Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurol Neurosurg Psychiatry ; 95(3): 214-221, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37679030

RESUMO

BACKGROUND: This study aims: (1) To compare cognitive and psychiatric outcomes after bilateral awake versus asleep subthalamic nucleus (STN) deep brain stimulation (DBS) surgery for Parkinson's disease (PD). (2) To explore the occurrence of psychiatric diagnoses, cognitive impairment and quality of life after surgery in our whole sample. (3) To validate whether we can predict postoperative cognitive decline. METHODS: 110 patients with PD were randomised to receive awake (n=56) or asleep (n=54) STN DBS surgery. At baseline and 6-month follow-up, all patients underwent standardised assessments testing several cognitive domains, psychiatric symptoms and quality of life. RESULTS: There were no differences on neuropsychological composite scores and psychiatric symptoms between the groups, but we found small differences on individual tests and cognitive domains. The asleep group performed better on the Rey Auditory Verbal Learning Test delayed memory test (f=4.2, p=0.04), while the awake group improved on the Rivermead Behavioural Memory Test delayed memory test. (f=4.4, p=0.04). The Stroop III score was worse for the awake group (f=5.5, p=0.02). Worse scores were present for Stroop I (Stroop word card) (f=6.3, p=0.01), Stroop II (Stroop color card) (f=46.4, p<0.001), Stroop III (Stroop color-word card) (f=10.8, p=0.001) and Trailmaking B/A (f=4.5, p=0.04). Improvements were seen on quality of life: Parkinson's Disease Questionnaire-39 (f=24.8, p<0.001), and psychiatric scales: Hamilton Depression Rating Scale (f=6.2, p=0.01), and Hamilton Anxiety Rating Scale (f=5.5, p=0.02). CONCLUSIONS: This study suggests that the choice between awake and asleep STN DBS does not affect cognitive, mood and behavioural adverse effects, despite a minor difference in memory. STN DBS has a beneficial effect on quality of life, mood and anxiety symptoms. TRIAL REGISTRATION NUMBER: NTR5809.


Assuntos
Anestesia , Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Doença de Parkinson/psicologia , Estimulação Encefálica Profunda/efeitos adversos , Qualidade de Vida , Cognição/fisiologia , Resultado do Tratamento
2.
Stereotact Funct Neurosurg ; : 1-9, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38934196

RESUMO

INTRODUCTION: We present our surgical complications resulting in neurological deficit or additional surgery during 25 years of DBS of the subthalamic nucleus (STN) for Parkinson's disease (PD). METHODS: We conducted a retrospective chart review of all PD patients that received STN DBS in our DBS center between 1998 and 2023. Outcomes were complications resulting in neurological deficit or additional surgery. Potential risk factors (number of microelectrode recording tracks, age, anesthesia method, hypertension, and sex) for symptomatic intracerebral hemorrhage (ICH) were analyzed. Furthermore, lead fixation techniques were compared. RESULTS: Eight hundred PD patients (507 men, 293 women) received unilateral (n = 11) or bilateral (n = 789) implantation of STN electrodes. Neurological deficit due to ICH, edema, delirium, or infarction was seen in 8.4% of the patients (7.4% transient, 1.0% permanent). Twenty-two patients (2.8%) had a symptomatic ICH following STN DBS, for which we did not find any risk factors, and five had permanent sequelae due to ICH (0.6%). Of all patients, 18.4% required additional surgery; the proportion was reduced from 27% in the first 300 cases to 13% in the last 500 cases (p < 0.001). The infection rate was 3.5%, which decreased from 5.3% in the first 300 cases to 2.2% in the last 500 cases. The use of a lead anchoring device led to significantly less lead migrations than miniplate fixation. CONCLUSION: STN DBS leads to permanent neurological deficit in a small number of patients (1.0%), but a substantial proportion needs some additional surgical procedure after the first DBS system implantation. The risk of revision surgery was reduced over time but remained significant. These findings need to be discussed with the patient in the preoperative informed consent process in addition to the expected health benefit.

3.
Neuromodulation ; 27(3): 528-537, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37452799

RESUMO

OBJECTIVES: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease (PD) has an ambiguous relation to speech. Speech impairment can be a stimulation-induced side effect, and parkinsonian dysarthria can improve with STN-DBS. Owing to the lack of an up-to-date and evidence-based approach, DBS reprogramming for speech impairment is largely blind and greatly relies on the physician's experience. In this study, we aimed to establish an evidence- and experience-based algorithm for managing speech impairment in patients with PD treated with STN-DBS. MATERIALS AND METHODS: We performed a single-center retrospective study to identify patients with STN-DBS and speech impairment. Onset of speech impairment, lead localization, and assessment of DBS-induced nature of speech impairment were collected. When DBS settings were adjusted for improving speech, the magnitude and duration of effect were collected. We also performed a systematic literature review to identify studies describing the effects of parameter adjustments aimed at improving speech impairment in patients with PD receiving STN-DBS. RESULTS: In the retrospective study, 245 of 631 patients (38.8%) with STN-DBS had significant speech impairment. The probability of sustained marked improvement upon reprogramming was generally low (27.9%). In the systematic review, 23 of 662 identified studies were included. Only two randomized controlled trials have been performed, providing evidence for interleaving-interlink stimulation only. Considerable methodologic heterogeneity precluded the conduction of a meta-analysis. CONCLUSIONS: Speech impairment in STN-DBS for PD is frequent, but high-quality evidence regarding DBS parameter adjustments is scarce, and the probability of sustained improvement is low. To improve this outcome, we propose an evidence- and experience-based approach to address speech impairment in STN-DBS that can be used in clinical practice.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Fala , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Estudos Retrospectivos , Distúrbios da Fala/etiologia , Distúrbios da Fala/terapia
4.
Ann Neurol ; 91(5): 602-612, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150172

RESUMO

OBJECTIVE: The objective of this study was to obtain individual clinical and neuroimaging data of patients undergoing deep brain stimulation (DBS) for essential tremor (ET) from 5 different European centers to identify predictors of outcome and to identify an optimal stimulation site. METHODS: We analyzed retrospectively baseline covariates, pre- and postoperative clinical tremor scores (for 12 months) as well as individual imaging data from 119 patients to obtain individual electrode positions and stimulation volumes. Individual imaging and clinical data were used to calculate a probabilistic stimulation map in normalized space using voxel-wise statistical analysis. Finally, we used this map to train a classifier to predict tremor improvement. RESULTS: Probabilistic mapping of stimulation effects yielded a statistically significant cluster that was associated with a tremor improvement >50%. This cluster of optimal stimulation extended from the posterior subthalamic area to the ventralis intermedius nucleus and coincided with a normative structural connectivity-based cerebellothalamic tract (CTT). The combined features "distance between the stimulation volume and the significant cluster" and "CTT activation" were used as a predictor of tremor improvement. This correctly classified a >50% tremor improvement with a sensitivity of 89% and a specificity of 57%. INTERPRETATION: Our multicenter ET probabilistic stimulation map identified an area of optimal stimulation along the course of the CTT. The results of this study are mainly descriptive until confirmed in independent datasets, ideally through prospective testing. This target will be made openly available and may be used to guide surgical planning and for computer-assisted programming of DBS in the future. ANN NEUROL 2022;91:602-612.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Resultado do Tratamento , Tremor/terapia
5.
Mol Psychiatry ; 27(12): 5206-5212, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36071109

RESUMO

Deep brain stimulation (DBS) of the ventral anterior limb of the internal capsule (vALIC) is effective for refractory obsessive-compulsive disorder (OCD). Retrospective evaluation showed that stimulation closer to the supero-lateral branch of the medial forebrain bundle (slMFB), within the vALIC, was associated with better response to DBS. The present study is the first to compare outcomes of DBS targeted at the vALIC using anatomical landmarks and DBS with connectomic tractography-based targeting of the slMFB. We included 20 OCD-patients with anatomical landmark-based DBS of the vALIC that were propensity score matched to 20 patients with tractography-based targeting of electrodes in the slMFB. After one year, we compared severity of OCD, anxiety and depression symptoms, response rates, time to response, number of parameter adjustments, average current, medication usage and stimulation-related adverse effects. There was no difference in Y-BOCS decrease between patients with anatomical landmark-based and tractography-based DBS. Nine (45%) patients with anatomical landmark-based DBS and 13 (65%) patients with tractography-based DBS were responders (BF10 = 1.24). The course of depression and anxiety symptoms, time to response, number of stimulation adjustments or medication usage did not differ between groups. Patients with tractography-based DBS experienced fewer stimulation-related adverse effects than patients with anatomical landmark-based DBS (38 vs 58 transient and 1 vs. 17 lasting adverse effects; BF10 = 14.968). OCD symptoms in patients with anatomical landmark-based DBS of the vALIC and tractography-based DBS of the slMFB decrease equally, but patients with tractography-based DBS experience less adverse effects.


Assuntos
Estimulação Encefálica Profunda , Transtorno Obsessivo-Compulsivo , Humanos , Cápsula Interna , Estudos Retrospectivos , Transtorno Obsessivo-Compulsivo/terapia , Ansiedade , Resultado do Tratamento
6.
BMC Neurol ; 23(1): 372, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853327

RESUMO

BACKGROUND: The effectiveness of Deep Brain Stimulation (DBS) therapy for Parkinson's disease can be limited by side-effects caused by electrical current spillover into structures adjacent to the target area. The objective of the STEEred versus RING-mode DBS for Parkinson's disease (STEERING) study is to investigate if directional DBS for Parkinson's disease results in a better clinical outcome when compared to ring-mode DBS. METHODS: The STEERING study is a prospective multi-centre double-blind randomised crossover trial. Inclusion criteria are Parkinson's disease, subthalamic nucleus DBS in a 'classic' ring-mode setting for a minimum of six months, and optimal ring-mode settings have been established. Participants are categorised into one of two subgroups according to their clinical response to the ring-mode settings as 'responders' (i.e., patient with a satisfactory effect of ring-mode DBS) or 'non-responder' (i.e., patient with a non-satisfactory effect of ring-mode DBS). A total of 64 responders and 38 non-responders will be included (total 102 patients). After an optimisation period in which an optimal directional setting is found, participants are randomised to first receive ring-mode DBS for 56 days (range 28-66) followed by directional DBS for 56 days (28-66) or vice-versa. The primary outcome is the difference between ring-mode DBS and directional DBS settings on the Movement Disorders Society Unified Parkinson's Disease Rating Scale - Motor Evaluation (MDS-UPDRS-ME) in the off-medication state. Secondary outcome measures consist of MDS-UPDRS-ME in the on-medication state, MDS-UPDRS Activities of Daily Living, MDS-UPDRS Motor Complications-Dyskinesia, disease related quality of life measured with the Parkinson's Disease Questionnaire 39, stimulation-induced side-effects, antiparkinsonian medication use, and DBS-parameters. Participants' therapy preference is measured at the end of the study. Outcomes will be analysed for both responder and non-responder groups, as well as for both groups pooled together. DISCUSSION: The STEERING trial will provide insights into whether or not directional DBS should be standardly used in all Parkinson's disease DBS patients or if directional DBS should only be used in a case-based approach. TRIAL REGISTRATION: This trial was registered on the Netherlands Trial Register, as trial NL6508 ( NTR6696 ) on June 23, 2017.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Estudos Prospectivos , Estimulação Encefálica Profunda/métodos , Qualidade de Vida , Atividades Cotidianas , Estudos Cross-Over , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
7.
Neuromodulation ; 26(2): 333-339, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35216874

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a highly effective surgical treatment for patients with advanced Parkinson disease (PD). Combining 7.0-Tesla (7T) T2- and diffusion-weighted imaging (DWI) sequences allows for selective segmenting of the motor part of the STN and, thus, for possible optimization of DBS. MATERIALS AND METHODS: 7T T2 and DWI sequences were obtained, and probabilistic segmentation of motor, associative, and limbic STN segments was performed. Left- and right-sided motor outcome (Movement Disorders Society Unified Parkinson's Disease Rating Scale) scores were used for evaluating the correspondence between the active electrode contacts in selectively segmented STN and the clinical DBS effect. The Bejjani line was reviewed for crossing of segments. RESULTS: A total of 50 STNs were segmented in 25 patients and proved highly feasible. Although the highest density of motor connections was situated in the dorsolateral STN for all patients, the exact partitioning of segments differed considerably. For all the active electrode contacts situated within the predominantly motor-connected segment of the STN, the average hemi-body Unified Parkinson's Disease Rating Scale motor improvement was 80%; outside this segment, it was 52% (p < 0.01). The Bejjani line was situated in the motor segment for 32 STNs. CONCLUSION: The implementation of 7T T2 and DWI segmentation of the STN in DBS for PD is feasible and offers insight into the location of the motor segment. Segmentation-guided electrode placement is likely to further improve motor response in DBS for PD. However, commercially available DBS software for postprocessing imaging would greatly facilitate widespread implementation.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/tratamento farmacológico , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/fisiologia , Estimulação Encefálica Profunda/métodos , Resultado do Tratamento , Eletrodos
8.
Neuromodulation ; 26(8): 1705-1713, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35088745

RESUMO

BACKGROUND: The dentato-rubro-thalamic tract (DRT) is currently considered as a potential target in deep brain stimulation (DBS) for various types of tremor. However, tractography depiction can vary depending on the included brain regions. The fast gray matter acquisition T1 inversion recovery (FGATIR) sequence, with excellent delineation of gray and white matter, possibly provides anatomical identification of rubro-thalamic DRT fibers. OBJECTIVE: This study aimed to evaluate the FGATIR sequence by comparison with DRT depiction, electrode localization, and effectiveness of DBS therapy. MATERIALS AND METHODS: In patients with DBS therapy because of medication-refractory tremor, the FGATIR sequence was evaluated for depiction of the thalamus, red nucleus (RN), and rubro-thalamic connections. Deterministic tractography of the DRT, electrode localization, and tremor control were compared. The essential tremor rating scale was used to assess (hand) tremor. Tremor control was considered successful when complete tremor suppression (grade 0) or almost complete suppression (grade 1) was observed. RESULTS: In the postoperative phase, we evaluated 14 patients who underwent DRT-guided DBS: 12 patients with essential tremor, one with tremor-dominant Parkinson disease, and one with multiple sclerosis, representing 24 trajectories. Mean follow-up was 11.3 months (range 6-19 months). The FGATIR sequence provided a clear delineation of a hypointense white matter tract within the hyperintense thalamus. In coronal plane, this tract was most readily recognizable as a "rubral wing," with the round RN as base and lateral triangular convergence. The deterministic DRT depiction was consistently situated within the rubral wing. The number of active contacts located within the DRT (and rubral wing) was 22 (92%), of which 16 (73%) showed successful tremor control. CONCLUSIONS: The FGATIR sequence offers visualization of the rubro-thalamic connections that form the DRT, most readily recognizable as a "rubral wing" in coronal plane. This sequence contributes to tractographic depiction of DRT and provides a direct anatomical DBS target area for tremor control.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Humanos , Tremor/terapia , Tremor/cirurgia , Tremor Essencial/terapia , Substância Cinzenta/diagnóstico por imagem , Imagem de Tensor de Difusão , Tálamo/diagnóstico por imagem , Tálamo/cirurgia
9.
Stereotact Funct Neurosurg ; 99(3): 187-195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33207350

RESUMO

INTRODUCTION: The intersection of Bejjani's line with the well-delineated medial subthalamic nucleus (STN) border on MRI has recently been proposed as an individualized reference in subthalamic deep brain stimulation (DBS) surgery for Parkinson's disease (PD). We, therefore, aimed to investigate the applicability across centers of the medial STN border as a patient-specific reference point in STN DBS for PD and explore anatomical variability between left and right mesencephalic area within patients. Furthermore, we aim to evaluate a recently defined theoretic stimulation "hotspot" in a different center. METHODS: Preoperative 3-Tesla T2 and susceptibility-weighted images (SWI) were used to identify the intersection of Bejjani's line with the medial STN border in left and right mesencephalic area. The average stereotactic coordinates of the center of stimulation relative to the medial STN border were compared with the predefined theoretic stimulation "hotspot." RESULTS: Fifty-four patients provided 108 stereotactic coordinates of medial STN borders on both sequences. Significant difference in means was found in the Y-(anteroposterior) and Z-(dorsoventral) directions (T2 vs. SWI; p < 0.001). Mean coordinates in the Y-(anteroposterior) direction differed significantly between left and right mesencephalic area (T2: p < 0.001; SWI: p = 0.021). Sixty-six DBS leads were placed in 36 patients that had finished stimulation programming, and the average stereotactic coordinates of the center of stimulation relative to the medial STN border on T2 sequences were 3.1 mm lateral, 0.7 mm anterior, and 1.8 mm superior, in proximity of the predefined theoretic stimulation "hotspot." CONCLUSION: The medial STN border is applicable across centers as a reference point for STN DBS surgery for PD and seems suitable in order to account for interindividual and intraindividual anatomical variability if one is aware of the discrepancies between T2-weighted imaging and SWI.


Assuntos
Estimulação Encefálica Profunda , Neurocirurgia , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Imageamento por Ressonância Magnética , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/cirurgia , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/cirurgia
10.
Stereotact Funct Neurosurg ; 98(2): 118-128, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32131066

RESUMO

INTRODUCTION: For deep brain stimulation (DBS) surgery of the subthalamic nucleus (STN) in Parkinson's disease (PD), many centers employ visualization of the nucleus on magnetic resonance imaging (MRI), intraoperative microelectrode recordings (MER), and test stimulation in awake patients. The value of these steps is a subject for ongoing debate. In the current study, we determined the relative contribution of MRI targeting, multitrack MER, and awake test stimulation in final lead placement during STN DBS surgery for PD. METHODS: Data on PD patients undergoing MRI-targeted STN DBS surgery with three-channel MER and awake test stimulation between February 2010 and January 2014 were analyzed to determine in which MER trajectory final leads were implanted and why this tract was chosen. RESULTS: Seventy-six patients underwent implantation of 146 DBS leads. In 92% of the STN, the final leads were implanted in one of the three planned channels. In 6%, additional channels were needed. In 2%, surgery was aborted before final lead implantation due to anxiety or fatigue. The final leads were implanted in the channels with the longest STN MER signal trajectory in 60% of the STN (38% of the bilaterally implanted patients). This was the central channel containing the MRI target in 39% of the STN (18% bilaterally). The most frequently noted reasons why another channel than the central channel was chosen for final lead placement were (1) a lower threshold for side effects (54%) and (2) no or a too short trajectory of the STN MER signal (40%) in the central channel. The latter reason correlated with larger 2D (x and y) errors in our stereotactic method. CONCLUSIONS: STN DBS leads were often not implanted in the MRI-planned trajectory or in the trajectory with the longest STN MER signal. Thresholds for side effects during awake test stimulation were decisive for final target selection in the majority of patients.


Assuntos
Estimulação Encefálica Profunda/métodos , Imageamento por Ressonância Magnética/métodos , Microeletrodos , Doença de Parkinson/cirurgia , Núcleo Subtalâmico/cirurgia , Vigília/fisiologia , Adulto , Idoso , Estudos de Coortes , Estimulação Encefálica Profunda/instrumentação , Eletrodos Implantados , Feminino , Humanos , Monitorização Neurofisiológica Intraoperatória/instrumentação , Monitorização Neurofisiológica Intraoperatória/métodos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico por imagem , Núcleo Subtalâmico/diagnóstico por imagem
11.
Stereotact Funct Neurosurg ; 97(3): 153-159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31430753

RESUMO

BACKGROUND: 7.0-T T2-weighted MRI offers excellent visibility of the subthalamic nucleus (STN), which is used as a target for deep brain stimulation (DBS) in Parkinson's disease (PD). A comparison of 7.0-T MRI to microelectrode recordings (MER) for STN border identification has not been performed. OBJECTIVE: To compare representation of STN borders on 7.0-T T2 MRI with the borders identified during MER in patients undergoing DBS for PD and to evaluate whether STN identification on 7.0-T T2 MRI leads to alterations in stereotactic target planning. DESIGN/METHODS: STN border identification was done using volumetric 7.0-T T2 MRI acquisitions. This was compared to the STN borders identified by MER. STN target planning was independently performed by 3 DBS surgeons on T2 imaging using 1.5-, 3.0-, and 7.0-T MRI. RESULTS: A total of 102 microelectrode tracks were evaluated in 19 patients. Identification of the dorsal STN border was well feasible on 7-T T2, whereas the ventral STN was un-distinguishable from the substantia nigra. The dorsal STN border on MRI was located more dorsal than MER in 73% of trajectories. The average distance from MRI to MER border was 0.9 mm (range -4.4 to +3.5 mm). STN target planning showed high correspondence between the 3 field strengths. CONCLUSION: 7.0-T T2 MRI offers the possibility of easy identification of the dorsal border of the STN. However, higher field strength MRI does not change the planning of the target. Compared to MER, the dorsal border on MRI was located more dorsal in the majority of cases, situating MER activity within STN representation.


Assuntos
Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Doença de Parkinson/diagnóstico por imagem , Núcleo Subtalâmico/diagnóstico por imagem , Idoso , Feminino , Humanos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Masculino , Microeletrodos , Pessoa de Meia-Idade , Doença de Parkinson/cirurgia , Doença de Parkinson/terapia , Núcleo Subtalâmico/cirurgia
12.
J Neurol Neurosurg Psychiatry ; 89(5): 493-498, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29353236

RESUMO

BACKGROUND: Individual motor improvement after deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease (PD) varies considerably. Stereotactic targeting of the dorsolateral sensorimotor part of the STN is considered paramount for maximising effectiveness, but studies employing the midcommissural point (MCP) as anatomical reference failed to show correlation between DBS location and motor improvement. The medial border of the STN as reference may provide better insight in the relationship between DBS location and clinical outcome. METHODS: Motor improvement after 12 months of 65 STN DBS electrodes was categorised into non-responding, responding and optimally responding body-sides. Stereotactic coordinates of optimal electrode contacts relative to both medial STN border and MCP served to define theoretic DBS 'hotspots'. RESULTS: Using the medial STN border as reference, significant negative correlation (Pearson's correlation -0.52, P<0.01) was found between the Euclidean distance from the centre of stimulation to this DBS hotspot and motor improvement. This hotspot was located at 2.8 mm lateral, 1.7 mm anterior and 2.5 mm superior relative to the medial STN border. Using MCP as reference, no correlation was found. CONCLUSION: The medial STN border proved superior compared with MCP as anatomical reference for correlation of DBS location and motor improvement, and enabled defining an optimal DBS location within the nucleus. We therefore propose the medial STN border as a better individual reference point than the currently used MCP on preoperative stereotactic imaging, in order to obtain optimal and thus less variable motor improvement for individual patients with PD following STN DBS.


Assuntos
Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Eletrodos Implantados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas Estereotáxicas
13.
Stereotact Funct Neurosurg ; 96(4): 231-238, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30145596

RESUMO

BACKGROUND/AIMS: Microelectrode recording (MER)-guided deep brain stimulation (DBS) aims to place the DBS lead in the optimal electrophysiological target. When single-track MER or test stimulation yields suboptimal results, trajectory adjustments are made. The accuracy of these trajectory adjustments is unknown. Intraoperative computed tomography can visualize the microelectrode (ME) and verify ME adjustments. We aimed to determine the accuracy of ME movements in patients undergoing MER-guided DBS. METHODS: Coordinates following three methods of adjustment were compared: (1) those within the default "+" configuration of the ME holder; (2) those involving rotation of the default "+" to the "x" configuration; and (3) those involving head stage adjustments. Radial error and absolute differences between coordinates were determined. RESULTS: 87 ME movements in 59 patients were analyzed. Median (IQR) radial error was 0.59 (0.64) mm. Median (IQR) absolute x and y coordinate errors were 0.29 (0.52) and 0.38 (0.44) mm, respectively. Errors were largest after rotating the multielectrode holder to its "x"-shaped setup. CONCLUSION: ME trajectory adjustments can be made accurately. In a considerable number of cases, errors exceeding 1 mm were found. Adjustments from the "+" setup to the "x" setup are most prone to inaccuracies.


Assuntos
Encéfalo/diagnóstico por imagem , Estimulação Encefálica Profunda/métodos , Eletrodos Implantados , Microeletrodos , Doença de Parkinson/cirurgia , Adulto , Idoso , Encéfalo/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico por imagem , Tomografia Computadorizada por Raios X
14.
Stereotact Funct Neurosurg ; 96(4): 223-230, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30176664

RESUMO

OBJECTIVE: To evaluate the possible influence of electrode trajectories penetrating the caudate nucleus (CN) on cognitive outcomes in deep brain stimulation (DBS) surgery for Parkinson's disease (PD). BACKGROUND: It is currently unclear how mandatory CN avoidance during trajectory planning is. DESIGN/METHODS: Electrode trajectories were determined to be inside, outside, or in border region of the CN. Pre- and postoperative neuropsychological tests of each trajectory group were compared in order to evaluate possible differences in cognitive outcomes 12 months after bilateral STN DBS. RESULTS: One hundred six electrode tracks in 53 patients were evaluated. Bilateral penetration of the CN occurred in 15 (28%) patients, while unilateral penetration occurred in 28 (53%). In 19 (36%) patients tracks were located in the border region of the CN. There was no electrode penetration of the CN in 10 (19%) patients. No difference in cognitive outcomes was found between the different groups. CONCLUSION: Cognitive outcome was not influenced by DBS electrode tracks penetrating the CN. It is both feasible and sensible to avoid electrode tracks through the CN when possible, considering its function and anatomical position. However, penetration of the CN can be considered without major concerns regarding cognitive decline when this facilitates optimal trajectory planning due to specific individual anatomical variations.


Assuntos
Núcleo Caudado/cirurgia , Cognição/fisiologia , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Núcleo Subtalâmico/cirurgia , Idoso , Núcleo Caudado/fisiopatologia , Eletrodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Doença de Parkinson/fisiopatologia , Estudos Retrospectivos , Núcleo Subtalâmico/fisiopatologia , Resultado do Tratamento
15.
Acta Neurochir (Wien) ; 160(2): 373-383, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29275518

RESUMO

BACKGROUND: It is unclear which magnetic resonance imaging (MRI) sequence most accurately corresponds with the electrophysiological subthalamic nucleus (STN) obtained during microelectrode recording (MER, MER-STN). CT/MRI fusion allows for comparison between MER-STN and the STN visualized on preoperative MRI (MRI-STN). OBJECTIVE: To compare dorsal and ventral STN borders as seen on 3-Tesla T2-weighted (T2) and susceptibility weighted images (SWI) with electrophysiological STN borders in deep brain stimulation (DBS) for Parkinson's disease (PD). METHODS: Intraoperative CT (iCT) was performed after each MER track. iCT images were merged with preoperative images using planning software. Dorsal and ventral borders of each track were determined and compared to MRI-STN borders. Differences between borders were calculated. RESULTS: A total of 125 tracks were evaluated in 45 patients. MER-STN started and ended more dorsally than respective dorsal and ventral MRI-STN borders. For dorsal borders, differences were 1.9 ± 1.4 mm (T2) and 2.5 ± 1.8 mm (SWI). For ventral borders, differences were 1.9 ± 1.6 mm (T2) and 2.1 ± 1.8 mm (SWI). CONCLUSIONS: Discrepancies were found comparing borders on T2 and SWI to the electrophysiological STN. The largest border differences were found using SWI. Border differences were considerably larger than errors associated with iCT and fusion techniques. A cautious approach should be taken when relying solely on MR imaging for delineation of both clinically relevant STN borders.


Assuntos
Estimulação Encefálica Profunda/métodos , Monitorização Neurofisiológica Intraoperatória/métodos , Imageamento por Ressonância Magnética/métodos , Núcleo Subtalâmico/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Núcleo Subtalâmico/fisiologia , Núcleo Subtalâmico/cirurgia
17.
Stereotact Funct Neurosurg ; 95(3): 183-188, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28601874

RESUMO

OBJECTIVE: To determine the accuracy of intraoperative computed tomography (iCT) in localizing deep brain stimulation (DBS) electrodes by comparing this modality with postoperative magnetic resonance imaging (MRI). BACKGROUND: Optimal lead placement is a critical factor for the outcome of DBS procedures and preferably confirmed during surgery. iCT offers 3-dimensional verification of both microelectrode and lead location during DBS surgery. However, accurate electrode representation on iCT has not been extensively studied. METHODS: DBS surgery was performed using the Leksell stereotactic G frame. Stereotactic coordinates of 52 DBS leads were determined on both iCT and postoperative MRI and compared with intended final target coordinates. The resulting absolute differences in X (medial-lateral), Y (anterior-posterior), and Z (dorsal-ventral) coordinates (ΔX, ΔY, and ΔZ) for both modalities were then used to calculate the euclidean distance. RESULTS: Euclidean distances were 2.7 ± 1.1 and 2.5 ± 1.2 mm for MRI and iCT, respectively (p = 0.2). CONCLUSION: Postoperative MRI and iCT show equivalent DBS lead representation. Intraoperative localization of both microelectrode and DBS lead in stereotactic space enables direct adjustments. Verification of lead placement with postoperative MRI, considered to be the gold standard, is unnecessary.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Estimulação Encefálica Profunda , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Eletrodos Implantados , Feminino , Globo Pálido/diagnóstico por imagem , Globo Pálido/cirurgia , Humanos , Cuidados Intraoperatórios , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Reprodutibilidade dos Testes , Técnicas Estereotáxicas , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/cirurgia , Núcleos Ventrais do Tálamo/diagnóstico por imagem , Núcleos Ventrais do Tálamo/cirurgia
18.
Stereotact Funct Neurosurg ; 93(5): 316-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26227179

RESUMO

OBJECTIVE: To determine and compare the accuracy of Nexframe and the Leksell stereotactic frame in deep brain stimulation (DBS) procedures. BACKGROUND: The 'frameless' Nexframe uses bone fiducials rather than a head-mounted frame, which offers potential benefits for both the patient and the surgical team. Accuracy of lead implantation and factors affecting this accuracy are of crucial importance but have not been extensively studied for the frameless system. DESIGN/METHODS: The location of 194 (Leksell frame, n = 116; Nexframe, n = 78) DBS leads was determined on postoperative MRI. Obtained stereotactic coordinates were compared with expected intraoperative target coordinates. Resulting absolute errors in the X (medial-lateral), Y (anterior-posterior), and Z (dorsal-ventral) coordinates (x0394;X, x0394;Y, and x0394;Z) were then used to calculate the vector error (VE). The vector error describes the total error in 3-D space and represents our main outcome measure. RESULTS: The vector error (mean ± SD) was 2.8 ± 1.3 for Nexframe and 2.5 ± 1.2 for the Leksell frame (p = 0.43). For Nexframe, absolute X, Y, and Z errors were 1.4 ± 1.3, 1.7 ± 1.2, and 1.0 ± 0.9 mm. For the Leksell frame, the absolute X, Y, and Z errors were 1.4 ± 1.0, 1.2 ± 1.0, and 1.3 ± 0.9 mm. On the anterior-posterior plane (Y coordinate), the Leksell frame was more accurate than Nexframe (p = 0.04). In contrast, Nexframe was more accurate on the dorsal-ventral plane (Z coordinate) (p = 0.04). There was no difference in accuracy between the two methods on the medial-lateral plane (X coordinate). CONCLUSION: This comparison of Nexframe and the Leksell frame shows that both techniques have equivalent overall 3-D accuracy.


Assuntos
Estimulação Encefálica Profunda/métodos , Eletrodos Implantados , Transtornos dos Movimentos/terapia , Técnicas Estereotáxicas/instrumentação , Adulto , Idoso , Estimulação Encefálica Profunda/instrumentação , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Resultado do Tratamento
19.
Mov Disord Clin Pract ; 11(6): 676-685, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38586984

RESUMO

BACKGROUND: Primary orthostatic tremor (OT) can affect patients' life. Treatment of OT with deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus (Vim) is described in a limited number of patients. The Vim and posterior subthalamic area (PSA) can be targeted in a single trajectory, allowing both stimulation of the Vim and/or dentatorubrothalamic tract (DRT). In essential tremor this is currently often used with positive effects. OBJECTIVE: To evaluate the efficacy of Vim/DRT-DBS in OT-patients, based on standing time and Quality of Life (QoL), also on the long-term. Furthermore, to relate stimulation of the Vim and DRT, medial lemniscus (ML) and pyramidal tract (PT) to beneficial clinical and side-effects. METHODS: Nine severely affected OT-patients received bilateral Vim/DRT-DBS. Primary outcome measure was standing time; secondary measures included self-reported measures, neurophysiological measures, structural analyses, surgical complications, stimulation-induced side-effects, and QoL up to 56 months. Stimulation of volume of tissue activated (VTA) were related to outcome measures. RESULTS: Average maximum standing time increased from 41.0 s ± 51.0 s to 109.3 s ± 65.0 s after 18 months, with improvements measured in seven of nine patients. VTA (n = 7) overlapped with the DRT in six patients and with the ML and/or PT in six patients. All patients experienced side-effects and QoL worsened during the first year after surgery, which improved again during long-term follow-up, although remaining below age-related normal values. Most patients reported a positive effect of DBS. CONCLUSION: Vim/DRT-DBS improved standing time in patients with severe OT. Observed side-effects are possibly related to stimulation of the ML and PT.


Assuntos
Estimulação Encefálica Profunda , Tontura , Qualidade de Vida , Tremor , Humanos , Estimulação Encefálica Profunda/métodos , Tremor/terapia , Tremor/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Tontura/terapia , Tontura/etiologia , Resultado do Tratamento , Núcleos Ventrais do Tálamo
20.
Mov Disord Clin Pract ; 11(4): 373-380, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385792

RESUMO

BACKGROUND: Identifying the dorsolateral subthalamic nucleus (STN) for deep brain stimulation (DBS) in Parkinson's disease (PD) can be challenging due to the size and double-oblique orientation. Since 2015 we implemented 7-Tesla T2 weighted magnetic resonance imaging (7 T T2) for improving visualization and targeting of the dorsolateral STN. We describe the changes in surgical planning and outcome since implementation of 7 T T2 for DBS in PD. METHODS: By comparing two cohorts of STN DBS patients in different time periods we evaluated the influence of 7 T T2 on STN target planning, the number of microelectrode recording (MER) trajectories, length of STN activity and the postoperative motor (UPDRS) improvement. RESULTS: From February 2007 to January 2014, 1.5 and 3-Tesla T2 guided STN DBS with 3 MER channels was performed in 76 PD patients. Average length of recorded STN activity in the definite electrode trajectory was 3.9 ± 1.5 mm. From January 2015 to January 2022 7 T T2 and MER-guided STN DBS was performed in 182 PD patients. Average length of recorded STN activity in the definite electrode trajectory was 5.1 ± 1.3 mm and used MER channels decreased from 3 to 1. Average UPDRS improvement was comparable. CONCLUSION: Implementation of 7 T T2 for STN DBS enabled a refinement in targeting. Combining classical DBS targeting with dorsolateral STN alignment may be used to determine the optimal trajectory. The improvement in dorsolateral STN visualization can be used for further target refinements, for example adding probabilistic subthalamic connectivity, to enhance clinical outcome of STN DBS.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/diagnóstico por imagem , Estimulação Encefálica Profunda/métodos , Núcleo Subtalâmico/diagnóstico por imagem , Imageamento por Ressonância Magnética , Microeletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA