoma/tratamento farmacológico , Tíbia/efeitos dos fármacos , Receptores de Activinas Tipo II/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Conservadores da Densidade Óssea/farmacologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Remodelação Óssea/efeitos dos fármacos , Linhagem Celular Tumoral , Difosfonatos/farmacologia , Humanos , Camundongos SCID , Necrose , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais , Tíbia/metabolismo , Tíbia/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Biochim Biophys Acta ; 1770(8): 1145-50, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17493758

RESUMO

Receptor-activity-modifying protein (RAMP) 1 is an accessory protein of the G protein-coupled calcitonin receptor-like receptor (CLR). The CLR/RAMP1 heterodimer defines a receptor for the potent vasodilatory calcitonin gene-related peptide. A wider tissue distribution of RAMP1, as compared to that of the CLR, is consistent with additional biological functions. Here, glutathione S-transferase (GST) pull-down, coimmunoprecipitation and yeast two-hybrid experiments identified beta-tubulin as a novel RAMP1-interacting protein. GST pull-down experiments indicated interactions between the N- and C-terminal domains of RAMP1 and beta-tubulin. Yeast two-hybrid experiments confirmed the interaction between the N-terminal region of RAMP1 and beta-tubulin. Interestingly, alpha-tubulin was co-extracted with beta-tubulin in pull-down experiments and immunoprecipitation of RAMP1 coprecipitated alpha- and beta-tubulin. Confocal microscopy indicated colocalization of RAMP1 and tubulin predominantly in axon-like processes of neuronal differentiated human SH-SY5Y neuroblastoma cells. In conclusion, the findings point to biological roles of RAMP1 beyond its established interaction with G protein-coupled receptors.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas/metabolismo , Tubulina (Proteína)/metabolismo , Antígenos Virais de Tumores/fisiologia , Axônios/metabolismo , Linhagem Celular Transformada , Linhagem Celular Tumoral , Transformação Celular Viral , Clonagem Molecular , Escherichia coli/genética , Glutationa Transferase/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia Confocal , Neuroblastoma/patologia , Neurônios/metabolismo , Testes de Precipitina , Estrutura Terciária de Proteína , Proteína 1 Modificadora da Atividade de Receptores , Proteínas Modificadoras da Atividade de Receptores , Proteínas Recombinantes de Fusão/metabolismo , Vírus 40 dos Símios/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tubulina (Proteína)/química , Técnicas do Sistema de Duplo-Híbrido
11.
Mol Carcinog ; 47(1): 66-73, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17683065

RESUMO

Osteosarcoma is the most frequent malignant bone tumor with a poor survival rate for patients with metastasis. Previous studies have shown that beside other proteases, distinct sets of cathepsins are involved in the process of metastasis of different tumors. In this study we investigated the expression of cathepsin proteases in human osteosarcoma metastasis. First, the mRNA expression of 14 human cathepsins was studied in SAOS-2 osteosarcoma cells and the highly metastatic LM5 and LM7 sublines by reverse transcriptase (RT)-polymerase chain reaction (PCR). The expression of cathepsin D, K, and L mRNA was found upregulated and that of cathepsin F, H, and V downregulated in the highly metastatic LM5 and LM7 cells. A subgroup of the cathepsin proteases was further studied at the protein level by Western blot analysis of cell extracts. The expression of cathepsin B and H was decreased and that of cathepsin D, K, and L was increased in the highly metastatic cell lines as compared to the SAOS-2 cell line. Diagnostic relevance of cathepsin K expression in osteosarcoma was revealed upon correlation of survival and metastasis with immunohistochemical cathepsin K staining of biopsies collected from 92 patients prior to chemotherapy. Patients with metastatic high-grade osteosarcoma and low cathepsin K expression at diagnosis had a better prognosis than those with high expression. Thus, it appears that cathepsin K expression is of predictive prognostic value for patients with high-grade tumors and metastasis at diagnosis.


Assuntos
Neoplasias Ósseas/genética , Catepsinas/genética , Osteossarcoma/genética , RNA Mensageiro/genética , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/patologia , Catepsina D/genética , Catepsina K , Catepsina L , Cisteína Endopeptidases/genética , Primers do DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Metástase Neoplásica , Osteossarcoma/enzimologia , Osteossarcoma/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Clin Sci (Lond) ; 114(1): 49-58, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17608625

RESUMO

Glaucoma, frequently associated with high IOP (intra-ocular pressure), is a leading cause of blindness, characterized by a loss of retinal ganglion cells and the corresponding optic nerve fibres. In the present study, acutely and transiently elevated IOP, characteristic of acute angle-closure glaucoma in humans, was observed in CLR (calcitonin receptor-like receptor) transgenic mice between 1 and 3 months of age. Expression of CLR under the control of a smooth muscle alpha-actin promoter in these mice augmented signalling of the smooth-muscle-relaxing peptide adrenomedullin in the pupillary sphincter muscle and resulted in pupillary palsy. Elevated IOP was prevented in CLR transgenic mice when mated with hemizygote adrenomedullin-deficient mice with up to 50% lower plasma and organ adrenomedullin concentrations. This indicates that endogenous adrenomedullin of iris ciliary body origin causes pupillary palsy and angle closure in CLR transgenic mice overexpressing adrenomedullin receptors in the pupillary sphincter muscle. In human eyes, immunoreactive adrenomedullin has also been detected in the ciliary body. Furthermore, the CLR and RAMP2 (receptor-activity-modifying protein 2), constituting adrenomedullin receptor heterodimers, were identified in the human pupillary sphincter muscle. Thus, in humans, defective regulation of adrenomedullin action in the pupillary sphincter muscle, provoked in the present study in CLR transgenic mice, may cause acute and chronic atony and, thereby, contribute to the development of angle-closure glaucoma. The CLR transgenic mice used in the present study provide a model for acute angle-closure glaucoma.


Assuntos
Modelos Animais de Doenças , Glaucoma de Ângulo Fechado/metabolismo , Receptores de Peptídeos/metabolismo , Doença Aguda , Animais , Sequência de Bases , Proteína Semelhante a Receptor de Calcitonina , Corpo Ciliar/metabolismo , Proteínas do Olho/genética , Glaucoma de Ângulo Fechado/etiologia , Glaucoma de Ângulo Fechado/genética , Glaucoma de Ângulo Fechado/fisiopatologia , Humanos , Pressão Intraocular , Iris/fisiopatologia , Doenças da Íris/complicações , Doenças da Íris/metabolismo , Doenças da Íris/fisiopatologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Mutação , Oxirredutases/genética , Receptores de Adrenomedulina , Receptores da Calcitonina/metabolismo , Receptores da Calcitonina/fisiologia
13.
Anticancer Res ; 28(2A): 673-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18507006

RESUMO

BACKGROUND: Osteosarcoma (OS) is an aggressive bone malignancy that primarily affects children and adolescents. Patients with metastatic disease at diagnosis have only a 20% survival rate. The poor survival rate of these patients is largely due to their lack of responsiveness to chemotherapy. However, the mechanisms underlying osteosarcoma chemoresistance remain unknown. MATERIALS AND METHODS: The effect of cisplatin, doxorubicin and etoposide was examined on OS cell lines. Affymetric Genechip analysis was used to examine differential gene expression. RESULTS: A correlation between increasing metastatic potential and increasing chemoresistance was observed in the MG-63 cell line and sub-line model. Microarray analysis of these cell lines revealed the differential expression of several genes potentially involved in chemoresistance including ABCG2, ADD3, NMT2, WNTSa and PTN. CONCLUSION: The identification of genes contributing to chemoresistance and determining the role these genes play is critical in characterizing patient responsiveness and overcoming chemoresistance in osteosarcoma patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Osteossarcoma/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Metástase Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos
15.
Anticancer Res ; 27(6B): 3973-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18225558

RESUMO

BACKGROUND: Metastasis is the leading cause of death in patients with osteosarcoma (OS). High alkaline phosphatase (ALP) activity and resistance to chemotherapy are independent predictors of poor clinical outcome of osteosarcoma. Here, the osteoblastic phenotype, cell and nuclear morphology, cell adhesion and drug resistance of the SAOS-2 cell line and two in vivo selected highly metastatic derivatives, LM5 and LM7, were compared. RESULTS: ALP activity and deposition of mineralized extracellular matrix were the same in the parental SAOS-2 and the LM5 and LM7 cells, but parathyroid hormone (PTH)-stimulated cAMP accumulation was lost in the LM7 cells. The LM5 and LM7 cells were smaller than the parental SAOS-2 cells, and 10% of the LM7 cells had distorted nuclei. The adhesion of LM5 and LM7 cells was decreased when compared to SAOS-2 cells. The cytotoxic responses of the SAOS-2, LM5 and LM7 cells to Cisplatin, Doxorubicin and Etoposide were indistinguishable. CONCLUSION: The increased metastatic potential of LM5 and LM7 as compared to SAOS-2 cells is not associated with a substantial change of the osteoblastic phenotype or of the cytotoxic response to current chemotherapeutic drugs. The decrease in cell size and altered cell adhesion, reflecting cytoskeletal rearrangement, together with increased nuclear instability and partial dedifferentiation, as revealed by the loss of PTH responsiveness in LM7 cells, may account for the higher metastatic potential of the LM5 and LM7 sublines as compared to the parental SAOS-2 cells.


Assuntos
Neoplasias Ósseas/patologia , Osteossarcoma/patologia , Fosfatase Alcalina/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Núcleo Celular/patologia , Cisplatino/farmacologia , AMP Cíclico/biossíntese , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Etoposídeo/farmacologia , Humanos , Invasividade Neoplásica , Osteoblastos/patologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo
16.
Am J Cancer Res ; 7(7): 1435-1449, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744395

RESUMO

Osteosarcoma is a highly aggressive bone cancer and the second most frequent cause of cancer-associated death in childhood and adolescence. Pulmonary metastases account for the high mortality rate in osteosarcoma patients. Therefore, novel therapeutic approaches, efficiently restraining the metastatic disease, are mandatory for a significant improvement of the currently poor patients' survival. Although initial studies with antibodies targeting insulin-like growth factor receptor (IGF-IR) showed promising potential for the treatment of patients with bone and soft tissue sarcomas, phase II clinical trials revealed variable results, which implied activation of alternative signaling pathways leading to therapy resistance. Since a cross-talk between IGF-IR and the epidermal growth factor receptor (EGFR) has been demonstrated in several cancer types, co-targeting of these two receptors was considered in the present study as a valuable therapeutic strategy to overcome single-agent treatment resistance in osteosarcoma. The effects of IGF-IR and/or EGFR targeting by intraperitoneal administration of the monospecific IGF-IR antibody R1507 or the EGFR antibody Cetuximab or the bispecific IGF-IR/EGFR antibody XGFR* on primary tumor growth and pulmonary metastasis were investigated in an intratibial human xenograft osteosarcoma mouse model. In vitro functional assays demonstrated that targeting IGF-IR and EGFR didn't affect osteosarcoma cell viability, but inhibited ligand-activated intracellular signaling and cell migratory capacity. The blocking potential of ligand-induced signaling in vitro was similar for all antibodies, but, in vivo, only XGFR* treatment significantly inhibited intratibial primary tumor growth and pulmonary metastasis. The therapeutic response to XGFR* was associated with an infiltration of innate immune system effector cells into the tumor microenvironment. Taken together, our study highlights the bispecific anti-IGF-IR/EGFR antibody XGFR* as an innovative promising effective candidate for the treatment of metastatic osteosarcoma and provides the rationale for future clinical studies.

17.
Tissue Eng ; 12(8): 2151-60, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16968156

RESUMO

Tissue engineering strategies are gathering clinical momentum in regenerative medicine and are expected to provide excellent opportunities for therapy for difficult-to-treat human pathologies. Being aware of the requirement to produce larger artificial tissue implants for clinical applications, we used microtissues, produced using gravity-enforced self-assembly of monodispersed primary cells, as minimal tissue units to generate scaffold-free vascularized artificial macrotissues in custom-shaped agarose molds. Mouse myoblast, pig and human articular-derived chondrocytes, and human myofibroblast (HMF)-composed microtissues (microm3 scale) were amalgamated to form coherent macrotissue patches (mm3 scale) of a desired shape. Macrotissues, assembled from the human umbilical vein endothelial cell (HUVEC)-coated HMF microtissues, developed a vascular system, which functionally connected to the chicken embryo's vasculature after implantation. The design of scaffold-free vascularized macrotissues is a first step toward the scale-up and production of artificial tissue implants for future tissue engineering initiatives.


Assuntos
Neovascularização Fisiológica , Esferoides Celulares , Engenharia Tecidual , Animais , Células Cultivadas , Embrião de Galinha , Condrócitos , Fibroblastos , Humanos , Suínos
18.
J Biotechnol ; 121(1): 86-101, 2006 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-16144726

RESUMO

Unraveling intra- and inter-cellular signaling networks managing cell-fate control, coordinating complex differentiation regulatory circuits and shaping tissues and organs in living systems remain major challenges in the post-genomic era. Resting on the laurels of past-century monolayer culture technologies, the cell culture community has only recently begun to appreciate the potential of three-dimensional mammalian cell culture systems to reveal the full scope of mechanisms orchestrating the tissue-like cell quorum in space and time. Capitalizing on gravity-enforced self-assembly of monodispersed primary embryonic mouse cells in hanging drops, we designed and characterized a three-dimensional cell culture model for ganglion-like structures. Within 24h, a mixture of mouse embryonic fibroblasts (MEF) and cells, derived from the dorsal root ganglion (DRG) (sensory neurons and Schwann cells) grown in hanging drops, assembled to coherent spherical microtissues characterized by a MEF feeder core and a peripheral layer of DRG-derived cells. In a time-dependent manner, sensory neurons formed a polar ganglion-like cap structure, which coordinated guided axonal outgrowth and innervation of the distal pole of the MEF feeder spheroid. Schwann cells, present in embryonic DRG isolates, tended to align along axonal structures and myelinate them in an in vivo-like manner. Whenever cultivation exceeded 10 days, DRG:MEF-based microtissues disintegrated due to an as yet unknown mechanism. Using a transgenic MEF feeder spheroid, engineered for gaseous acetaldehyde-inducible interferon-beta (ifn-beta) production by cotransduction of retro-/ lenti-viral particles, a short 6-h ifn-beta induction was sufficient to rescue the integrity of DRG:MEF spheroids and enable long-term cultivation of these microtissues. In hanging drops, such microtissues fused to higher-order macrotissue-like structures, which may pave the way for sophisticated bottom-up tissue engineering strategies. DRG:MEF-based artificial micro- and macrotissue design demonstrated accurate key morphological aspects of ganglions and exemplified the potential of self-assembled scaffold-free multicellular micro-/macrotissues to provide new insight into organogenesis.


Assuntos
Embrião de Mamíferos/fisiologia , Fibroblastos/fisiologia , Gânglios Espinais/fisiologia , Neurônios Aferentes/fisiologia , Organogênese/fisiologia , Animais , Células Cultivadas , Técnicas de Cocultura , Embrião de Mamíferos/ultraestrutura , Fibroblastos/ultraestrutura , Gânglios Espinais/ultraestrutura , Camundongos , Neurônios Aferentes/ultraestrutura , Engenharia Tecidual
19.
Am J Cancer Res ; 6(2): 544-52, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27186423

RESUMO

Atypic lipomatous tumors (ALT) and dedifferentiated liposarcomas (DDLS) are closely related liposarcoma subtypes, often difficult to distinguish but they exhibit an entirely different clinical outcome. Recently discovered regulatory functions of miRNAs in liposarcoma progression prompted us to investigate miRNAs as potential diagnostic biomarkers in liposarcoma with a main focus on circulating miRNAs for fast and reliable differential diagnosis. Tumor and blood samples of 35 patients with lipomatous lesions collected between June 2011 and September 2014 were analyzed by qRT-PCR. They included 10 lipomas, 7 ALT, 5 DDLS and 13 myxoid liposarcomas (MLS). Ten samples of normal fat tissue and blood from 20 healthy volunteers were used as controls. A meta-analysis of public data on miRNA expression in liposarcoma revealed 9 miRNAs with potential diagnostic power. Out of these, miRNA-155 was found significantly elevated in the circulation of DDLS patients as compared to the plasma levels detected in all other liposarcoma subtypes and in healthy subjects. miRNA-155 levels in the plasma samples correlated significantly (r=0.41, p=0.02) with those in corresponding tumor extracts. This correlation was even more pronounced in an analysis of plasma and tumor extracts of malignant liposarcoma subtypes alone (r=0.51, p=0.02). Receiver operating characteristic analysis indicated that plasma miRNA-155 levels have a high diagnostic accuracy for distinguishing DDLS from healthy subjects (AUC=0.91, p=0.005) and from lipomas (AUC=0.86, p=0.02), MLS (AUC=0.92, p=0.006) and most importantly ALT (AUC=0.91, p=0.01) patients. In conclusion, this study identified miRNA-155 as a first blood biomarker for the differential diagnosis of DDLS.

20.
Oncotarget ; 7(34): 55141-55154, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27409827

RESUMO

Osteosarcoma is an aggressive bone cancer that has a high propensity for metastasis to the lungs. Patients with metastatic disease face a very poor prognosis. Therefore, novel therapeutics, efficiently suppressing the metastatic process, are urgently needed. Integrins play a pivotal role in tumor cell adhesion, motility and metastasis. Here, we evaluated αvß3 and αvß5 integrin inhibition with cilengitide as a novel metastasis-suppressive therapeutic approach in osteosarcoma. Immunohistochemical analysis of αvß3 and αvß5 integrins expression in a tissue microarray of tumor specimens collected from osteosarcoma patients revealed that αvß5 integrin is mainly found on tumor cells, whereas αvß3 is predominantly expressed by stromal cells. In vitro functional assays demonstrated that cilengitide dose-dependently inhibited de novo adhesion, provoked detachment and inhibited migration of osteosarcoma cell lines. Cilengitide induced a decline in cell viability, blocked the cell cycle in the G1 phase and caused anoikis by activation of the Hippo pathway. In a xenograft orthotopic mouse model cilengitide minimally affected intratibial primary tumor growth but, importantly, suppressed pulmonary metastasis. The data demonstrate that targeting αvß3 and αvß5 integrins in osteosarcoma should be considered as a novel therapeutic option for patients with metastatic disease.


Assuntos
Neoplasias Ósseas/patologia , Integrina alfaVbeta3/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Osteossarcoma/patologia , Receptores de Vitronectina/antagonistas & inibidores , Venenos de Serpentes/uso terapêutico , Animais , Linhagem Celular Tumoral , Pontos de Checagem da Fase G1 do Ciclo Celular , Via de Sinalização Hippo , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/efeitos dos fármacos , Tíbia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA