Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Allergy Clin Immunol ; 153(6): 1655-1667, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38154666

RESUMO

BACKGROUND: Functional T-cell responses are essential for virus clearance and long-term protection after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, whereas certain clinical factors, such as older age and immunocompromise, are associated with worse outcome. OBJECTIVE: We sought to study the breadth and magnitude of T-cell responses in patients with coronavirus disease 2019 (COVID-19) and in individuals with inborn errors of immunity (IEIs) who had received COVID-19 mRNA vaccine. METHODS: Using high-throughput sequencing and bioinformatics tools to characterize the T-cell receptor ß repertoire signatures in 540 individuals after SARS-CoV-2 infection, 31 IEI recipients of COVID-19 mRNA vaccine, and healthy controls, we quantified HLA class I- and class II-restricted SARS-CoV-2-specific responses and also identified several HLA allele-clonotype motif associations in patients with COVID-19, including a subcohort of anti-type 1 interferon (IFN-1)-positive patients. RESULTS: Our analysis revealed that elderly patients with COVID-19 with critical disease manifested lower SARS-CoV-2 T-cell clonotype diversity as well as T-cell responses with reduced magnitude, whereas the SARS-CoV-2-specific clonotypes targeted a broad range of HLA class I- and class II-restricted epitopes across the viral proteome. The presence of anti-IFN-I antibodies was associated with certain HLA alleles. Finally, COVID-19 mRNA immunization induced an increase in the breadth of SARS-CoV-2-specific clonotypes in patients with IEIs, including those who had failed to seroconvert. CONCLUSIONS: Elderly individuals have impaired capacity to develop broad and sustained T-cell responses after SARS-CoV-2 infection. Genetic factors may play a role in the production of anti-IFN-1 antibodies. COVID-19 mRNA vaccines are effective in inducing T-cell responses in patients with IEIs.


Assuntos
COVID-19 , Hospedeiro Imunocomprometido , SARS-CoV-2 , Humanos , COVID-19/imunologia , SARS-CoV-2/imunologia , Masculino , Pessoa de Meia-Idade , Feminino , Hospedeiro Imunocomprometido/imunologia , Adulto , Idoso , Linfócitos T/imunologia , Vacinas contra COVID-19/imunologia , Imunocompetência/imunologia
2.
Blood Adv ; 8(7): 1820-1833, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38096800

RESUMO

ABSTRACT: Recombination-activating genes (RAG1 and RAG2) are critical for lymphoid cell development and function by initiating the variable (V), diversity (D), and joining (J) (V(D)J)-recombination process to generate polyclonal lymphocytes with broad antigen specificity. The clinical manifestations of defective RAG1/2 genes range from immune dysregulation to severe combined immunodeficiencies (SCIDs), causing life-threatening infections and death early in life without hematopoietic cell transplantation (HCT). Despite improvements, haploidentical HCT without myeloablative conditioning carries a high risk of graft failure and incomplete immune reconstitution. The RAG complex is only expressed during the G0-G1 phase of the cell cycle in the early stages of T- and B-cell development, underscoring that a direct gene correction might capture the precise temporal expression of the endogenous gene. Here, we report a feasibility study using the CRISPR/Cas9-based "universal gene-correction" approach for the RAG2 locus in human hematopoietic stem/progenitor cells (HSPCs) from healthy donors and RAG2-SCID patient. V(D)J-recombinase activity was restored after gene correction of RAG2-SCID-derived HSPCs, resulting in the development of T-cell receptor (TCR) αß and γδ CD3+ cells and single-positive CD4+ and CD8+ lymphocytes. TCR repertoire analysis indicated a normal distribution of CDR3 length and preserved usage of the distal TRAV genes. We confirmed the in vivo rescue of B-cell development with normal immunoglobulin M surface expression and a significant decrease in CD56bright natural killer cells. Together, we provide specificity, toxicity, and efficacy data supporting the development of a gene-correction therapy to benefit RAG2-deficient patients.


Assuntos
Proteínas de Homeodomínio , Imunodeficiência Combinada Severa , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , VDJ Recombinases
3.
Sci Transl Med ; 16(733): eadh8162, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324638

RESUMO

Recombination activating genes (RAGs) are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human RAG1 gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function. Whereas integration into intron 1 of RAG1 achieved suboptimal correction, in-frame insertion into exon 2 drove physiologic human RAG1 expression and activity, allowing disruption of the dominant-negative effects of unrepaired hypomorphic alleles. Enhanced HDR-mediated gene editing enabled the correction of human RAG1 in HSPCs from patients with hypomorphic RAG1 mutations to overcome T and B cell differentiation blocks. Gene correction efficiency exceeded the minimal proportion of functional HSPCs required to rescue immunodeficiency in Rag1-/- mice, supporting the clinical translation of HSPC gene editing for the treatment of RAG1 deficiency.


Assuntos
Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Animais , Humanos , Camundongos , Éxons , Edição de Genes/métodos , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
4.
Science ; 383(6686): eadh4059, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38422122

RESUMO

We describe humans with rare biallelic loss-of-function PTCRA variants impairing pre-α T cell receptor (pre-TCRα) expression. Low circulating naive αß T cell counts at birth persisted over time, with normal memory αß and high γδ T cell counts. Their TCRα repertoire was biased, which suggests that noncanonical thymic differentiation pathways can rescue αß T cell development. Only a minority of these individuals were sick, with infection, lymphoproliferation, and/or autoimmunity. We also report that 1 in 4000 individuals from the Middle East and South Asia are homozygous for a common hypomorphic PTCRA variant. They had normal circulating naive αß T cell counts but high γδ T cell counts. Although residual pre-TCRα expression drove the differentiation of more αß T cells, autoimmune conditions were more frequent in these patients compared with the general population.


Assuntos
Autoimunidade , Linfócitos Intraepiteliais , Glicoproteínas de Membrana , Receptores de Antígenos de Linfócitos T alfa-beta , Humanos , Autoimunidade/genética , Diferenciação Celular , Homozigoto , Linfócitos Intraepiteliais/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Glicoproteínas de Membrana/genética , Mutação com Perda de Função , Contagem de Linfócitos , Alelos , Infecções/imunologia , Transtornos Linfoproliferativos/imunologia , Linhagem , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
5.
Front Immunol ; 14: 1303251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116000

RESUMO

Introduction: Mulibrey nanism (MUL) is a rare disorder caused by TRIM37 gene variants characterized by growth failure, dysmorphic features, congestive heart failure (CHF), and an increased risk of Wilms' tumor. Although immune system impairment has been documented in MUL, the underlying mechanisms remain poorly understood. Methods: We present a case of MUL with progressive lymphopenia and review similar cases from the literature. Results: Our patient presented with prenatal onset growth restriction, characteristic dysmorphic features, and Wilms' tumor. She developed progressive lymphopenia starting at 10 years of age, leading to the initiation of intravenous immunoglobulin (IVIG) replacement therapy and infection prophylaxis. Genetic analysis detected a likely pathogenic variant on the maternal allele and copy number loss on the paternal allele in TRIM37. Subsequently a cardiac magnetic resonance imaging was conducted revealing signs of pericardial constriction raising concerns for intestinal lymphatic losses. The cessation of IVIG therapy did not coincide with any increase in the rate of infections. The patient exhibited a distinct immunological profile, characterized by hypogammaglobulinemia, impaired antibody responses, and skewed T-cell subsets with an altered CD4+/CD8+ ratio, consistent with previous reports. Normal thymocyte development assessed by artificial thymic organoid platform ruled out an early hematopoietic intrinsic defect of T-cell development. Discussion: The immunological profile of MUL patients reported so far shares similarities with that described in protein-losing enteropathy secondary to CHF in Fontan circulation and primary intestinal lymphangiectasia. These similarities include hypogammaglobulinemia, significant T-cell deficiency with decreased CD4+ and CD8+ counts, altered CD4+/CD8+ ratios, and significantly modified CD4+ and CD8+ T-cell phenotypes toward effector and terminal differentiated T cells, accompanied by a loss of naïve CD45RA+ T lymphocytes. In MUL, CHF is a cardinal feature, occurring in a significant proportion of patients and influencing prognosis. Signs of CHF or constrictive pericarditis have been evident in the case reported here and in all cases of MUL with documented immune dysfunction reported so far. These observations raise intriguing connections between these conditions. However, further investigation is warranted to in-depth define the immunological defect, providing valuable insights into the pathophysiology and treatment strategies for this condition.


Assuntos
Agamaglobulinemia , Insuficiência Cardíaca , Neoplasias Renais , Linfopenia , Nanismo de Mulibrey , Tumor de Wilms , Feminino , Humanos , Agamaglobulinemia/complicações , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/terapia , Imunoglobulinas Intravenosas/uso terapêutico , Neoplasias Renais/genética , Linfopenia/complicações , Nanismo de Mulibrey/genética , Mutação , Proteínas Nucleares/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Tumor de Wilms/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA