Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(6)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37376211

RESUMO

Acute and chronic bone infections, especially those caused by methicillin-resistant Staphylococcus aureus (MRSA), remains a major complication and therapeutic challenge. It is documented that local administration of vancomycin offers better results than the usual routes of administration (e.g., intravenous) when ischemic areas are present. In this work, we evaluate the antimicrobial efficacy against S. aureus and S. epidermidis of a novel hybrid 3D-printed scaffold based on polycaprolactone (PCL) and a chitosan (CS) hydrogel loaded with different vancomycin (Van) concentrations (1, 5, 10, 20%). Two cold plasma treatments were used to improve the adhesion of CS hydrogels to the PCL scaffolds by decreasing PCL hydrophobicity. Vancomycin release was measured by means of HPLC, and the biological response of ah-BM-MSCs growing in the presence of the scaffolds was evaluated in terms of cytotoxicity, proliferation, and osteogenic differentiation. The PCL/CS/Van scaffolds tested were found to be biocompatible, bioactive, and bactericide, as demonstrated by no cytotoxicity (LDH activity) or functional alteration (ALP activity, alizarin red staining) of the cultured cells and by bacterial inhibition. Our results suggest that the scaffolds developed would be excellent candidates for use in a wide range of biomedical fields such as drug delivery systems or tissue engineering applications.

2.
ACS Appl Bio Mater ; 4(10): 7445-7455, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35006713

RESUMO

In this study, a simple method to immobilize chitosan on a poly(lactic acid) (PLA) surface was developed in a fast manner. The immobilization was realized in two steps. First, an atmospheric plasma (MWAP) torch was used to modify the PLA surface in less than 5 min in order to create enough activated sites toward the chitosan adhesion, followed by a direct dip coating to spread and immobilize chitosan on this MWAP-modified PLA surface. The modification of the PLA surface properties was confirmed by X-ray photoelectron spectroscopy (XPS), water contact angle, and atomic force microscopy. It resulted that the activated species derived from the plasma torch, i.e., hydroxyl and carboxylic acid moieties, enabled an increase of the hydrophilicity of the PLA surface. Interestingly, this activated surface allows a good spreading of chitosan solution from dip coating and leads to a homogeneous stable coating. Our XPS results bring us the hypothesis that the stabilization of the chitosan layer is mainly induced by noncovalent interactions such as hydrogen bonding and electrostatic interactions. A first insight into the biological properties of theses surfaces was assessed in terms of the antimicrobial activity of the here-designed surfaces.


Assuntos
Anti-Infecciosos , Quitosana , Anti-Infecciosos/farmacologia , Quitosana/química , Micro-Ondas , Poliésteres
3.
Front Microbiol ; 9: 2171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250463

RESUMO

We have recently developed a non-thermal plasma (NTP) equipment intended to sterilize fragile medical devices and maintain the sterile state of items downstream the treatment. With traditional counts on agar plate a six log reduction of Staphylococcus aureus viability was obtained within 120 min of O2, Ar, or N2 NTP treatments. However to determine the best NTP process, we studied the different physiological states of S. aureus by flow cytometry (FC) and confocal laser scanning microscopy (CLSM) focusing on the esterasic activity and membrane integrity of the bacteria. Two fluorochromes, 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate and propidium iodide were used in order to distinguish three sub-populations: metabolically active, permeabilized, and damaged bacteria that can be in the viable but nonculturable state. FC and CLSM highlight that O2 and Ar NTP treatments were the most attractive processes. Indeed, a 5 min of Ar NTP generated a high destruction of the structure of bacteria and a 120 min of O2 NTP treatment led to the higher decrease of the total damaged bacteria population. SEM observations showed that in presence of clusters, bacteria of upper layers are easily altered compared to bacteria in the deeper layers. In conclusion, the plate counting method is not sufficient by itself to determine the best NTP treatment. FC and CLSM represent attractive indicator techniques to select the most efficient gas NTP treatment generating the lowest proportion of viable bacteria and the most debris.

4.
PLoS One ; 12(6): e0180183, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28662202

RESUMO

In this work, we developed a device capable to generate a non-thermal plasma discharge inside a sealed bag. The aim of this study was to assess the effectiveness of the oxygen, nitrogen and argon plasma sterilization on Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis spores according to the NF EN 556 Norm. Moreover the bag integrity which is a critical key to maintain the sterile state of items after the end of the process was verified by Fourier Transform Infrared (FTIR) and X-ray Photoelectron Spectrometry (XPS) analyses. After plasma treatments, the bacterial counting showed a 6 log reduction of P. aeruginosa and S. aureus in 45 min and 120 min respectively whatever the gas used and a 4 log reduction of B. subtilis spores in 120 min with only oxygen plasma. These results were confirmed by Scanning Electron Microscopy (SEM) observations showing altered bacteria or spores and numerous debris. Taking into account the studied microorganisms, the oxygen plasma treatment showed the highest efficiency. FTIR and XPS analyses showed that this treatment induced no significant modification of the bags. To conclude this non-thermal plasma sterilization technique could be an opportunity to sterilize heat and chemical-sensitive medical devices and to preserve their sterile state after the end of the process.


Assuntos
Bactérias , Desinfecção/métodos , Gases em Plasma , Esporos Bacterianos , Bactérias/classificação , Desinfecção/instrumentação , Desinfecção/normas , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Pressão , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA