Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nature ; 628(8007): 359-364, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38123681

RESUMO

Studies have reported widespread declines in terrestrial insect abundances in recent years1-4, but trends in other biodiversity metrics are less clear-cut5-7. Here we examined long-term trends in 923 terrestrial insect assemblages monitored in 106 studies, and found concomitant declines in abundance and species richness. For studies that were resolved to species level (551 sites in 57 studies), we observed a decline in the number of initially abundant species through time, but not in the number of very rare species. At the population level, we found that species that were most abundant at the start of the time series showed the strongest average declines (corrected for regression-to-the-mean effects). Rarer species were, on average, also declining, but these were offset by increases of other species. Our results suggest that the observed decreases in total insect abundance2 can mostly be explained by widespread declines of formerly abundant species. This counters the common narrative that biodiversity loss is mostly characterized by declines of rare species8,9. Although our results suggest that fundamental changes are occurring in insect assemblages, it is important to recognize that they represent only trends from those locations for which sufficient long-term data are available. Nevertheless, given the importance of abundant species in ecosystems10, their general declines are likely to have broad repercussions for food webs and ecosystem functioning.


Assuntos
Biodiversidade , Ecossistema , Insetos , Animais , Feminino , Masculino , Insetos/classificação , Insetos/fisiologia , Especificidade da Espécie , Fatores de Tempo , Densidade Demográfica , Dinâmica Populacional
2.
Nature ; 620(7974): 582-588, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558875

RESUMO

Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Hídricos , Monitoramento Ambiental , Água Doce , Invertebrados , Animais , Espécies Introduzidas/tendências , Invertebrados/classificação , Invertebrados/fisiologia , Europa (Continente) , Atividades Humanas , Conservação dos Recursos Hídricos/estatística & dados numéricos , Conservação dos Recursos Hídricos/tendências , Hidrobiologia , Fatores de Tempo , Produção Agrícola , Urbanização , Aquecimento Global , Poluentes da Água/análise
3.
J Anim Ecol ; 93(1): 4-7, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994548

RESUMO

Research Highlight: Saether, B. E., Engen, S., & Solbu, E. B. (2023a). Assessing the sensitivity and resistance of communities in a changing environment. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.14003. In the face of global change, conservation strategies can be informed by understanding which biological communities are most at risk. Metrics that reflect the 'resilience' of communities to change could have great utility, but there is still no consensus on the most useful way to measure it. Saether et al. introduce an intuitive approach to thinking about and measuring resilience based on how variation in the total number of individuals within a community affects the number of species. By using dynamic species abundance distribution models, they also quantify the different sources of population-level variation that contribute to community resilience. Evenness emerges as an important predictor of resilience, with more even communities predicted to be more sensitive to abundance loss. An attractive feature of their approach is the ability to estimate the key parameters using commonly used generalized linear mixed effects models, which they illustrate with a case study on forest bird communities. The approach is ripe for comparison across different systems to explore how these proposed metrics complement existing biodiversity metrics and how they help understand the risk of communities from environmental change.


Assuntos
Resiliência Psicológica , Humanos , Animais , Ecologia , Biota , Biodiversidade , Florestas
4.
J Anim Ecol ; 92(2): 403-416, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36477754

RESUMO

Quantifying intraspecific and interspecific trait variability is critical to our understanding of biogeography, ecology and conservation. But quantifying such variability and understanding the importance of intraspecific and interspecific variability remain challenging. This is especially true of large geographic scales as this is where the differences between intraspecific and interspecific variability are likely to be greatest. Our goal is to address this research gap using broad-scale citizen science data to quantify intraspecific variability and compare it with interspecific variability, using the example of bird responses to urbanization across the continental United States. Using more than 100 million observations, we quantified urban tolerance for 338 species within randomly sampled spatial regions and then calculated the standard deviation of each species' urban tolerance. We found that species' spatial variability in urban tolerance (i.e. standard deviation) was largely explained by the variability of urban cover throughout a species' range (R2  = 0.70). Variability in urban tolerance was greater in species that were more tolerant of urban cover (i.e. the average urban tolerance throughout their range), suggesting that generalist life histories are better suited to adapt to novel anthropogenic environments. Overall, species differences explained most of the variability in urban tolerance across spatial regions. Together, our results indicate that (1) intraspecific variability is largely predicted by local environmental variability in urban cover at a large spatial scale and (2) interspecific variability is greater than intraspecific variability, supporting the common use of mean values (i.e. collapsing observations across a species' range) when assessing species-environment relationships. Further studies, across different taxa, traits and species-environment relationships are needed to test the role of intraspecific variability, but nevertheless, we recommend that when possible, ecologists should avoid using discrete categories to classify species in how they respond to the environment.


Assuntos
Aves , Ecologia , Animais , Fenótipo , Ecossistema
5.
Glob Chang Biol ; 28(13): 3998-4012, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35535680

RESUMO

Recent climate and land-use changes are having substantial impacts on biodiversity, including population declines, range shifts, and changes in community composition. However, few studies have compared these impacts among multiple taxa, particularly because of a lack of standardized time series data over long periods. Existing data sets are typically of low resolution or poor coverage, both spatially and temporally, thereby limiting the inferences that can be drawn from such studies. Here, we compare climate and land-use driven occupancy changes in butterflies, grasshoppers, and dragonflies using an extensive data set of highly heterogeneous observation data collected in the central European region of Bavaria (Germany) over a 40-year period. Using occupancy models, we find occupancies (the proportion of sites occupied by a species in each year) of 37% of species have decreased, 30% have increased and 33% showed no significant trend. Butterflies and grasshoppers show strongest declines with 41% of species each. By contrast, 52% of dragonfly species increased. Temperature preference and habitat specificity appear as significant drivers of species trends. We show that cold-adapted species across all taxa have declined, whereas warm-adapted species have increased. In butterflies, habitat specialists have decreased, while generalists increased or remained stable. The trends of habitat generalists and specialists both in grasshoppers and semi-aquatic dragonflies, however did not differ. Our findings indicate strong and consistent effects of climate warming across insect taxa. The decrease of butterfly specialists could hint towards a threat from land-use change, as especially butterfly specialists' occurrence depends mostly on habitat quality and area. Our study not only illustrates how these taxa showed differing trends in the past but also provides hints on how we might mitigate the detrimental effects of human development on their diversity in the future.


Assuntos
Borboletas , Odonatos , Animais , Biodiversidade , Clima , Mudança Climática , Ecossistema , Europa (Continente)
6.
Biol Lett ; 18(2): 20210554, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35193369

RESUMO

Changes in the abundances of animals, such as with the ongoing concern about insect declines, are often assumed to be general across taxa. However, this assumption is largely untested. Here, we used a database of assemblage-wide long-term insect and arachnid monitoring to compare abundance trends among co-occurring pairs of taxa. We show that 60% of co-occurring taxa qualitatively showed long-term trends in the same direction-either both increasing or both decreasing. However, in terms of magnitude, temporal trends were only weakly correlated (mean freshwater r = 0.05 (±0.03), mean terrestrial r = 0.12 (±0.09)). The strongest correlation was between trends of beetles and those of moths/butterflies (r = 0.26). Overall, even though there is some support for directional similarity in temporal trends, we find that changes in the abundance of one taxon provide little information on the changes of other taxa. No clear candidate for umbrella or indicator taxa emerged from our analysis. We conclude that obtaining a better picture of changes in insect abundances will require monitoring of multiple taxa, which remains uncommon, especially in the terrestrial realm.


Assuntos
Borboletas , Besouros , Mariposas , Animais , Biodiversidade , Insetos
7.
Glob Chang Biol ; 27(15): 3532-3546, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34056817

RESUMO

Urban expansion poses a serious threat to biodiversity. Given that the expected area of urban land cover is predicted to increase by 2-3 million km2 by 2050, urban environments are one of the most widespread human-dominated land-uses affecting biodiversity. Responses to urbanization differ greatly among species. Some species are unable to tolerate urban environments (i.e., urban avoiders), others are able to adapt and use areas with moderate levels of urbanization (i.e., urban adapters), and yet others are able to colonize and even thrive in urban environments (i.e., urban exploiters). Quantifying species-specific responses to urbanization remains an important goal, but our current understanding of urban tolerance is heavily biased toward traditionally well-studied taxa (e.g., mammals and birds). We integrated a continuous measure of urbanization-night-time lights-with over 900,000 species' observations from the Global Biodiversity Information Facility to derive a comprehensive analysis of species-specific (N = 158 species) responses of butterflies to urbanization across Europe. The majority of butterfly species included in our analysis avoided urban areas, regardless of whether species' urban affinities were quantified as a mean score of urban affinity across all occurrences (79%) or as a species' response curve to the whole urbanization gradient (55%). We then used species-specific responses to urbanization to assess which life history strategies promote urban affinity in butterflies. These trait-based analyses found strong evidence that the average number of flight months, likely associated with thermal niche breath, and number of adult food types were positively associated with urban affinity, while hostplant specialism was negatively associated with urban affinity. Overall, our results demonstrate that specialist butterflies, both in terms of thermal and diet preferences, are most at risk from increasing urbanization, and should thus be considered in urban planning and prioritized for conservation.


Assuntos
Borboletas , Animais , Biodiversidade , Aves , Ecossistema , Europa (Continente) , Humanos , Urbanização
8.
J Anim Ecol ; 90(5): 1328-1340, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33660289

RESUMO

Selection for crypsis has been recognized as an important ecological driver of animal colouration, whereas the relative importance of thermoregulation is more contentious with mixed empirical support. A potential thermal advantage of darker individuals has been observed in a wide range of animal species. Arctic animals that exhibit colour polymorphisms and undergo seasonal colour moults are interesting study subjects for testing the two alternative hypotheses: demographic performance of different colour morphs might be differentially affected by snow cover with a cryptic advantage for lighter morphs, or conversely by winter temperature with a thermal advantage for darker morphs. In this study, we explored whether camouflage and thermoregulation might explain differences in reproduction and survival between the white and blue colour morphs of the Arctic fox Vulpes lagopus under natural conditions. Juvenile and adult survival, breeding propensity and litter size were measured for 798 captive-bred and released or wild-born Arctic foxes monitored during an 11-year period (2007-2017) in two subpopulations in south-central Norway. We investigated the proportion of the two colour morphs and compared their demographic performance in relation to spatial variation in duration of snow cover, onset of snow season and winter temperatures. After population re-establishment, a higher proportion of blue individuals was observed among wild-born Arctic foxes compared to the proportion of blue foxes released from the captive population. Our field study provides the first evidence for an effect of colour morph on the reproductive performance of Arctic foxes under natural conditions, with a higher breeding propensity of the blue morph compared to the white one. Performance of the two colour morphs was not differentially affected by the climatic variables, except for juvenile survival. Blue morph juveniles showed a tendency for higher survival under colder winter temperatures but lower survival under warmer temperatures compared to white morph juveniles. Overall, our findings do not consistently support predictions of the camouflage or the thermoregulation hypotheses. The higher success of blue foxes suggests an advantage of the dark morph not directly related to disruptive selection by crypsis or thermoregulation. Our results rather point to physiological adaptations and behavioural traits not necessarily connected to thermoregulation, such as stress response, immune function, sexual behaviour and aggressiveness. Our findings highlight the need to explore the potential role of genetic linkage or pleiotropy in influencing the fitness of white and blue Arctic foxes as well as other species with colour polymorphisms.


Assuntos
Pigmentação , Melhoramento Vegetal , Animais , Regiões Árticas , Regulação da Temperatura Corporal , Raposas , Noruega
9.
Proc Biol Sci ; 287(1941): 20202653, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33352076

RESUMO

According to classic theory, species' population dynamics and distributions are less influenced by species interactions under harsh climatic conditions compared to under more benign climatic conditions. In alpine and boreal ecosystems in Fennoscandia, the cyclic dynamics of rodents strongly affect many other species, including ground-nesting birds such as ptarmigan. According to the 'alternative prey hypothesis' (APH), the densities of ground-nesting birds and rodents are positively associated due to predator-prey dynamics and prey-switching. However, it remains unclear how the strength of these predator-mediated interactions change along a climatic harshness gradient in comparison with the effects of climatic variation. We built a hierarchical Bayesian model to estimate the sensitivity of ptarmigan populations to interannual variation in climate and rodent occurrence across Norway during 2007-2017. Ptarmigan abundance was positively linked with rodent occurrence, consistent with the APH. Moreover, we found that the link between ptarmigan abundance and rodent dynamics was strongest in colder regions. Our study highlights how species interactions play an important role in population dynamics of species at high latitudes and suggests that they can become even more important in the most climatically harsh regions.


Assuntos
Aves , Clima , Roedores , Animais , Arvicolinae , Teorema de Bayes , Ecossistema , Cadeia Alimentar , Noruega , Dinâmica Populacional , Comportamento Predatório
10.
Glob Chang Biol ; 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33326165

RESUMO

Based on plant occurrence data covering all parts of Germany, we investigated changes in the distribution of 2136 plant species between 1960 and 2017. We analyzed 29 million occurrence records over an area of ~350,000 km2 on a 5 × 5 km grid using temporal and spatiotemporal models and accounting for sampling bias. Since the 1960s, more than 70% of investigated plant species showed declines in nationwide occurrence. Archaeophytes (species introduced before 1492) most strongly declined but also native plant species experienced severe declines. In contrast, neophytes (species introduced after 1492) increased in their nationwide occurrence but not homogeneously throughout the country. Our analysis suggests that the strongest declines in native species already happened in the 1960s-1980s, a time frame in which often few data exist. Increases in neophytic species were strongest in the 1990s and 2010s. Overall, the increase in neophytes did not compensate for the loss of other species, resulting in a decrease in mean grid cell species richness of -1.9% per decade. The decline in plant biodiversity is a widespread phenomenon occurring in different habitats and geographic regions. It is likely that this decline has major repercussions on ecosystem functioning and overall biodiversity, potentially with cascading effects across trophic levels. The approach used in this study is transferable to other large-scale trend analyses using heterogeneous occurrence data.

11.
Conserv Biol ; 33(5): 1120-1130, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30912605

RESUMO

Evidence of declines in insect populations has recently received considerable scientific and societal attention. However, the lack of long-term insect monitoring makes it difficult to assess whether declines are geographically widespread. By contrast, bird populations are well monitored and often used as indicators of environmental change. We compared the population trends of European insectivorous birds with those of other birds to assess whether patterns in bird population trends were consistent with declines of insects. We further examined whether declines were evident for insectivores with different habitats, foraging strata, and other ecological preferences. Bird population trends were estimated for Europe (1990-2015) and Denmark (1990-2016). On average, insectivores declined over the study period (13% across Europe and 28% in Denmark), whereas omnivores had stable populations. Seedeaters also declined (28% across Europe; 34% in Denmark), but this assessment was based on fewer species than for other groups. The effects of insectivory were stronger for farmland species (especially grassland species), for ground feeders, and for cold-adapted species. Insectivory was associated with long-distance migration, which was also linked to population declines. However, many insectivores had stable populations, especially habitat generalists. Our findings suggest that the decline of insectivores is primarily associated with agricultural intensification and loss of grassland habitat. The loss of both seed and insect specialists indicates an overall trend toward bird communities dominated by diet generalists.


Declinaciones a Largo Plazo de Poblaciones de Aves Insectívoras en Europa y las Causas Probables Resumen La evidencia de las declinaciones poblacionales de insectos ha recibido recientemente una atención considerable por parte de la comunidad científica y la sociedad. Sin embargo, la falta de un monitoreo prolongado de los insectos complica valorar si estas declinaciones tienen una distribución extensa geográficamente. Como contraste, las poblaciones de aves tienen un monitoreo constante y con frecuencia se usan como indicadores del cambio climático. Comparamos las tendencias poblacionales de las aves insectívoras de Europa con las de otras aves para valorar si los patrones en las tendencias poblacionales de aves son consistentes con las declinaciones de insectos. Además examinamos si las declinaciones eran evidentes para aves insectívoras con diferentes hábitats, estratos de alimentación, y otras preferencias ecológicas. Las tendencias poblacionales de las aves se estimaron para Europa (1990 - 2015) y para Dinamarca (1990 - 2016). En promedio, las aves insectívoras declinaron a lo largo del periodo de estudio (13% en Europa y 28% en Dinamarca) mientras que las aves omnívoras tuvieron poblaciones estables. Las poblaciones de aves que se alimentan de semillas también declinaron (28% en Europa; 34% en Dinamarca), pero esta valoración se basó en menos especies que para los otros grupos. Los efectos de la insectivoría fueron más evidentes para las especies de tierras agrícolas (especialmente las especies de pastizales), para las especies que se alimentan sobre el suelo y para las especies adaptadas al frío. La insectivoría estuvo asociada con la migración de larga distancia, la cual también estuvo ligada a las declinaciones poblacionales. Sin embargo, muchas aves insectívoras tuvieron poblaciones estables, especialmente aquellas generalistas de hábitat. Nuestros hallazgos sugieren que la declinación de las aves insectívoras está asociada principalmente con la intensificación agrícola y la pérdida de pastizales. La pérdida de aves cuya alimentación es especialista en insectos o en semillas indica una tendencia general hacia comunidades de aves dominadas por aquellas con dietas generalistas.


Assuntos
Aves , Conservação dos Recursos Naturais , Agricultura , Animais , Ecossistema , Europa (Continente) , Dinâmica Populacional
12.
J Anim Ecol ; 87(4): 1034-1045, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29577274

RESUMO

The effects of different environmental drivers on the changes in species' population abundances can be difficult to disentangle as they often act simultaneously. Researchers have built statistical models that include environmental variables (such as annual temperature) or species attributes (such as a species' temperature preference), which are assumed to detect the impacts of specific drivers (such as climate change). However, these approaches are often applied separately or, if combined, not explicitly compared. We show the complementary insights gained by applying both these approaches to a community dataset on Danish terrestrial birds. We use our analysis to compare the relative importance of climate change and agricultural land-use change for the abundance changes within the community between 1983 and 2013. Population models were fitted to the community data of species' annual abundances with predictors comprising: species attributes (species' temperature and habitat preferences), environmental variables (climatic and agricultural land-use change variables) or both. Relationships between species' abundances and environmental variables were used to identify the drivers associated with average abundance changes of species in the community. Relationships between species' abundances and their attributes were used to understand the drivers causing interspecific variation in abundance changes. Warmer winters were positively associated with community-level abundances, and warm-adapted species had more positive abundance changes than cold-adapted ones. Agricultural land-use area was negatively associated with community-level abundances, and birds using a high proportion of meadow and habitat specialists had more negative abundance changes than birds using other habitats and habitat generalists. Effect sizes of environmental variables were larger for agricultural land-use change while those of species attributes were larger for climate change. The environmental data approach suggested that agricultural land-use change has decreased the average abundances of species in the community, affecting total community size while the species attribute-based approach suggested that climate change has caused variation in abundance among species, affecting community composition. Environmental variables and species attributes that are hypothesized to link to specific drivers can be used together to provide complementary information on the impacts of different drivers on communities.


Assuntos
Agricultura/métodos , Aves/fisiologia , Mudança Climática , Características de História de Vida , Animais , Dinamarca , Modelos Estatísticos , Densidade Demográfica
13.
Proc Biol Sci ; 284(1863)2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28931734

RESUMO

Identifying patterns in the effects of temperature on species' population abundances could help develop a general framework for predicting the consequences of climate change across different communities and realms. We used long-term population time series data from terrestrial, freshwater, and marine species communities within central Europe to compare the effects of temperature on abundance across a broad range of taxonomic groups. We asked whether there was an average relationship between temperatures in different seasons and annual abundances of species in a community, and whether species attributes (temperature range of distribution, range size, habitat breadth, dispersal ability, body size, and lifespan) explained interspecific variation in the relationship between temperature and abundance. We found that, on average, warmer winter temperatures were associated with greater abundances in terrestrial communities (ground beetles, spiders, and birds) but not always in aquatic communities (freshwater and marine invertebrates and fish). The abundances of species with large geographical ranges, larger body sizes, and longer lifespans tended to be less related to temperature. Our results suggest that climate change may have, in general, positive effects on species' abundances within many terrestrial communities in central Europe while the effects are less predictable in aquatic communities.


Assuntos
Biodiversidade , Mudança Climática , Ecossistema , Temperatura , Distribuição Animal , Animais , Tamanho Corporal , Europa (Continente) , Longevidade , Dinâmica Populacional , Estações do Ano
14.
Glob Chang Biol ; 23(7): 2554-2564, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27997069

RESUMO

The increasing conversion of agricultural and natural areas to human-dominated urban landscapes is predicted to lead to a major decline in biodiversity worldwide. Two conditions that typically differ between urban environments and the surrounding landscape are increased temperature, and high patch isolation and habitat turnover rates. However, the extent and spatial scale at which these altered conditions shape biotic communities through selection and/or filtering on species traits are currently poorly understood. We sampled carabid beetles at 81 sites in Belgium using a hierarchically nested sampling design wherein three local-scale (200 × 200 m) urbanization levels were repeatedly sampled across three landscape-scale (3 × 3 km) urbanization levels. First, we showed that communities sampled in the most urbanized locations and landscapes displayed a distinct species composition at both local and landscape scale. Second, we related community means of species-specific thermal preferences and dispersal capacity (based on European distribution and wing morphology, respectively) to the urbanization gradients. We showed that urban communities consisted on average of species with a preference for higher temperatures and with better dispersal capacities compared to rural communities. These shifts were caused by an increased number of species tolerating higher temperatures, a decreased richness of species with low thermal preference, and an almost complete depletion of species with very low-dispersal capacity in the most urbanized localities. Effects of urbanization were most clearly detected at the local scale, although more subtle effects could also be found at the scale of entire landscapes. Our results demonstrate that urbanization may fundamentally and consistently alter species composition by exerting a strong filtering effect on species dispersal characteristics and favouring replacement by warm-dwelling species.


Assuntos
Biodiversidade , Ecossistema , Urbanização , Animais , Bélgica , Besouros , Humanos
15.
Trends Ecol Evol ; 39(6): 515-523, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508923

RESUMO

Measuring and tracking biodiversity from local to global scales is challenging due to its multifaceted nature and the range of metrics used to describe spatial and temporal patterns. Abundance can be used to describe how a population changes across space and time, but it can be measured in different ways, with consequences for the interpretation and communication of spatiotemporal patterns. We differentiate between relative and absolute abundance, and discuss the advantages and disadvantages of each for biodiversity monitoring, conservation, and ecological research. We highlight when absolute abundance can be advantageous and should be prioritized in biodiversity monitoring and research, and conclude by providing avenues for future research directions to better assess the necessity of absolute abundance in biodiversity monitoring.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Densidade Demográfica , Dinâmica Populacional , Animais
16.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230106, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705194

RESUMO

Emerging technologies are increasingly employed in environmental citizen science projects. This integration offers benefits and opportunities for scientists and participants alike. Citizen science can support large-scale, long-term monitoring of species occurrences, behaviour and interactions. At the same time, technologies can foster participant engagement, regardless of pre-existing taxonomic expertise or experience, and permit new types of data to be collected. Yet, technologies may also create challenges by potentially increasing financial costs, necessitating technological expertise or demanding training of participants. Technology could also reduce people's direct involvement and engagement with nature. In this perspective, we discuss how current technologies have spurred an increase in citizen science projects and how the implementation of emerging technologies in citizen science may enhance scientific impact and public engagement. We show how technology can act as (i) a facilitator of current citizen science and monitoring efforts, (ii) an enabler of new research opportunities, and (iii) a transformer of science, policy and public participation, but could also become (iv) an inhibitor of participation, equity and scientific rigour. Technology is developing fast and promises to provide many exciting opportunities for citizen science and insect monitoring, but while we seize these opportunities, we must remain vigilant against potential risks. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Ciência do Cidadão , Insetos , Animais , Ciência do Cidadão/métodos , Participação da Comunidade/métodos , Monitoramento Ambiental/métodos
17.
Sci Data ; 11(1): 601, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849407

RESUMO

Freshwater macroinvertebrates are a diverse group and play key ecological roles, including accelerating nutrient cycling, filtering water, controlling primary producers, and providing food for predators. Their differences in tolerances and short generation times manifest in rapid community responses to change. Macroinvertebrate community composition is an indicator of water quality. In Europe, efforts to improve water quality following environmental legislation, primarily starting in the 1980s, may have driven a recovery of macroinvertebrate communities. Towards understanding temporal and spatial variation of these organisms, we compiled the TREAM dataset (Time seRies of European freshwAter Macroinvertebrates), consisting of macroinvertebrate community time series from 1,816 river and stream sites (mean length of 19.2 years and 14.9 sampling years) of 22 European countries sampled between 1968 and 2020. In total, the data include >93 million sampled individuals of 2,648 taxa from 959 genera and 212 families. These data can be used to test questions ranging from identifying drivers of the population dynamics of specific taxa to assessing the success of legislative and management restoration efforts.


Assuntos
Invertebrados , Rios , Animais , Europa (Continente) , Água Doce , Dinâmica Populacional , Qualidade da Água , Biodiversidade , Ecossistema
18.
Sci Total Environ ; 857(Pt 3): 159607, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36273564

RESUMO

The majority of central European streams are in poor ecological condition. Pesticide inputs from terrestrial habitats present a key threat to sensitive insects in streams. Both standardized stream monitoring data and societal support are needed to conserve and restore freshwater habitats. Citizen science (CS) offers potential to complement international freshwater monitoring while it is often viewed critically due to concerns about data accuracy. Here, we developed a CS program based on the Water Framework Directive that enables citizen scientists to provide data on stream hydromorphology, physicochemical status and benthic macroinvertebrates to apply the trait-based bio-indicator SPEARpesticides for pesticide exposure. We compared CS monitoring data with professional data across 28 central German stream sites and could show that both CS and professional monitoring identified a similar average proportion of pesticide-sensitive macroinvertebrate taxa per stream site (20 %). CS data were highly correlated to the professional data for both stream hydromorphology and SPEARpesticides (r = 0.72 and 0.76). To assess the extent to which CS macroinvertebrate data can indicate pesticide exposure, we tested the relationship of CS generated SPEARpesticides values and measured pesticide concentrations at 21 stream sites, and found a fair correlation similar to professional results. We conclude that given appropriate training and support, citizen scientists can generate valid data on the ecological status and pesticide contamination of streams. By complementing official monitoring, data from well-managed CS programs can advance freshwater science and enhance the implementation of freshwater conservation goals.


Assuntos
Ciência do Cidadão , Praguicidas , Poluentes Químicos da Água , Animais , Rios , Praguicidas/análise , Invertebrados , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Ecossistema
19.
Biol Rev Camb Philos Soc ; 98(4): 983-1002, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36859791

RESUMO

Ecologists routinely use statistical models to detect and explain interactions among ecological drivers, with a goal to evaluate whether an effect of interest changes in sign or magnitude in different contexts. Two fundamental properties of interactions are often overlooked during the process of hypothesising, visualising and interpreting interactions between drivers: the measurement scale - whether a response is analysed on an additive or multiplicative scale, such as a ratio or logarithmic scale; and the symmetry - whether dependencies are considered in both directions. Overlooking these properties can lead to one or more of three inferential errors: misinterpretation of (i) the detection and magnitude (Type-D error), and (ii) the sign of effect modification (Type-S error); and (iii) misidentification of the underlying processes (Type-A error). We illustrate each of these errors with a broad range of ecological questions applied to empirical and simulated data sets. We demonstrate how meta-analysis, a widely used approach that seeks explicitly to characterise context dependence, is especially prone to all three errors. Based on these insights, we propose guidelines to improve hypothesis generation, testing, visualisation and interpretation of interactions in ecology.


Assuntos
Ecologia , Modelos Estatísticos , Metanálise como Assunto
20.
Sci Rep ; 12(1): 11069, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773384

RESUMO

Citizen scientists play an increasingly important role in biodiversity monitoring. Most of the data, however, are unstructured-collected by diverse methods that are not documented with the data. Insufficient understanding of the data collection processes presents a major barrier to the use of citizen science data in biodiversity research. We developed a questionnaire to ask citizen scientists about their decision-making before, during and after collecting and reporting species observations, using Germany as a case study. We quantified the greatest sources of variability among respondents and assessed whether motivations and experience related to any aspect of data collection. Our questionnaire was answered by almost 900 people, with varying taxonomic foci and expertise. Respondents were most often motivated by improving species knowledge and supporting conservation, but there were no linkages between motivations and data collection methods. By contrast, variables related to experience and knowledge, such as membership of a natural history society, were linked with a greater propensity to conduct planned searches, during which typically all species were reported. Our findings have implications for how citizen science data are analysed in statistical models; highlight the importance of natural history societies and provide pointers to where citizen science projects might be further developed.


Assuntos
Biodiversidade , Ciência do Cidadão , Humanos , Conhecimento , Motivação , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA