RESUMO
To understand in detail the transcriptional and functional overlap of IFN-I- and IFN-II-activated responses, we used an integrative RNAseq-ChIPseq approach in Huh7.5 cells and characterized the genome-wide role of pSTAT1, pSTAT2, IRF9 and IRF1 in time-dependent ISG expression. For the first time, our results provide detailed insight in the timely steps of IFNα- and IFNγ-induced transcription, in which pSTAT1- and pSTAT2-containing ISGF3 and GAF-like complexes and IRF1 are recruited to individual or combined ISRE and GAS composite sites in a phosphorylation- and time-dependent manner. Interestingly, composite genes displayed a more heterogeneous expression pattern, as compared to GAS (early) and ISRE genes (late), with the time- and phosphorylation-dependent recruitment of GAF, ISGF3 and IRF1 after IFNα stimulation and GAF and IRF1 after IFNγ. Moreover, functional composite genes shared features of GAS and ISRE genes through transcription factor co-binding to closely located sites, and were able to sustain IFN responsiveness in STAT1-, STAT2-, IRF9-, IRF1- and IRF9/IRF1-mutant Huh7.5 cells compared to Wt cells. Thus, the ISRE + GAS composite site acted as a molecular switch, depending on the timely available components and transcription factor complexes. Consequently, STAT1, STAT2 and IRF9 were identified as functional composite genes that are part of a positive feedback loop controlling long-term IFNα and IFNγ responses. More important, in the absence of any one of the components, the positive feedback regulation of the ISGF3 and GAF components appeared to be preserved. Together, these findings provide further insight in the existence of a novel ISRE + GAS composite-dependent intracellular amplifier circuit prolonging ISG expression and controlling cellular responsiveness to different types of IFNs and subsequent antiviral activity. It also offers an explanation for the existing molecular and functional overlap between IFN-I- and IFN-II-activated ISG expression.
Assuntos
Interferon Tipo I , Interferon-alfa , Interferon-alfa/farmacologia , Interferon-alfa/genética , Interferon gama/farmacologia , Interferon gama/metabolismo , Regulação da Expressão Gênica , Antivirais , Interferon Tipo I/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismoRESUMO
Molecular catalysts for ammonia oxidation to dinitrogen represent enabling components to utilize ammonia as a fuel and/or source of hydrogen. Ammonia oxidation requires not only the breaking of multiple strong N-H bonds but also controlled N-N bond formation. We report a novel ß-diketiminato copper complex [iPr2NNF6]CuI-NH3 ([CuI]-NH3 (2)) as a robust electrocatalyst for NH3 oxidation in acetonitrile under homogeneous conditions. Complex 2 operates at a moderate overpotential (η = 700 mV) with a TOFmax = 940 h-1 as determined from CV data in 1.3 M NH3-MeCN solvent. Prolonged (>5 h) controlled potential electrolysis (CPE) reveals the stability and robustness of the catalyst under electrocatalytic conditions. Detailed mechanistic investigations indicate that electrochemical oxidation of [CuI]-NH3 forms {[CuII]-NH3}+ (4), which undergoes deprotonation by excess NH3 to form reactive copper(II)-amide ([CuII]-NH2, 6) unstable toward N-N bond formation to give the dinuclear hydrazine complex [CuI]2(µ-N2H4). Electrochemical studies reveal that the diammine complex [CuI](NH3)2 (7) forms at high ammonia concentration as part of the {[CuII](NH3)2}+/[CuI](NH3)2 redox couple that is electrocatalytically inactive. DFT analysis reveals a much higher thermodynamic barrier for deprotonation of the four-coordinate {[CuII](NH3)2}+ (8) by NH3 to give the copper(II) amide [CuII](NH2)(NH3) (9) (ΔG = 31.7 kcal/mol) as compared to deprotonation of the three-coordinate {[CuII]-NH3}+ by NH3 to provide the reactive three-coordinate parent amide [CuII]-NH2 (ΔG = 18.1 kcal/mol) susceptible to N-N coupling to form [CuI]2(µ-N2H4) (ΔG = -11.8 kcal/mol).
Assuntos
Amônia , Cobre , Cobre/química , Amônia/química , Catálise , Termodinâmica , AmidasRESUMO
Recent investigations of COVID-19 have largely focused on the effects of this novel virus on the vital organs in order to efficiently assist individuals who have recovered from the disease. In the present study we used hippocampal tissue samples extracted from people who died after COVID-19. Utilizing histological techniques to analyze glial and neuronal cells we illuminated a massive degeneration of neuronal cells and changes in glial cells morphology in hippocampal samples. The results showed that in hippocampus of the studied brains there were morphological changes in pyramidal cells, an increase in apoptosis, a drop in neurogenesis, and change in spatial distribution of neurons in the pyramidal and granular layer. It was also demonstrated that COVID-19 alter the morphological characteristics and distribution of astrocyte and microglia cells. While the exact mechanism(s) by which the virus causes neuronal loss and morphology in the central nervous system (CNS) remains to be determined, it is necessary to monitor the effect of SARS-CoV-2 infection on CNS compartments like the hippocampus in future investigations. As a result of what happened in the hippocampus secondary to COVID-19, memory impairment may be a long-term neurological complication which can be a predisposing factor for neurodegenerative disorders through neuroinflammation and oxidative stress mechanisms.
Assuntos
COVID-19 , Humanos , Apoptose , SARS-CoV-2 , Neurogênese/fisiologia , Hipocampo , CausalidadeRESUMO
Photo biomodulation (PBM) as a non-invasive and safe treatment has been demonstrated the anti-inflammatory potential in a variety of cell types, including stem cells. However, further investigations using different laser parameters combined with more accurate methods such as quantitative measurement of inflammatory gene expression at the mRNA level are still necessary. The aim of this study was to evaluate the effect of 532 nm green laser on cell proliferation as well as expression of inflammatory genes in human adipose-derived mesenchymal stem cells (hADMSCs) using RNA sequencing (RNA-seq) technique and confirmatory RT-PCR. hADMSCs were cultured in DMEM low glocuse medium with 10% fetal bovine serum until the fourth passage. Cultured cells were divided in two groups: control group (no laser irradiation) and laser group, irradiated with 532 nm laser at 44 m J/cm2 with an output power of 50 mW and a density of 6 mW/cm2, every other day, 7 s each time. The cell viability was assessed using MTT assay 24 h after each irradiation on days 3, 5, and 7 after cell seeding, followed by performing RNA-seq and RT-PCR. The MTT assay showed that PBM increased cell proliferation on day 5 after irradiation compared to day 3 and decreased on day 7 compared to day 5. In addition, gene expression analysis in hADMSCs using RNA-seq revealed down-regulation of inflammatory genes including CSF2, CXCL2, 3, 5, 6, 8, and CCL2, 7. These results indicate that 532 nm PBM with the parameters used in this study has a time-dependent effect on hADMSCs proliferation as well as anti-inflammatory potential.
Assuntos
Células-Tronco Mesenquimais , Humanos , Células-Tronco , Proliferação de Células/genética , Sobrevivência Celular , Linhagem CelularRESUMO
Human teratocarcinoma cell line Ntera2 (NT2) expresses dopamine signals and has shown its safe profile for clinical applications. Attempts to restore complete dopaminergic (DAergic) phenotype enabling these cells to secrete dopamine have not been fully successful so far. We applied a blend of gene transfer techniques and a defined medium to convert NT2 cells to fully DAergic. The cells were primarily engineered to overexpress the Pitx3 gene product and then cultured in a growth medium supplemented with knockout serum and retinoic acid to form embroid bodies (EBs). Trypsinization of EB colonies produced single cells ready for differentiation. Neuronal/DAergic induction was promoted by applying conditioned medium taken from engineered human astrocytomas over-secreting glial cell-derived neurotrophic factor (GDNF). Immunocytochemistry, reverse-transcription and real-time polymerase chain reaction analyses confirmed significantly induced expression of molecules involved in dopamine signaling and metabolism including tyrosine hydroxylase, Nurr1, dopamine transporter, and aromatic acid decarboxylase. High-performance liquid chromatography analysis indicated release of dopamine only from a class of fully differentiated cells expressing Pitx3 and exposed to GDNF. In addition, Pitx3 and GDNF additively promoted in vitro neuroprotection against Parkinsonian toxin. One month after transplantation to the striatum of 6-OHDA-leasioned rats, differentiated NT2 cells survived and induced significant increase in striatal volume. Besides, cell implantation improved motor coordination in Parkinson's disease (PD) rat models. Our findings highlight the importance of Pitx3-GDNF interplay in dopamine signaling and indicate that our strategy might be useful for the restoration of DAergic fate of NT2 cells to make them clinically applicable toward cell replacement therapy of PD.
Assuntos
Neurônios Dopaminérgicos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Astrocitoma/metabolismo , Comportamento Animal , Diferenciação Celular , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Dopamina/metabolismo , Técnicas de Transferência de Genes , Teste de Complementação Genética , Células HEK293 , Humanos , Oxidopamina/farmacologia , Doença de Parkinson/metabolismo , Fenótipo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Tretinoína/metabolismoRESUMO
Copper(II) alkynyl species are proposed as key intermediates in numerous Cu-catalyzed C-C coupling reactions. Supported by a ß-diketiminate ligand, the three-coordinate copper(II) alkynyl [CuII]-C≡CAr (Ar = 2,6-Cl2C6H3) forms upon reaction of the alkyne H-C≡CAr with the copper(II) tert-butoxide complex [CuII]-OtBu. In solution, this [CuII]-C≡CAr species cleanly transforms to the Glaser coupling product ArC≡C-C≡CAr and [CuI](solvent). Addition of nucleophiles R'C≡C-Li (R' = aryl, silyl) and Ph-Li to [CuII]-C≡CAr affords the corresponding Csp-Csp and Csp-Csp2 coupled products RC≡C-C≡CAr and Ph-C≡CAr with concomitant generation of [CuI](solvent) and {[CuI]-C≡CAr}-, respectively. Supported by density functional theory (DFT) calculations, redox disproportionation forms [CuIII](C≡CAr)(R) species that reductively eliminate R-C≡CAr products. [CuII]-C≡CAr also captures the trityl radical Ph3C· to give Ph3C-C≡CAr. Radical capture represents the key Csp-Csp3 bond-forming step in the copper-catalyzed C-H functionalization of benzylic substrates R-H with alkynes H-C≡CR' (R' = (hetero)aryl, silyl) that provide Csp-Csp3 coupled products R-C≡CR via radical relay with tBuOOtBu as oxidant.
RESUMO
Methamphetamine (METH) is a psychostimulant drug that acts on monoaminergic systems in the brain. There are several lines of evidence indicating the devastating effects of addictive drugs on the cerebellum. Moreover, it was shown that circular RNAs (circRNAs) have an important role in neurodegenerative disorders. Herein, we explored the effects of METH on neuronal degeneration, motor coordination and muscle activity. We also inspected METH-mediated changes in circRNA expression profiling in the cerebellum. Accordingly, exposure to METH triggered destructive effects on the coordination of movement of rats along with disturbed muscle activity. The fluorescent staining exhibited a significant increase in neurodegeneration in the cerebellum under the influence of METH. Besides, the number of calbindin positive Purkinje cells noticeably declined in METH-treated group compared with the control. In this regard, we identified and characterized differentially expressed (DE) circRNAs in the cerebellum under METH treatment, mainly located in dendritic spines. Moreover, based on feature and function analyzes of host genes of DE circRNAs, a large number of these genes were essentially involved in cell growth, death, inflammation and oxidative metabolism. Taken together, this data might imply the potential involvement of circRNAs in METH neurotoxicity as well as motor activity deficits.
Assuntos
Estimulantes do Sistema Nervoso Central/efeitos adversos , Cerebelo/metabolismo , Expressão Gênica/efeitos dos fármacos , Metanfetamina/efeitos adversos , Metanfetamina/toxicidade , Atividade Motora/efeitos dos fármacos , Degeneração Neural/induzido quimicamente , RNA Circular/genética , RNA Circular/metabolismo , Animais , Cerebelo/citologia , Masculino , Degeneração Neural/genética , Células de Purkinje/patologia , RNA Circular/fisiologia , Ratos Sprague-DawleyRESUMO
Methamphetamine (METH) is a highly addictive psychostimulant that profoundly aimed at monoaminergic systems in the brain. Despite the leading role of cerebellum in sensorimotor control as well as augmented locomotor activity under the influence of METH, there are few studies examining the effect of METH administration on gene expression profiling and structural consequences in the cerebellar region. Thus, we sought to explore the effects of METH on the cerebellum, from gene expression changes to structural alterations. In this respect, we investigated genome-wide mRNA expression using high throughput RNA-seq technology and confirmatory quantitative real-time PCR, accompanied by stereological analysis of cerebellar layers along with identification of reactive astrogliosis by glial fibrillary acidic protein and behavioral assessment following METH exposure. According to our RNA-seq data, 473 unique differentially expressed genes (DEG) were detected upon METH injections in which a large number of these genes engage basically in biological regulations and metabolic processes, chiefly located in nucleus and membrane. In addition, pathway analysis of METH-induced DEG revealed several enriched signaling cascades related largely to immune response, neurotransmission, cell growth, and death. Further, METH induced a significant reduction in volumes of cerebellar layers (molecular, granular, and Purkinje) and a decrease in the white matter volume along with a rise in astrogliosis as well as increased locomotor activity. In conclusion, considering gene expression changes combined with structural alterations of the cerebellum in response to METH, these data suggest METH-induced neurotoxicity in the cerebellar region.
Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Estimulantes do Sistema Nervoso Central/farmacologia , Cerebelo/efeitos dos fármacos , Cerebelo/fisiopatologia , Expressão Gênica/efeitos dos fármacos , Metanfetamina/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacosRESUMO
Cerebellar ataxia (CA) is a form of ataxia that adversely affects the cerebellum. Cell replacement therapy (CRT) has been considered as a potential treatment for neurological disorders. In this report, we investigated the neuro-restorative effects of human chorionic stem cells (HCSCs) transplantation on rat model of CA induced by 3-acetylpyridine (3-AP). In this regard, HCSCs were isolated and phenotypically determined. Next, a single injection of 3-AP was administered for ataxia induction, and bilateral HCSCs implantation was conducted 3 days after 3-AP injection, followed by expression analysis of a number of apoptotic, autophagic and inflammatory genes as well as vascular endothelial growth factor (VEGF) level, along with assessment of cerebellar neurodegeneration, motor coordination and muscle activity. The findings revealed that grafting of HCSCs in 3-AP model of ataxia decreased the expression levels of several inflammatory, autophagic and apoptotic genes and provoked the up-regulation of VEGF in the cerebellar region, prevented the degeneration of Purkinje cells caused by 3-AP toxicity and ameliorated motor coordination and muscle function. In conclusion, these data indicate in vivo efficacy of HCSCs in the reestablishment of motor skills and reversal of CA.
Assuntos
Ataxia Cerebelar/terapia , Cerebelo/patologia , Atividade Motora/fisiologia , Degeneração Neural/terapia , Transplante de Células-Tronco , Células-Tronco/metabolismo , Animais , Apoptose/fisiologia , Ataxia Cerebelar/induzido quimicamente , Ataxia Cerebelar/metabolismo , Ataxia Cerebelar/fisiopatologia , Cerebelo/metabolismo , Cerebelo/fisiopatologia , Modelos Animais de Doenças , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/fisiopatologia , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Piridinas , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Non-small-lung cancer (NSCLC) is the leading cause of cancer death. Early detection of NSCLC could pave the way for effective therapies. Analysis of molecular genetic biomarkers in biological fluids has been proposed as a useful tool for cancer diagnosis. Here, we aimed to develop a panel of noncoding RNAs (ncRNAs) in sputum for NSCLC early detection. Expression of 11 ncRNAs were analyzed by real-time polymerase chain reaction in sputum samples of 30 NSCLC patients and 30 sex- and age-matched cancer-free controls. Stability of endogenous microRNAs (miRNAs) in sputum was evaluated after 3 and 6 days at 4°C, 6 months, and 1 year at -80°C. Nine ncRNAs showed significant differences of their expression in sputum between NSCLC patients and controls. A logistic regression model with the best prediction was built based on miR-145, miR-126, and miR-7. The composite of the three miRNAs produced 90% sensitivity and specificity in distinguishing NSCLC patients from the controls. Results indicate that miRNAs could be useful biomarkers based on their stability under various storage conditions and maintain differential changes between cancer and control groups. Moreover, measurement of miRNAs in sputum could be a noninvasive approach for detection of lung cancer.
RESUMO
Cerebellar ataxias (CA) include a range of neurodegenerative disorders hallmarked by deterioration of the cerebellum. Cell replacement therapy (CRT) offers a potential remedy for the diseases associated with the central nervous system (CNS). This study was designed to assess the neurorestorative/protective effects of dental pulp stem cell (DPSC) implantation on a rat model of CA induced by 3-acetylpyridine (3-AP) as a neurotoxin. To begin, human DPSCs were extracted, cultured and phenotypically characterized. Then, experimental ataxia was induced in 20 male adult rats by a single injection of 3-AP and bilateral DPSC transplantation was performed 3 days after 3-AP administration, followed by stereological analysis of cerebellar layers along with assessment of motor skills and inflammatory response. The findings showed that transplantation of DPSCs in a 3-AP model of ataxia ameliorated motor coordination and muscle activity, increased cerebellar volumes of molecular and granular layers plus white matter, reduced the levels of inflammatory cytokines and thwarted the degeneration of Purkinje cells against 3-AP toxicity. Taken together, human DPSCs could be considered as a suitable candidate for CRT-based therapies with a specific focus on CA.
Assuntos
Ataxia Cerebelar/terapia , Cerebelo/patologia , Polpa Dentária/citologia , Transplante de Células-Tronco/métodos , Animais , Atrofia/terapia , Ataxia Cerebelar/patologia , Modelos Animais de Doenças , Masculino , Células de Purkinje/patologia , Ratos Sprague-DawleyRESUMO
Neural differentiation involves drastic morphological alterations, essentially performed by a cell-homeostasis maintaining process known as autophagy. Here, we used the cocktail of choroid plexus epithelial cell-conditioned medium (CPEC-CM) and 15% knockout serum (KS) to induce human adipose-derived mesenchymal stem cells (hASCs) into tyrosine hydroxylase (TH)-positive neuron like cells. We showed that upon this induction, autophagy pathway was transcriptionally triggered. The expression levels of autophagy markers mTOR, BECN1, and MAP1LC3 were evidently changed throughout the dopaminergic (DAergic) differentiation of hASCs, highlighting the critical role of autophagy in this process at the level of transcription.
Assuntos
Tecido Adiposo/citologia , Autofagia/genética , Neurônios Dopaminérgicos/citologia , Células-Tronco Mesenquimais/citologia , Ativação Transcricional/genética , Adipócitos/citologia , Adipócitos/metabolismo , Adulto , Biomarcadores/metabolismo , Diferenciação Celular/genética , Separação Celular , Neurônios Dopaminérgicos/metabolismo , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Osteócitos/citologia , Osteócitos/metabolismo , Adulto JovemRESUMO
A variety of acyl protected phenols AcOAr participate in sp3 C-H etherification of substrates R-H to give alkyl aryl ethers R-OAr employing tBuOOtBu as oxidant with copper(I) ß-diketiminato catalysts [CuI]. Although 1°, 2°, and 3° C-H bonds may be functionalized, selectivity studies reveal a preference for the construction of hindered, 3° C-OAr bonds. Mechanistic studies indicate that ß-diketiminato copper(II) phenolates [CuII]-OAr play a key role in this C-O bond forming reaction, formed via transesterification of AcOAr with [CuII]-OtBu intermediates generated upon reaction of [CuI] with tBuOOtBu.
RESUMO
The observed 1° isotope effect on 2° KIEs in H-transfer reactions has recently been explained on the basis of a H-tunneling mechanism that uses the concept that the tunneling of a heavier isotope requires a shorter donor-acceptor distance (DAD) than that of a lighter isotope. The shorter DAD in D-tunneling, as compared to H-tunneling, could bring about significant spatial crowding effect that stiffens the 2° H/D vibrations, thus decreasing the 2° KIE. This leads to a new physical organic research direction that examines how structure affects the 1° isotope dependence of 2° KIEs and how this dependence provides information about the structure of the tunneling ready states (TRSs). The hypothesis is that H- and D-tunneling have TRS structures which have different DADs, and pronounced 1° isotope effect on 2° KIEs should be observed in tunneling systems that are sterically hindered. This paper investigates the hypothesis by determining the 1° isotope effect on α- and ß-2° KIEs for hydride transfer reactions from various hydride donors to different carbocationic hydride acceptors in solution. The systems were designed to include the interactions of the steric groups and the targeted 2° H/D's in the TRSs. The results substantiate our hypothesis, and they are not consistent with the traditional model of H-tunneling and 1°/2° H coupled motions that has been widely used to explain the 1° isotope dependence of 2° KIEs in the enzyme-catalyzed H-transfer reactions. The behaviors of the 1° isotope dependence of 2° KIEs in solution are compared to those with alcohol dehydrogenases, and sources of the observed "puzzling" 2° KIE behaviors in these enzymes are discussed using the concept of the isotopically different TRS conformations.
RESUMO
The present study was designed to evaluate whether elderberry (EB) effectively reduces inflammation and oxidative stress in hippocampal cells to modify seizure damage. Seizure was induced in rats by the injection of pentylenetetrazol (PTZ). In the Seizure + EB group, EB powder was added to the rats' routine diet for eight consecutive weeks. The study included several behavioral tests, immunohistopathology, Voronoi tessellation (to estimate the spatial distribution of cells in the hippocampus), and Sholl analysis. The results in the Seizure + EB group showed an improvement in the behavioral aspects of the study, a reduction in astrogliosis, astrocyte process length, number of branches, and intersections distal to the soma in the hippocampus of rats compared to controls. Further analysis showed that EB diet increased nuclear factor-like 2 expression and decreased caspase-3 expression in the hippocampus in the Seizure + EB group. In addition, EB protected hippocampal pyramidal neurons from PTZ toxicity and improved the spatial distribution of hippocampal neurons in the pyramidal layer and dentate gyrus. The results of the present study suggest that EB can be considered a potent modifier of astrocyte reactivation and inflammatory responses.
RESUMO
This study evaluates whether elderberry (EB) effectively decreases the inflammation and oxidative stress in the brain cells to reduce Aß toxicity. In the Aß + EB group, EB powder was added to rats' routine diet for eight consecutive weeks. Then, spatial memory, working memory, and long-term memory, were measured using the Morris water maze, T-maze, and passive avoidance test. Also, in this investigation immunohistopathology, distribution of hippocampal cells, and gene expression was carried out. Voronoi tessellation method was used to estimate the spatial distribution of the cells in the hippocampus. In addition to improving the memory functions of rats with Aß toxicity, a reduction in astrogliosis and astrocytes process length and the number of branches and intersections distal to the soma was observed in their hippocampus compared to the control group. Further analysis indicated that the EB diet decreased the caspase-3 expression in the hippocampus of rats with Aß toxicity. Also, EB protected hippocampal pyramidal neurons against Aß toxicity and improved the spatial distribution of the hippocampal neurons. Moreover, EB decreased the expression of inflammatory and apoptotic genes. Overall, our study suggest that EB can be considered a potent modifier of astrocytes' reactivation and inflammatory responses.
RESUMO
The present study aimed to elucidate the effect of 10 mg/kg Δ9-tetrahydrocannabinol (THC) on cerebellar neuronal and glial morphology, apoptosis and inflammatory gene expression using a series of histological assays including stereology, Sholl analysis, immunofluorescence and real-time qPCR in male Wistar rats. A decrease in the number of Purkinje neurons and the thickness of the granular layer in the cerebellum was reported in THC-treated rats. Increased expression of Iba-1 and arborization of microglial processes were evidence of microgliosis and morphological changes in microglia. In addition, astrogliosis and changes in astrocyte morphology were other findings associated with THC administration. THC also led to an increase in caspase-3 positive cells and a decrease in autophagy and inflammatory gene expression such as mTOR, BECN1 and LAMP2. However, there were no significant changes in the volume of molecular layers and white matter, the spatial arrangement of granular layers and white matter, or the spatial arrangement of granular layers and white matter in the cerebellum. Taken together, our data showed both neuroprotective and neurodegenerative properties of THC in the cerebellum, which require further study in the future.
RESUMO
Tramadol is a synthetic analogue of codeine and stimulates neurodegeneration in several parts of the brain that leads to various behavioral impairments. Despite the leading role of hippocampus in learning and memory as well as decreased function of them under influence of tramadol, there are few studies analyzing the effect of tramadol administration on gene expression profiling and structural consequences in hippocampus region. Thus, we sought to determine the effect of tramadol on both PC12 cell line and hippocampal tissue, from gene expression changes to structural alterations. In this respect, we investigated genome-wide mRNA expression using high throughput RNA-seq technology and confirmatory quantitative real-time PCR, accompanied by stereological analysis of hippocampus and behavioral assessment following tramadol exposure. At the cellular level, PC12 cells were exposed to 600 µM tramadol for 48 hrs, followed by the assessments of ROS amount and gene expression levels of neurotoxicity associated with neurodegenerative pathways such as apoptosis and autophagy. Moreover, the structural and functional alteration of the hippocampus under chronic exposure to tramadol was also evaluated. In this regard, rats were treated with tramadol at doses of 50 mg/kg for three consecutive weeks. In vitro data revealed that tramadol provoked ROS production and caused the increase in the expression of autophagic and apoptotic genes in PC12 cells. Furthermore, in-vivo results demonstrated that tramadol not only did induce hippocampal atrophy, but it also triggered microgliosis and microglial activation, causing upregulation of apoptotic and inflammatory markers as well as over-activation of neurodegeneration. Tramadol also interrupted spatial learning and memory function along with long-term potentiation (LTP). Taken all together, our data disclosed the neurotoxic effects of tramadol on both in vitro and in-vivo. Moreover, we proposed a potential correlation between disrupted biochemical cascades and memory deficit under tramadol administration.
Assuntos
Analgésicos Opioides/toxicidade , Hipocampo/efeitos dos fármacos , Memória , Tramadol/toxicidade , Animais , Apoptose , Autofagia , Hipocampo/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Células PC12 , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismoRESUMO
A disease outbreak in December 2019, caused by a novel coronavirus SARS-CoV-2, was named COVID-19. SARS-CoV-2 infects cells from the upper and lower respiratory tract system and is transmitted by inhalation or contact with infected droplets. Common clinical symptoms include fatigue, fever, and cough, but also shortness of breath and lung abnormalities. Still, some 5% of SARS-CoV-2 infections progress to severe pneumonia and acute respiratory distress syndrome (ARDS), with pulmonary edema, acute kidney injury, and/or multiple organ failure as important consequences, which can lead to death. The innate immune system recognizes viral RNAs and triggers the expression of interferons (IFN). IFNs activate anti-viral effectors and components of the adaptive immune system by activating members of the STAT and IRF families that induce the expression of IFN-stimulated genes (ISG)s. Among other coronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV, common strategies have been identified to antagonize IFN signaling. This typically coincides with hyperactive inflammatory host responses known as the "cytokine storm" that mediate severe lung damage. Likewise, SARS-CoV-2 infection combines a dysregulated IFN response with excessive production of inflammatory cytokines in the lungs. This excessive inflammatory response in the lungs is associated with the local recruitment of immune cells that create a pathogenic inflammatory loop. Together, it causes severe lung pathology, including ARDS, as well as damage to other vulnerable organs, like the heart, spleen, lymph nodes, and kidney, as well as the brain. This can rapidly progress to multiple organ exhaustion and correlates with a poor prognosis in COVID-19 patients. In this review, we focus on the crucial role of different types of IFN that underlies the progression of SARS-CoV-2 infection and leads to immune cell hyper-activation in the lungs, exuberant systemic inflammation, and multiple organ damage. Consequently, to protect from systemic inflammation, it will be critical to interfere with signaling cascades activated by IFNs and other inflammatory cytokines. Targeting members of the STAT family could therefore be proposed as a novel therapeutic strategy in patients with severe COVID-19.
Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Antivirais/farmacologia , Citocinas , Humanos , Inflamação , Interferons/uso terapêutico , SARS-CoV-2RESUMO
Methadone is a centrally-acting synthetic opioid analgesic widely used in methadone maintenance therapy (MMT) programs throughout the world. Given its neurotoxic effects, particularly on the hippocampus, this study aims to address the behavioral and histological alterations in the hippocampus associated with methadone administration. To do so, twenty-four adult male albino rats were randomized into two groups, methadone treatment and control. Methadone was administered subcutaneously (2.5-10 mg/kg) once a day for two consecutive weeks. A comparison was drawn with behavioral and structural changes recorded in the control group. The results showed that methadone administration interrupted spatial learning and memory function. Accordingly, treating rats with methadone not only induced cell death but also prompted the actuation of microgliosis, astrogliosis, and apoptotic biomarkers. Furthermore, the results demonstrated that treating rats with methadone decreased the complexity of astrocyte processes and the complexity of microglia processes. These findings suggest that methadone altered the special distribution of neurons. Also, a substantial increase was observed in the expression of TNF-α due to methadone. According to the findings, methadone administration exerts a neurodegenerative effect on the hippocampus via dysregulation of microgliosis, astrogliosis, apoptosis, and neuro-inflammation.