Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 122(22): 4370-4381, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37853696

RESUMO

The RNA-binding protein TDP-43 is associated with mRNA processing and transport from the nucleus to the cytoplasm. TDP-43 localizes in the nucleus as well as accumulating in cytoplasmic condensates such as stress granules. Aggregation and formation of amyloid-like fibrils of cytoplasmic TDP-43 are hallmarks of numerous neurodegenerative diseases, most strikingly present in >90% of amyotrophic lateral sclerosis (ALS) patients. If excessive accumulation of cytoplasmic TDP-43 causes, or is caused by, neurodegeneration is presently not known. In this work, we use molecular dynamics simulations at multiple resolutions to explore TDP-43 self- and cross-interaction dynamics. A full-length molecular model of TDP-43, all 414 amino acids, was constructed from select structures of the protein functional domains (N-terminal domain, and two RNA recognition motifs, RRM1 and RRM2) and modeling of disordered connecting loops and the low complexity glycine-rich C-terminus domain. All-atom CHARMM36m simulations of single TDP-43 proteins served as guides to construct a coarse-grained Martini 3 model of TDP-43. The Martini model and a coarser implicit solvent C⍺ model, optimized for disordered proteins, were subsequently used to probe TDP-43 interactions; self-interactions from single-chain full-length TDP-43 simulations, cross-interactions from simulations with two proteins and simulations with assemblies of dozens to hundreds of proteins. Our findings illustrate the utility of different modeling scales for accessing TDP-43 molecular-level interactions and suggest that TDP-43 has numerous interaction preferences or patterns, exhibiting an overall strong, but dynamic, association and driving the formation of biomolecular condensates.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Domínios Proteicos , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Simulação de Dinâmica Molecular , Amiloide
2.
J Am Chem Soc ; 144(32): 14614-14626, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35917596

RESUMO

Amyloid ß (Aß) protein is responsible for Alzheimer's disease, and one of its important fragments, Aß(25-35), is found in the brain and has been shown to be neurotoxic. Tachykinin neuropeptides, including Neuromedin K (NK), Kassinin, and Substance P, have been reported to reduce Aß(25-35)'s toxicity in cells even though they share similar primary structures with Aß(25-35). Here, we seek to understand the molecular mechanisms of how these peptides interact with Aß(25-35) and to shed light on why some peptides with similar primary structures are toxic and others nontoxic. We use both experimental and computational methods, including ion mobility mass spectrometry and enhanced-sampling replica-exchange molecular dynamics simulations, to study the aggregation pathways of Aß(25-35), NK, Kassinin, Substance P, and mixtures of the latter three with Aß(25-35). NK and Substance P were observed to remove the higher-order oligomers (i.e., hexamers and dodecamers) of Aß(25-35), which are related to its toxicity, although Substance P did so more slowly. In contrast, Kassinin was found to promote the formation of these higher-order oligomers. This result conflicts with what is expected and is elaborated on in the text. We also observe that even though they have significant structural homology with Aß(25-35), NK, Kassinin, and Substance P do not form hexamers with a ß-sheet structure like Aß(25-35). The hexamer structure of Aß(25-35) has been identified as a cylindrin, and this structure has been strongly correlated to toxic species. The reasons why the three tachykinin peptides behave so differently when mixed with Aß(25-35) are discussed.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Taquicininas , Doença de Alzheimer/metabolismo , Amiloide/química , Peptídeos beta-Amiloides/química , Humanos , Cassinina/química , Fragmentos de Peptídeos/química , Substância P/química , Taquicininas/química
3.
J Am Chem Soc ; 143(9): 3494-3502, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33621087

RESUMO

Protein aggregation is a common feature in prominent neurodegenerative diseases, usually thought to be due to the assembly of a single peptide or protein. Recent studies have challenged this notion and suggested several proteins may be involved in promoting and amplifying disease. For example, the TDP-43 protein associated with Amyotrophic Lateral Sclerosis has been found in the brain along with Aß assemblies associated with Alzheimer's disease, and those patients that show the presence of TDP-43 are 10 times more likely to demonstrate cognitive impairment compared to TDP-43-negative Alzheimer's patients. Here we examine the interactions between the amyloidogenic core of TDP-43, TDP-43307-319, and a neurotoxic physiologically observed fragment of Aß, Aß25-35. Utilizing ion mobility mass spectrometry in concert with atomic force microscopy and molecular dynamics simulations, we investigate which oligomers are involved in seeding aggregation across these two different protein systems and gain insight into which structures initiate and result from these interactions. Studies were conducted by mixing Aß25-35 with the toxic wild type TDP-43307-319 peptide and with the nontoxic synthetic TDP-43307-319 mutant, G314V. Our findings identify a strong catalytic effect of TDP-43307-319 WT monomer in the acceleration of Aß25-35 aggregation to its toxic cylindrin and ß barrel forms. This observation is unprecedented in both its speed and specificity. Interestingly, the nontoxic G314V mutant of TDP-43307-319 and dimers or higher order oligomers of WT TDP-43307-319 do not promote aggregation of Aß25-35 but rather dissociate preformed toxic higher order oligomers of Aß25-35. Reasons for these very different behaviors are reported.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/química , Esclerose Lateral Amiotrófica/etiologia , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Ligação de Hidrogênio , Espectrometria de Massas/métodos , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Mutação , Fragmentos de Peptídeos/química , Ligação Proteica/genética , Multimerização Proteica/genética
4.
Biochemistry ; 59(4): 499-508, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31846303

RESUMO

TDP-43 aggregates are a salient feature of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and a variety of other neurodegenerative diseases, including Alzheimer's disease (AD). With an anticipated growth in the most susceptible demographic, projections predict neurodegenerative diseases will potentially affect 15 million people in the United States by 2050. Currently, there are no cures for ALS, FTD, or AD. Previous studies of the amyloidogenic core of TDP-43 have demonstrated that oligomers greater than a trimer are associated with toxicity. Utilizing a joint pharmacophore space (JPS) method, potential drugs have been designed specifically for amyloid-related diseases. These molecules were generated on the basis of key chemical features necessary for blood-brain barrier permeability, low adverse side effects, and target selectivity. Combining ion-mobility mass spectrometry and atomic force microscopy with the JPS computational method allows us to more efficiently evaluate a potential drug's efficacy in disrupting the development of putative toxic species. Our results demonstrate the dissociation of higher-order oligomers in the presence of these novel JPS-generated inhibitors into smaller oligomer species. Additionally, drugs approved by the Food and Drug Administration for the treatment of ALS were also evaluated and demonstrated to maintain higher-order oligomeric assemblies. Possible mechanisms for the observed action of the JPS molecules are discussed.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteinopatias TDP-43/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Barreira Hematoencefálica/metabolismo , Biologia Computacional/métodos , Desenho de Fármacos , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Humanos , Espectrometria de Mobilidade Iônica/métodos , Microscopia de Força Atômica/métodos , Mutação
5.
Mass Spectrom Rev ; 38(3): 291-320, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30707468

RESUMO

Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

6.
Proc Natl Acad Sci U S A ; 114(33): 8770-8775, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760994

RESUMO

Fibrils and oligomers are the aggregated protein agents of neuronal dysfunction in ALS diseases. Whereas we now know much about fibril architecture, atomic structures of disease-related oligomers have eluded determination. Here, we determine the corkscrew-like structure of a cytotoxic segment of superoxide dismutase 1 (SOD1) in its oligomeric state. Mutations that prevent formation of this structure eliminate cytotoxicity of the segment in isolation as well as cytotoxicity of the ALS-linked mutants of SOD1 in primary motor neurons and in a Danio rerio (zebrafish) model of ALS. Cytotoxicity assays suggest that toxicity is a property of soluble oligomers, and not large insoluble aggregates. Our work adds to evidence that the toxic oligomeric entities in protein aggregation diseases contain antiparallel, out-of-register ß-sheet structures and identifies a target for structure-based therapeutics in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Cristalografia por Raios X/métodos , Camundongos , Neurônios Motores/metabolismo , Mutação/genética , Conformação Proteica em Folha beta , Superóxido Dismutase-1/genética
7.
Angew Chem Int Ed Engl ; 58(24): 8216-8220, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-30958917

RESUMO

More than 100 hydrophobicity scales have been introduced, with each being based on a distinct condensed-phase approach. However, a comparison of the hydrophobicity values gained from different techniques, and their relative ranking, is not straightforward, as the interactions between the environment and the amino acid are unique to each method. Here, we overcome this limitation by studying the properties of amino acids in the clean-room environment of the gas phase. In the gas phase, entropic contributions from the hydrophobic effect are by default absent and only the polarity of the side chain dictates the self-assembly. This allows for the derivation of a novel hydrophobicity scale, which is based solely on the interaction between individual amino acid units within the cluster and thus more accurately reflects the intrinsic nature of a side chain. This principle can be further applied to classify non-natural derivatives, as shown here for fluorinated amino acid variants.

8.
J Am Chem Soc ; 140(30): 9685-9695, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29989407

RESUMO

Protein aggregation is typically attributed to the association of homologous amino acid sequences between monomers of the same protein. Coaggregation of heterogeneous peptide species can occur, however, and is implicated in the proliferation of seemingly unrelated protein diseases in the body. The prion protein fragment (PrP106-126) and human islet amyloid polypeptide (hIAPP) serve as an interesting model of nonhomologous protein assembly as they coaggregate, despite a lack of sequence homology. We have applied ion-mobility mass spectrometry, atomic force microscopy, circular dichroism, and high-level molecular modeling to elucidate this important assembly process. We found that the prion fragment not only forms pervasive hetero-oligomeric aggregates with hIAPP but also promotes the transition of hIAPP into its amyloidogenic ß-hairpin conformation. Further, when PrP106-126 was combined with non-amyloidogenic rIAPP, the two formed nearly identical hetero-oligomers to those seen with hIAPP, despite rIAPP containing ß-sheet breaking proline substitutions. Additionally, while rIAPP does not natively form the amyloidogenic ß-hairpin structure, it did so in the presence of PrP106-126 and underwent a conformational transition to ß-sheet in solution. We also find that PrP106-126 forms hetero-oligomers with the IAPP8-20 fragment but not with the "aggregation hot spot" IAPP20-29 fragment. PrP106-126 apparently induces IAPP into a ß-hairpin structure within the PrP:IAPP heterodimer complex and then, through ligand exchange, catalytically creates the amyloidogenic ß-hairpin dimer of IAPP in significantly greater abundance than IAPP does on its own. This is a new mechanistic model that provides a critical foundation for the detailed study of hetero-oligomerization and prion-like proliferation in amyloid systems.


Assuntos
Amiloide/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Fragmentos de Peptídeos/química , Príons/química , Sequência de Aminoácidos , Animais , Humanos , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Multimerização Proteica , Ratos
9.
J Am Chem Soc ; 140(1): 244-249, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29235867

RESUMO

The hexapeptide NFGAIL is a highly amyloidogenic peptide, derived from the human islet amyloid polypeptide (hIAPP). Recent investigations indicate that presumably soluble hIAPP oligomers are one of the cytotoxic species in type II diabetes. Here we use thioflavin T staining, transmission electron microscopy, as well as ion mobility-mass spectrometry coupled to infrared (IR) spectroscopy to study the amyloid formation mechanism and the quaternary and secondary structure of soluble NFGAIL oligomers. Our data reveal that at neutral pH NFGAIL follows a nucleation dependent mechanism to form amyloid fibrils. During the lag phase, highly polydisperse, polymorph, and compact oligomers (oligomer number n = 2-13) as well as extended intermediates (n = 4-11) are present. IR secondary structural analysis reveals that compact conformations adopt turn-like structures, whereas extended oligomers exhibit a significant amount of ß-sheet content. This agrees well with previous molecular dynamic simulations and provides direct experimental evidence that unordered off-pathway NFGAIL aggregates up to the size of at least the 13-mer as well as partially folded ß-sheet containing oligomers are coexisting.


Assuntos
Amiloide/química , Amiloide/síntese química , Oligopeptídeos/química , Benzotiazóis , Humanos , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Estrutura Secundária de Proteína , Espectrofotometria Infravermelho , Tiazóis/química
10.
J Am Chem Soc ; 140(24): 7554-7560, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29637771

RESUMO

The amino acid serine has long been known to form a protonated "magic-number" cluster containing eight monomer units that shows an unusually high abundance in mass spectra and has a remarkable homochiral preference. Despite many experimental and theoretical studies, there is no consensus on a Ser8H+ structure that is in agreement with all experimental observations. Here, we present the structure of Ser8H+ determined by a combination of infrared spectroscopy and ab initio molecular dynamics simulations. The three-dimensional structure that we determine is ∼25 kcal mol-1 more stable than the previous most stable published structure and explains both the homochiral preference and the experimentally observed facile replacement of two serine units.

11.
Phys Chem Chem Phys ; 20(34): 22047-22057, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30112548

RESUMO

Proteins and peptides in nature are almost exclusively made from l-amino acids, and this is even more absolute in the metazoan. With the advent of modern bioanalytical techniques, however, previously unappreciated roles for d-amino acids in biological processes have been revealed. Over 30 d-amino acid containing peptides (DAACPs) have been discovered in animals where at least one l-residue has been isomerized to the d-form via an enzyme-catalyzed process. In Aplysia californica, GdFFD and GdYFD (the lower-case letter "d" indicates a d-amino acid residue) modulate the feeding behavior by activating the Aplysia achatin-like neuropeptide receptor (apALNR). However, little is known about how the three-dimensional conformation of DAACPs influences activity at the receptor, and the role that d-residues play in these peptide conformations. Here, we use a combination of computational modeling, drift-tube ion-mobility mass spectrometry, and receptor activation assays to create a simple model that predicts bioactivities for a series of GdFFD analogs. Our results suggest that the active conformations of GdFFD and GdYFD are similar to their lowest energy conformations in solution. Our model helps connect the predicted structures of GdFFD analogs to their activities, and highlights a steric effect on peptide activity at position 1 on the GdFFD receptor apALNR. Overall, these methods allow us to understand ligand-receptor interactions in the absence of high-resolution structural data.


Assuntos
Aplysia/metabolismo , Peptídeos/química , Receptores de Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Espectrometria de Massas , Simulação de Dinâmica Molecular , Neuropeptídeos/metabolismo , Peptídeos/síntese química , Peptídeos/metabolismo , Conformação Proteica , Teoria Quântica , Receptores de Neuropeptídeos/química , Relação Estrutura-Atividade , Termodinâmica
12.
Int J Mass Spectrom ; 420: 24-34, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-29056865

RESUMO

The early oligomerization of amyloid ß-protein (Aß) is a crucial step in the etiology of Alzheimer's disease (AD), in which soluble and highly neurotoxic oligomers are produced and accumulated inside neurons. In search of therapeutic solutions for AD treatment and prevention, potent inhibitors that remodel Aß assembly and prevent neurotoxic oligomer formation offer a promising approach. In particular, several polyphenolic compounds have shown anti-aggregation properties and good efficacy on inhibiting oligomeric amyloid formation. 1,2,3,4,6-penta-O-galloyl-ß-D-glucopyranose is a large polyphenol that has been shown to be effective at inhibiting aggregation of full-length Aß1-40 and Aß1-42, but has the opposite effect on the C-terminal fragment Aß25-35. Here, we use a combination of ion mobility coupled to mass spectrometry (IMS-MS), transmission electron microscopy (TEM) and molecular dynamics (MD) simulations to elucidate the inhibitory effect of PGG on aggregation of full-length Aß1-40 and Aß1-42. We show that PGG interacts strongly with these two peptides, especially in their N-terminal metal binding regions, and suppresses the formation of Aß1-40 tetramer and Aß1-42 dodecamer. By exploring multiple facets of polyphenol-amyloid interactions, we provide a molecular basis for the opposing effects of PGG on full-length Aß and its C-terminal fragments.

13.
J Am Chem Soc ; 138(6): 1772-5, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26839237

RESUMO

Evidence suggests that oligomers of the 42-residue form of the amyloid ß-protein (Aß), Aß42, play a critical role in the etiology of Alzheimer's disease (AD). Here we use high resolution atomic force microscopy to directly image populations of small oligomers of Aß42 that occur at the earliest stages of aggregation. We observe features that can be attributed to a monomer and to relatively small oligomers, including dimers, hexamers, and dodecamers. We discovered that Aß42 hexamers and dodecamers quickly become the dominant oligomers after peptide solubilization, even at low (1 µM) concentrations and short (5 min) incubation times. Soon after (≥10 min), dodecamers are observed to seed the formation of extended, linear preprotofibrillar ß-sheet structures. The preprotofibrils are a single Aß42 layer in height and can extend several hundred nanometers in length. To our knowledge this is the first report of structures of this type. In each instance the preprotofibril is associated off center with a single layer of a dodecamer. Protofibril formation continues at longer times, but is accompanied by the formation of large, globular aggregates. Aß40, by contrast, does not significantly form the hexamer or dodecamer but instead produces a mixture of smaller oligomers. These species lead to the formation of a branched chain-like network rather than discrete structures.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biopolímeros/metabolismo , Humanos , Microscopia de Força Atômica
14.
J Am Chem Soc ; 138(2): 549-57, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26700445

RESUMO

In order to evaluate potential therapeutic targets for treatment of amyloidoses such as Alzheimer's disease (AD), it is essential to determine the structures of toxic amyloid oligomers. However, for the amyloid ß-protein peptide (Aß), thought to be the seminal neuropathogenetic agent in AD, its fast aggregation kinetics and the rapid equilibrium dynamics among oligomers of different size pose significant experimental challenges. Here we use ion-mobility mass spectrometry, in combination with electron microscopy, atomic force microscopy, and computational modeling, to test the hypothesis that Aß peptides can form oligomeric structures resembling cylindrins and ß-barrels. These structures are hypothesized to cause neuronal injury and death through perturbation of plasma membrane integrity. We show that hexamers of C-terminal Aß fragments, including Aß(24-34), Aß(25-35) and Aß(26-36), have collision cross sections similar to those of cylindrins. We also show that linking two identical fragments head-to-tail using diglycine increases the proportion of cylindrin-sized oligomers. In addition, we find that larger oligomers of these fragments may adopt ß-barrel structures and that ß-barrels can be formed by folding an out-of-register ß-sheet, a common type of structure found in amyloid proteins.


Assuntos
Peptídeos beta-Amiloides/química , Proteínas Sanguíneas/química , Sequência de Aminoácidos , Microscopia Eletrônica de Transmissão , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray
15.
J Neurochem ; 137(6): 939-54, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26953146

RESUMO

Despite extensive structure-function analyses, the molecular mechanisms of normal and pathological tau action remain poorly understood. How does the C-terminal microtubule-binding region regulate microtubule dynamics and bundling? In what biophysical form does tau transfer trans-synaptically from one neuron to another, promoting neurodegeneration and dementia? Previous biochemical/biophysical work led to the hypothesis that tau can dimerize via electrostatic interactions between two N-terminal 'projection domains' aligned in an anti-parallel fashion, generating a multivalent complex capable of interacting with multiple tubulin subunits. We sought to test this dimerization model directly. Native gel analyses of full-length tau and deletion constructs demonstrate that the N-terminal region leads to multiple bands, consistent with oligomerization. Ferguson analyses of native gels indicate that an N-terminal fragment (tau(45-230) ) assembles into heptamers/octamers. Ferguson analyses of denaturing gels demonstrates that tau(45-230) can dimerize even in sodium dodecyl sulfate. Atomic force microscopy reveals multiple levels of oligomerization by both full-length tau and tau(45-230) . Finally, ion mobility-mass spectrometric analyses of tau(106-144) , a small peptide containing the core of the hypothesized dimerization region, also demonstrate oligomerization. Thus, multiple independent strategies demonstrate that the N-terminal region of tau can mediate higher order oligomerization, which may have important implications for both normal and pathological tau action. The microtubule-associated protein tau is essential for neuronal development and maintenance, but is also central to Alzheimer's and related dementias. Unfortunately, the molecular mechanisms underlying normal and pathological tau action remain poorly understood. Here, we demonstrate that tau can homo-oligomerize, providing novel mechanistic models for normal tau action (promoting microtubule growth and bundling, suppressing microtubule shortening) and pathological tau action (poisoning of oligomeric complexes).


Assuntos
Microtúbulos/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo , Sequência de Aminoácidos/fisiologia , Animais , Dimerização , Humanos , Espectrometria de Massas , Microscopia de Força Atômica , Modelos Biológicos , Peptídeos/química , Ligação Proteica , Proteínas tau/genética
16.
Anal Chem ; 88(1): 868-76, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26632663

RESUMO

Ion-mobility mass spectrometry is utilized to examine the metacluster formation of serine, asparagine, isoleucine, and tryptophan. These amino acids are representative of different classes of noncharged amino acids. We show that they can form relatively large metaclusters in solution that are difficult or impossible to observe by traditional solution techniques. We further demonstrate, as an example, that the formation of Ser metaclusters is not an ESI artifact because large metaclusters can be detected in negative polarity and low concentration with similar cross sections to those measured in positive polarity and higher concentration. The growth trends of tryptophan and isoleucine metaclusters, along with serine, asparagine, and the previously studied phenylalanine, are balanced among various intrinsic properties of individual amino acids (e.g., hydrophobicity, size, and shape). The metacluster cross sections of hydrophilic residues (Ser, Asn, Trp) tend to stay on or fall below the isotropic model trend lines whereas those of hydrophobic amino acids (Ile, Phe) deviate positively from the isotropic trend lines. The growth trends correlate well to the predicted aggregation propensity of individual amino acids. From the metacluster data, we introduce a novel approach to score and predict aggregation propensity of peptides, which can offer a significant improvement over the existing methods in terms of accuracy. Using a set of hexapeptides, we show that the strong negative deviations of Ser metaclusters from the isotropic model leads a prediction of microcrystalline formation for the SFSFSF peptide, whereas the strong positive deviation of Ile leads to prediction or fibril formation for the NININI peptide. Both predictions are confirmed experimentally using ion mobility and TEM measurements. The peptide SISISI is predicted to only weakly aggregate, a prediction confirmed by TEM.


Assuntos
Aminoácidos/análise , Peptídeos/síntese química , Espectrometria de Massas , Peptídeos/química , Agregados Proteicos , Conformação Proteica
17.
Phys Chem Chem Phys ; 18(36): 25474-25482, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27722299

RESUMO

The charge distribution in a molecule is crucial in determining its physical and chemical properties. Aminobenzoic acid derivatives are biologically active small molecules, which have two possible protonation sites: the amine (N-protonation) and the carbonyl oxygen (O-protonation). Here, we employ gas-phase infrared spectroscopy in combination with ion mobility-mass spectrometry and density functional theory calculations to unambiguously determine the preferred protonation sites of p-, m-, and o-isomers of aminobenzoic acids as well as their ethyl esters. The results show that the site of protonation does not only depend on the intrinsic molecular properties such as resonance effects, but also critically on the environment of the molecules. In an aqueous environment, N-protonation is expected to be lowest in energy for all species investigated here. In the gas phase, O-protonation can be preferred, and in those cases, both N- and O-protonated species are observed. To shed light on a possible proton migration pathway, the protonated molecule-solvent complex as well as proton-bound dimers are investigated.

18.
Angew Chem Int Ed Engl ; 55(45): 14173-14176, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27545682

RESUMO

Can the structures of small to medium-sized proteins be conserved after transfer from the solution phase to the gas phase? A large number of studies have been devoted to this topic, however the answer has not been unambiguously determined to date. A clarification of this problem is important since it would allow very sensitive native mass spectrometry techniques to be used to address problems relevant to structural biology. A combination of ion-mobility mass spectrometry with infrared spectroscopy was used to investigate the secondary and tertiary structure of proteins carefully transferred from solution to the gas phase. The two proteins investigated are myoglobin and ß-lactoglobulin, which are prototypical examples of helical and ß-sheet proteins, respectively. The results show that for low charge states under gentle conditions, aspects of the native secondary and tertiary structure can be conserved.


Assuntos
Lactoglobulinas/química , Mioglobina/química , Espectrometria de Massas , Modelos Moleculares , Conformação Proteica , Solventes/química
19.
Biochemistry ; 54(26): 4050-62, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26070092

RESUMO

Aggregation of proteins to fiberlike aggregates often involves a transformation of native monomers to ß-sheet-rich oligomers. This general observation underestimates the importance of α-helical segments in the aggregation cascade. Here, using a combination of experimental techniques and accelerated molecular dynamics simulations, we investigate the aggregation of a 43-residue, apolipoprotein A-I mimetic peptide and its E21Q and D26N mutants. Our study indicates a strong propensity of helical segments not to adopt cross-ß-fibrils. The helix-turn-helix monomeric conformation of the peptides is preserved in the mature fibrils. Furthermore, we reveal opposite effects of mutations on and near the turn region in the self-assembly of these peptides. We show that the E21-R24 salt bridge is a major contributor to helix-turn-helix folding, subsequently leading to abundant fibril formation. On the other hand, the K19-D26 interaction is not required to fold the native helix-turn-helix peptide. However, removal of the charged D26 residue decreases the stability of the helix-turn-helix monomer and consequently reduces the level of aggregation. Finally, we provide a more refined assembly model for the helix-turn-helix peptides from apolipoprotein A-I based on the parallel stacking of helix-turn-helix dimers.


Assuntos
Amiloide/química , Apolipoproteína A-I/química , Peptídeos/química , Agregados Proteicos , Sequência de Aminoácidos , Amiloide/genética , Amiloide/ultraestrutura , Apolipoproteína A-I/genética , Apolipoproteína A-I/ultraestrutura , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação Puntual , Estrutura Secundária de Proteína
20.
J Am Chem Soc ; 137(32): 10080-3, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26244895

RESUMO

Phenylalanine is the only amino acid known to self-assemble into toxic fibrillar aggregates. An elevated concentration of phenylalanine in the blood can result in Phenylketonuria, a progressive mental retardation. Ion-mobility mass spectrometry is employed to investigate the structure and distribution of phenylalanine oligomers formed in the early stage of the aggregation cascade. The experimental cross sections indicate that phenyl-alanine self-assembles at neutral pH into oligomers composed of multiple layers of four monomers. The monomers arrange themselves to create a hydrophilic core made of zwitterionic termini and expose hydrophobic aromatic side chains to the outside. At high pH, the interactions between the neutral amino and negatively charged carboxylate of phenylalanine allow a minor population of ladder-like oligomers to be formed and detected in ion-mobility experiments. However, counterions such as ammonium rearrange those structures into the same structures observed at neutral pH. The cytotoxicity of Phe oligomers and fibrils may be due to favorable interactions between the hydrophobic exterior and the cell membrane and strong interactions between the hydrophilic core of Phe oligomers and ions, resulting in ion leakage and cellular damage.


Assuntos
Espectrometria de Massas/métodos , Fenilalanina/química , Acetatos/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA