Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Cell Int ; 24(1): 132, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594745

RESUMO

BACKGROUND: The metabolism of cancer cells generally differs from that of normal cells. Indeed, most cancer cells have a high rate of glycolysis, even at normal oxygen concentrations. These metabolic properties can potentially be exploited for therapeutic intervention. In this context, we have developed troglitazone derivatives to treat hormone-sensitive and triple-negative breast cancers, which currently lack therapeutic targets, have an aggressive phenotype, and often have a worse prognosis than other subtypes. Here, we studied the metabolic impact of the EP13 compound, a desulfured derivative of Δ2-troglitazone that we synthetized and is more potent than its parent compounds. METHODS: EP13 was tested on two triple-negative breast cancer cell lines, MDA-MB-231 and Hs578T, and on the luminal cell line MCF-7. The oxygen consumption rate (OCR) of the treated cell lines, Hs578T mammospheres and isolated mitochondria was measured using the XFe24 Seahorse analyser. ROS production was quantified using the MitoSOX fluorescent probe. Glycolytic activity was evaluated through measurement of the extracellular acidification rate (ECAR), glucose consumption and lactate production in extracellular medium. The synergistic effect of EP13 with glycolysis inhibitors (oxamate and 2-deoxyglucose) on cell cytotoxicity was established using the Chou-Talalay method. RESULTS: After exposure to EP13, we observed a decrease in the mitochondrial oxygen consumption rate in MCF7, MDA-MB-231 and Hs578T cells. EP13 also modified the maximal OCR of Hs578T spheroids. EP13 reduced the OCR through inhibition of respiratory chain complex I. After 24 h, ATP levels in EP13-treated cells were not altered compared with those in untreated cells, suggesting compensation by glycolysis activity, as shown by the increase in ECAR, the glucose consumption and lactate production. Finally, we performed co-treatments with EP13 and glycolysis inhibitors (oxamate and 2-DG) and observed that EP13 potentiated their cytotoxic effects. CONCLUSION: This study demonstrates that EP13 inhibits OXPHOS in breast cancer cells and potentiates the effect of glycolysis inhibitors.

2.
Cell Mol Biol Lett ; 29(1): 101, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978018

RESUMO

BACKGROUND: Prostate cancer (PCa) ranks as the second most prevalent cancer in men, with advanced stages posing significant treatment challenges. Given its solid tumor nature, PCa is highly susceptible to hypoxia, a condition associated with resistance to radiation and chemotherapy, metastasis, and unfavorable patient outcomes. Hypoxia-inducible factors (HIFs) play a pivotal role in cancer cell adaptation to hypoxic environments, contributing to treatment resistance. Consequently, inhibitors targeting HIFs hold promise for cancer therapy. METHODS: In this study, we aimed to characterize novel HIF-1α inhibitors including Sodwanones A (1), B (2), C (3), G (4) and Yardenone 2 (5) isolated from marine sponges belonging to the Axinella genus. Our investigation evaluated the impact of these compounds on various aspects of HIF-1α regulation, including stabilization, nuclear localization, expression of HIF-1 target genes (while sparing HIF-2 target genes), cellular metabolism, as well as cell proliferation and viability in prostate cells under hypoxic conditions. RESULTS: Our findings revealed that among the compounds tested, Yardenone 2 exhibited notable effects in hypoxia: it destabilized HIF-1α at the protein level, decreased its nuclear localization, selectively altered the expression of HIF-1 target genes, and restrained cell proliferation in aggressive PC3 prostate cancer cells as well as in an MSK-PCa3 patient-derived organoid line. Moreover, it affected the morphology of these organoid. Yardenone 2 was also compared to Docetaxel, a specific microtubule inhibitor and a drug used in the treatment of prostate cancer. The comparison between the two compounds revealed notable differences, such as a lack of specificity to hypoxic cells of Docetaxel. CONCLUSION: These results mark the first demonstration that Yardenone 2 functions as a cytostatic-like inhibitor impacting microtubules, specifically targeting hypoxic cancer cells. This discovery suggests a promising avenue for novel therapeutic interventions in prostate cancer.


Assuntos
Proliferação de Células , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias da Próstata , Humanos , Masculino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , Poríferos/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Hipóxia Celular/efeitos dos fármacos
3.
Mol Oncol ; 18(7): 1719-1738, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38214418

RESUMO

Metformin and IACS-010759 are two distinct antimetabolic agents. Metformin, an established antidiabetic drug, mildly inhibits mitochondrial complex I, while IACS-010759 is a new potent mitochondrial complex I inhibitor. Mitochondria is pivotal in the energy metabolism of cells by providing adenosine triphosphate through oxidative phosphorylation (OXPHOS). Hence, mitochondrial metabolism and OXPHOS become a vulnerability when targeted in cancer cells. Both drugs have promising antitumoral effects in diverse cancers, supported by preclinical in vitro and in vivo studies. We present evidence of their direct impact on cancer cells and their immunomodulatory effects. In clinical studies, while observational epidemiologic studies on metformin were encouraging, actual trial results were not as expected. However, IACS-01075 exhibited major adverse effects, thereby causing a metabolic shift to glycolysis and elevated lactic acid concentrations. Therefore, the future outlook for these two drugs depends on preventive clinical trials for metformin and investigations into the plausible toxic effects on normal cells for IACS-01075.


Assuntos
Complexo I de Transporte de Elétrons , Metformina , Neoplasias , Metformina/uso terapêutico , Metformina/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/imunologia , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos
4.
Cell Death Discov ; 10(1): 292, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38897995

RESUMO

Cancer metabolic reprogramming has been recognized as one of the cancer hallmarks that promote cell proliferation, survival, as well as therapeutic resistance. Up-to-date regulation of metabolism in T-cell lymphoma is poorly understood. In particular, for human angioimmunoblastic T-cell lymphoma (AITL) the metabolic profile is not known. Metabolic intervention could help identify new treatment options for this cancer with very poor outcomes and no effective medication. Transcriptomic analysis of AITL tumor cells, identified that these cells use preferentially mitochondrial metabolism. By using our preclinical AITL mouse model, mimicking closely human AITL features, we confirmed that T follicular helper (Tfh) tumor cells exhibit a strong enrichment of mitochondrial metabolic signatures. Consistent with these results, disruption of mitochondrial metabolism using metformin or a mitochondrial complex I inhibitor such as IACS improved the survival of AITL lymphoma-bearing mice. Additionally, we confirmed a selective elimination of the malignant human AITL T cells in patient biopsies upon mitochondrial respiration inhibition. Moreover, we confirmed that diabetic patients suffering from T-cell lymphoma, treated with metformin survived longer as compared to patients receiving alternative treatments. Taking together, our findings suggest that targeting the mitochondrial metabolic pathway could be a clinically efficient approach to inhibit aggressive cancers such as peripheral T-cell lymphoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA