Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Chemphyschem ; 25(12): e202400133, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38624189

RESUMO

Electrochemistry-based light-emitting devices have gained considerable attention in different applications such as sensing and optical imaging. In particular, such systems are an interesting alternative for the development of multimodal light-emitting platforms. Herein we designed a multicolor light-emitting array, based on the electrochemical switch-on of light-emitting diodes (LEDs) with a different intrinsic threshold voltage. Thermodynamically and kinetically favored coupled redox reactions, i. e. the oxidation of Mg and the reduction of protons on Pt, act as driving force to power the diodes. Moreover, this system enables to trigger an additional light emission based on the interfacial reductive-oxidation electrochemiluminescence (ECL) mechanism of the Ru(bpy)3 2+/S2O8 2- system. The synergy between these light-emission pathways offers a multimodal platform for the straightforward optical readout of physico-chemical information based on composition changes of the solution.

2.
Heredity (Edinb) ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942781

RESUMO

Global warming threatens the productivity of forest plantations. We propose here the integration of environmental information into a genomic evaluation scheme using individual reaction norms, to enable the quantification of resilience in forest tree improvement and conservation strategies in the coming decades. Random regression models were used to fit wood ring series, reflecting the longitudinal phenotypic plasticity of tree growth, according to various environmental gradients. The predictive ability of the models was considered to select the most relevant environmental gradient, namely a gradient derived from an ecophysiological model and combining trunk water potential and temperature. Even if the individual ranking was preserved over most of the environmental gradient, strong genotype x environment interactions were detected in the extreme unfavorable part of the gradient, which includes environmental conditions that are very likely to be more frequent in the future. Combining genomic information and longitudinal data allowed to predict the growth of individuals in environments where they have not been observed. Phenotyping of 50% of the individuals in all the environments studied allowed to predict the growth of the remaining 50% of individuals in all these environments with a predictive ability of 0.25. Without changing the total number of observations, adding observations in a reduced number of environments for the individuals to be predicted, while decreasing the number of individuals phenotyped in all environments, increased the predictive ability to 0.59, highlighting the importance of phenotypic data allocation. We found that genomic reaction norms are useful for the characterization and prediction of the function of genetic parameters and facilitate breeding in a climate change context.

3.
Analyst ; 149(9): 2756-2761, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38563766

RESUMO

New dynamic, wireless and cost-effective analytical devices are developing rapidly in biochemical analysis. Here, we report on a remotely-controlled rotating electrochemiluminescence (ECL) sensing system for enzymatic detection of a model analyte, glucose, on both polarized sides of an iron wire acting as a bipolar electrode. The iron wire is controlled by double contactless mode, involving remote electric field polarization, and magnetic field-induced rotational motion. The former triggers the interfacial polarization of both extremities of the wire by bipolar electrochemistry, which generates ECL emission of the luminol derivative (L-012) with the enzymatically produced hydrogen peroxide in presence of glucose, at both anodic and cathodic poles, simultaneously. The latter generates a convective flow, leading to an increase in mass transfer and amplifying the corresponding ECL signals. Quantitative glucose detection in human serum samples is achieved. The ECL signals were found to be a linear function of the glucose concentration within the range of 10-1000 µM and with a limit of detection of 10 µM. The dynamic bipolar ECL system simultaneously generates light emissions at both anodic and cathodic poles for glucose detection, which can be further applied to biosensing and imaging in autonomous devices.


Assuntos
Técnicas Eletroquímicas , Medições Luminescentes , Medições Luminescentes/métodos , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Eletrodos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Limite de Detecção , Glicemia/análise , Tecnologia sem Fio , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Luminol/química
4.
Anal Bioanal Chem ; 415(24): 5875-5898, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37507465

RESUMO

In recent years, electrochemiluminescence (ECL) has received enormous attention and has emerged as one of the most successful tools in the field of analytical science. Compared with homogeneous ECL, the heterogeneous (or solid-state) ECL has enhanced the rate of the electron transfer kinetics and offers rapid response time, which is highly beneficial in point-of-care and clinical applications. In ECL, the luminophore is the key element, which dictates the overall performance of the ECL-based sensors in various analytical applications. Tris(2,2'-bipyridyl)ruthenium (II) complex, Ru(bpy)32+, is a coordination compound, which is the gold-standard luminophore in ECL. It has played a key role in translating ECL from a "laboratory curiosity" to a commercial analytical instrument for diagnosis. The aim of the present review is to provide the principles of ECL and classical reaction mechanisms-particularly involving the heterogeneous Ru(bpy)32+/co-reactant ECL systems, as well as the fabrication methods and its importance over solution-phase Ru(bpy)32+ ECL. Then, we discussed the emerging technology in solid-state Ru(bpy)32+ ECL-sensing platforms and their recent potential analytical applications such as in immunoassay sensors, DNA sensors, aptasensors, bio-imaging, latent fingerprint detection, point-of-care testing, and detection of non-biomolecules. Finally, we also briefly cover the recent advances in solid-state Ru(bpy)32+ ECL coupled with the hyphenated techniques.

5.
Anal Chem ; 94(41): 14317-14321, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36190826

RESUMO

Bipolar electrochemistry (BE) is a wireless electrochemical technique, which enables asymmetric electroactivity on the surface of conducting objects. This technique has been extensively studied for different electrochemical applications, including synthesis, separation, sensing, and surface modification. Here, we employ BE for imaging the transient electrochemical activity of different redox species with high accuracy via an array of light-emitting diodes having different lengths. Such a gradient allows the differentiation of redox systems due to their intrinsic difference in thermodynamic potential and the evaluation of their diffusional behavior based on the intensity of light emission. The result is an instantaneous optical readout of analytical information, equivalent to classic electrochemical scanning techniques, such as linear sweep voltammetry.


Assuntos
Técnicas Eletroquímicas , Técnicas Eletroquímicas/métodos , Eletroquímica/métodos , Eletrodos , Oxirredução
6.
Anal Chem ; 94(45): 15604-15612, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36315456

RESUMO

Understanding how environmental factors affect the bioelectrode efficiency and stability is of uttermost importance to develop high-performance bioelectrochemical devices. By coupling fluorescence confocal microscopy in situ to electrochemistry, this work focuses on the influence of the ionic strength on electro-enzymatic catalysis. In this context, the 4 e-/4 H+ reduction of O2 into water by the bilirubin oxidase from Myrothecium verrucaria (MvBOD) is considered as a model. The effects of salt concentration on the enzyme activity and stability were probed by enzymatic assays performed in homogeneous catalysis conditions and monitored by UV-vis absorption spectroscopy. They were also investigated in heterogeneous catalysis conditions by electrochemical measurements with MvBOD immobilized at a graphite microelectrode. We demonstrate that the catalytic activity and stability of the enzyme both in solution and in the immobilized state at the bioelectrode were conserved with an electrolyte concentration of up to 0.5 M, both in a buffered and a non-buffered electrolyte. Relying on this, we used fluorescence confocal laser scanning microscopy coupled in situ to electrochemistry to explore the local pH of the electrolyte at the vicinity of the electrode surface at various ionic strengths and for several overpotentials. 3D proton depletion profiles generated by the interfacial electro-enzymatic reaction were recorded in the presence of a pH-sensitive fluorophore. These concentration profiles were shown to contract with increasing ionic strength, thus highlighting the need for a minimal electrolyte concentration to ensure availability of charged substrates at the electrode surface during electro-enzymatic experiments.


Assuntos
Eletrodos , Eletroquímica , Catálise , Concentração Osmolar , Concentração de Íons de Hidrogênio , Microscopia de Fluorescência
7.
J Am Chem Soc ; 143(32): 12708-12714, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34343427

RESUMO

Autonomous swimmers have been intensively studied in recent years due to their numerous potential applications in many areas ranging from biomedicine to environmental remediation. Their motion is based either on different self-propulsion mechanisms or on the use of various external stimuli. Herein, the synergy between the ion flux around self-electrophoretic Mg/Pt Janus swimmers and an external magnetic field is proposed as an efficient alternative mechanism to power swimmers on the basis of the resulting Lorentz force. A strong magnetohydrodynamic effect is observed due to the orthogonal combination of magnetic field and spontaneous ionic currents, leading to an increase of the swimmer speed by up to 2 orders of magnitude. Furthermore, the trajectory of the self-propelled swimmers can be controlled by the orientation of the magnetic field, due to the presence of an additional torque force caused by a horizontal cation flux along the swimmer edges, resulting in predictable clockwise or anticlockwise motion. In addition, this effect is independent of the swimmer size, since a similar type of rotational motion is observed for macro- and microscale objects.

8.
Anal Chem ; 93(49): 16425-16431, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34843226

RESUMO

Electrochemiluminescence (ECL) behavior of luminol derivative was investigated in reduction on different electrode materials. We found that luminol and its widely used L-012 derivative, emitting at physiological pH values, exhibit strong cathodic ECL emission on iron and stainless steel electrodes with hydrogen peroxide, whereas no ECL signal was observed with other classic electrode materials (Au, Pt, and C). On a Ni electrode, a low cathodic ECL signal was observed. This points out to the essential role of iron-containing materials to enhance the cathodic ECL emission. Under the reported conditions, the cathodic ECL signal of L-012 is comparable to the classically used anodic ECL emission. Thus, dual bright ECL emissions with L-012 were obtained simultaneously in oxidation and in reduction on iron materials as imaged in a wireless bipolar electrochemistry configuration. Such an ECL system generating light emission concomitantly in oxidation and in reduction is extremely rare and it opens appealing (bio)analytical and imaging applications, in biosensing, remote detection, bipolar ECL analysis, and ECL-based cell microscopy.


Assuntos
Ferro , Luminol , Eletroquímica , Eletrodos , Fotometria
9.
Anal Chem ; 92(10): 7249-7256, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32298094

RESUMO

Getting information about the fate of immobilized enzymes and the evolution of their environment during turnover is a mandatory step toward bioelectrode optimization for effective use in biodevices. We demonstrate here the proof-of-principle visual characterization of the reactivity at an enzymatic electrode thanks to fluorescence confocal laser scanning microscopy (FCLSM) implemented in situ during the electrochemical experiment. The enzymatic O2 reduction involves proton-coupled electron transfers. Therefore, fluorescence variation of a pH-dependent fluorescent dye in the electrode vicinity enables reaction visualization. Simultaneous collection of electrochemical and fluorescence signals gives valuable space- and time-resolved information. Once the technical challenges of such a coupling are overcome, in situ FCLSM affords a unique way to explore reactivity at the electrode surface and in the electrolyte volume. Unexpected features are observed, especially the pH evolution of the enzyme environment, which is also indicated by a characteristic concentration profile within the diffusion layer. This coupled approach also gives access to a cartography of the electrode surface response (i.e., heterogeneity), which cannot be obtained solely by an electrochemical means.


Assuntos
Técnicas Eletroquímicas , Hibridização in Situ Fluorescente , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxigênio/metabolismo , Eletrodos , Hypocreales/enzimologia , Microscopia Confocal , Modelos Moleculares , Estrutura Molecular , Oxirredução , Oxigênio/química , Propriedades de Superfície
10.
Chemphyschem ; 21(7): 600-604, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32031308

RESUMO

We propose a straightforward access to a rotating light-emitting device powered by wireless electrochemistry. A magnetic stirrer is used to rotate a light-emitting diode (LED) due to the intrinsic magnetic properties of the tips that contain iron. At the same time, the LED is submitted to an electric field and acts as a bipolar electrode. The electrochemical processes that are coupled on both extremities of the LED drive an electron flow across the device, resulting in light emission. The variation of the LED alignment in time enables an alternating light emission that is directly controlled by the rotation rate. The stirring also enables a continuous mixing of the electrolyte that improves the stability of the output signal. Finally, the LED brightness can readily reveal a change of chemical composition in the electrolyte solution.

11.
Angew Chem Int Ed Engl ; 59(19): 7508-7513, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32067303

RESUMO

Miniaturized autonomous chemo-electronic swimmers, based on the coupling of spontaneous oxidation and reduction reactions at the two poles of light-emitting diodes (LEDs), are presented as chemotactic and magnetotactic devices. In homogeneous aqueous media, random motion caused by a bubble-induced propulsion mechanism is observed. However, in an inhomogeneous environment, the self-propelled devices exhibit positive chemotactic behavior, propelling themselves along a pH or ionic strength gradient (∇pH and ∇I, respectively) in order to reach a thermodynamically higher active state. In addition, the intrinsic permanent magnetic moment of the LED allows self-orientation in the terrestrial magnetic field or following other external magnetic perturbations, which enables a directional motion control coupled with light emission. The interplay between chemotaxis and magnetotaxis allows fine-tuning of the dynamic behavior of these swimmers.

12.
Angew Chem Int Ed Engl ; 58(21): 6952-6956, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30916870

RESUMO

The first observation of circular polarization of electrochemiluminescence (ECL) from a purely organic derivative is reported. A bispyrene scaffold mounted on a constrained polyether macrocycle displaying intense excimer fluorescence and highly circularly-polarized (CP) photoluminescence has been selected for this purpose. The compound displays an ECL dissymmetry factor of about |8×10-3 |, which is in good agreement with the corresponding photoluminescence value. This observation is the first step towards the molecular engineering of tailored dyes that can act as both ECL and CP-ECL reporters for (bio)analysis by bringing a new level of information when dealing with chiral environments. Additionally, it provides an extra dimension to the ECL phenomenon and opens the way to chiral detection and discrimination.

13.
Chemistry ; 24(40): 10186-10195, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-29698563

RESUMO

A series of nine C-functionalized cationic diazaoxatriangulene (DAOTA) dyes have been successfully synthesized and fully characterized, including X-ray structural analysis of four derivatives. The introduction of electron-withdrawing or -donating functions enables the tuning of both electro- and photochemical properties with, for instance, two consecutive (reversible) reductions or oxidations observed for nitro or amino derivatives, respectively. The substituents also impacted on the optical properties, with absorption maxima varying from λ=528 to 640 nm and fluorescence being shifted from the yellow to the red range, up to λ=656 nm.

14.
Electrophoresis ; 38(21): 2687-2694, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28314087

RESUMO

A bipolar electrode is quite unconventional as it behaves simultaneously as an anode and a cathode in contrast to a classic electrochemical setup where the electron transfer reactions are promoted on two different electrodes. The driving force is the polarization potential established between the solution and the bipolar electrode, that allows a wireless electrochemical addressing. In the past decade or so, bipolar electrochemistry has encountered a remarkable renewal of interest with extraordinary potentialities ranging from materials science to analytical chemistry. For practical reasons, bipolar electrochemistry experiments are very often performed in handmade electrochemical cells comprising tubes or capillaries. This review is focused on specific applications based on such types of experimental setups, from the macroscale where the tube acts only as an ordinary container down to the microscale where specific properties of the capillary come also into play.


Assuntos
Técnicas Eletroquímicas/instrumentação , Eletroforese Capilar/instrumentação , Eletrodos , Campos Eletromagnéticos , Dispositivos Lab-On-A-Chip , Luminescência , Oxirredução , Propriedades de Superfície
15.
Chemphyschem ; 18(19): 2637-2642, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28544447

RESUMO

A new simple and versatile method for the preparation of surface-wetting gradients is proposed. It is based on the combination of electrode surface structuration introduced by a sacrificial template approach and the formation of a tunable molecular gradient by bipolar electrochemistry. The gradient involves the formation of a self-assembled monolayer on a gold surface by selecting an appropriate thiol molecule and subsequent reductive desorption by means of bipolar electrochemistry. Under these conditions, completion of the reductive desorption process evolves along the bipolar surface with a maximum strength localized at the cathodic edge and a decreasing driving force towards the middle of the surface. The remaining quantity of surface-immobilized thiol, therefore, varies as a function of the axial position, resulting in the formation of a molecular gradient. The surface of the bipolar electrode is characterized at each step of the modification by recording heterogeneous electron transfer. Also, the evolution of static contact angles measured with a water droplet deposited on the surface directly reveals the presence of the wetting gradient, which can be modulated by changing the properties of the thiol. This is exemplified with a long, hydrophobic alkane-thiol and a short, hydrophilic mercaptan.

16.
BMC Genomics ; 17(1): 604, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27515254

RESUMO

BACKGROUND: Genomic selection (GS) is a promising approach for decreasing breeding cycle length in forest trees. Assessment of progeny performance and of the prediction accuracy of GS models over generations is therefore a key issue. RESULTS: A reference population of maritime pine (Pinus pinaster) with an estimated effective inbreeding population size (status number) of 25 was first selected with simulated data. This reference population (n = 818) covered three generations (G0, G1 and G2) and was genotyped with 4436 single-nucleotide polymorphism (SNP) markers. We evaluated the effects on prediction accuracy of both the relatedness between the calibration and validation sets and validation on the basis of progeny performance. Pedigree-based (best linear unbiased prediction, ABLUP) and marker-based (genomic BLUP and Bayesian LASSO) models were used to predict breeding values for three different traits: circumference, height and stem straightness. On average, the ABLUP model outperformed genomic prediction models, with a maximum difference in prediction accuracies of 0.12, depending on the trait and the validation method. A mean difference in prediction accuracy of 0.17 was found between validation methods differing in terms of relatedness. Including the progenitors in the calibration set reduced this difference in prediction accuracy to 0.03. When only genotypes from the G0 and G1 generations were used in the calibration set and genotypes from G2 were used in the validation set (progeny validation), prediction accuracies ranged from 0.70 to 0.85. CONCLUSIONS: This study suggests that the training of prediction models on parental populations can predict the genetic merit of the progeny with high accuracy: an encouraging result for the implementation of GS in the maritime pine breeding program.


Assuntos
Genoma de Planta , Modelos Genéticos , Pinus/genética , Melhoramento Vegetal/estatística & dados numéricos , Característica Quantitativa Herdável , Teorema de Bayes , Marcadores Genéticos , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Seleção Genética
17.
Anal Chem ; 88(12): 6292-300, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27247989

RESUMO

The redox couple resazurin-resorufin exhibits electrofluorochromic properties which are investigated herein by absorption and fluorescence spectroelectrochemistry and by electrochemically coupled-fluorescence confocal laser scanning microscopy (EC-CLSM). At pH 10, the highly fluorescent resorufin dye is generated at the electrode surface by the electrochemical reduction of the poorly fluorescent resazurin. Performing EC-CLSM at electrode surfaces allows to monitor spatially resolved electrochemical processes in situ and in real time. Using a small (315 µm diameter) cylindrical electrode, a steady-state diffusion layer builds up under potentiostatic conditions at -0.45 V vs Ag|AgCl. Mapping the fluorescence intensity in 3D by CLSM enables us to reconstruct the relative concentration profile of resorufin around the electrode. The comparison of the experimental diffusion-profile with theoretical predictions demonstrates that spontaneous convection has a direct influence on the actual thickness of the diffusion layer, which is smaller than the value predicted for a purely diffusional transport. This study shows that combining fluorescence CLSM with electrochemistry is a powerful tool to study electrochemical reactivity at a spatially resolved level.

18.
Anal Chem ; 88(12): 6585-92, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27213503

RESUMO

The combination of enzymes, as recognition elements for specific analytes, and of electrogenerated chemiluminescence (ECL) as a readout method has proven to be a valuable strategy for sensitive and specific analytical detection. However, ECL is intrinsically a 2D process which could potentially limit the analysis of inhomogeneous samples. Here, we show how a bulk ECL signal, generated by thousands of carbon microbeads remotely addressed via bipolar electrochemistry, are implemented as a powerful tool for the concomitant ECL sensing and imaging of two enzymatic substrates. We selected two enzymes (glucose dehydrogenase and choline oxidase) that react with their respective model substrates and produce in situ chemical species (ß-nicotinamide adenine dinucleotide (NADH) and H2O2) acting as coreactants for the ECL emission of different luminophores ([Ru(bpy)3](2+) at λ = 620 nm and luminol at λ = 425 nm, respectively). Both enzymes are spatially separated in the same capillary. We demonstrate thus the simultaneous quantitative determination of both glucose and choline over a wide concentration range. The originality of this remote approach is to provide a global chemical view through one single ECL image of inhomogeneous samples such as a biochemical concentration gradient in a capillary configuration. Finally, we report the first proof-of-concept of dual biosensing based on this bulk ECL method for the simultaneous imaging of both enzymatic analytes at distinct wavelengths.


Assuntos
Técnicas Biossensoriais/métodos , Colina/análise , Glucose/análise , Medições Luminescentes/métodos , Oxirredutases do Álcool/química , Glucose 1-Desidrogenase/química , Luminol/química , Modelos Moleculares
19.
Chemistry ; 22(51): 18394-18403, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27885721

RESUMO

The physicochemical properties of cationic dioxa (1), azaoxa (2), and diaza (3) [6]helicenes demonstrate a much higher chemical stability of the diaza adduct 3 (pKR+ =20.4, Ered1/2 =-0.72 V) compared to its azaoxa 2 (pKR+ =15.2, Ered1/2 =-0.45 V) and dioxa 1 (pKR+ =8.8, Ered1/2 =-0.12 V) analogues. The fluorescence of these cationic chromophores is established, and ranges from the orange to the far-red regions. From 1 to 3, a bathochromic shift of the lowest energy transitions (up to 614 nm in acetonitrile) and an enhancement of the fluorescence quantum yields and lifetimes (up to 31 % and 9.8 ns, respectively, at 658 nm) are observed. The triplet quantum yields and circularly polarized luminescence are also reported. Finally, fine tuning of the optical properties of the diaza [6]helicene core is achieved through selective and orthogonal post-functionalization reactions (12 examples, compounds 4-15). The electronic absorption is modulated from the orange to the far-red spectral range (560-731 nm), and fluorescence is observed from 591 to 755 nm with enhanced quantum efficiency up to 70 % (619 nm). The influence of the peripheral auxochrome substituents is rationalized by first-principles calculations.

20.
Analyst ; 141(13): 4196-203, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27170420

RESUMO

We present a comparative study of ten redox-active probes for use in real-time electrochemical loop-mediated isothermal amplification (LAMP). Our main objectives were to establish the criteria that need to be fulfilled for minimizing some of the current limitations of the technique and to provide future guidelines in the search for ideal redox reporters. To ensure a reliable comparative study, each redox probe was tested under similar conditions using the same LAMP reaction and the same entirely automatized custom-made real-time electrochemical device (designed for electrochemically monitoring in real-time and in parallel up to 48 LAMP samples). Electrochemical melt curve analyses were recorded immediately at the end of each LAMP reaction. Our results show that there are a number of intercalating and non-intercalating redox compounds suitable for real-time electrochemical LAMP and that the best candidates are those able to intercalate strongly into ds-DNA but not too much to avoid inhibition of the LAMP reaction. The strongest intercalating redox probes were finally shown to provide higher LAMP sensitivity, speed, greater signal amplitude, and cleaner-cut DNA melting curves than the non-intercalating molecules.


Assuntos
DNA/análise , Sondas Moleculares/química , Técnicas de Amplificação de Ácido Nucleico , Oxirredução , Técnicas Eletroquímicas , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA