Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 921: 171071, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38378064

RESUMO

A ten-year-long examination of macroinvertebrate community recovery was conducted following a catastrophic spill of highly alkaline red sludge (pH >13) into lowland streams. Our primary objective was to compare recovery patterns after coarse- and fine-grain disturbances, focusing on two aspects: i) trend analysis to reveal long-term changes of six community parameters, and ii) variation analyses to assess parameter changes over time. We conducted statistical analysis on long-term data series of macroinvertebrates obtained from quantitative samples collected at four sections with varying degrees of disturbance along the impacted stream sections. We developed a comprehensive theoretical framework comprising a series of sequential phases: Ramp-up, Overshoot, and Oscillation Phases. i) A trend analysis revealed that disturbances show a gradual recovery pattern, while variance analyses showed an asymptotic convergence to an equilibrium. ii) Evaluating these trends across phases unveiled that the initial recovery phase exhibited a steep trajectory, lasting 4-9 months, irrespective of disturbance severity. Coarse-grain disturbances induced a remarkable Overshoot phenomenon across all community metrics. The more severe the disturbance, the greater the height and duration of the Overshoot. Our results suggest that the presence or absence of Overshoot can serve as an indicator for coarse-grain disturbances in the context of large and infrequent disturbances (LID). The entire recovery process lasts for 2.5-3 years irrespective of the severity of the LID. In conclusion, a minimum survey duration of two and half years is deemed imperative to capture the phases of recovery, and changes associated with LID are not expected to extend beyond the three-year threshold. The theoretical framework, including Overshoot parameters, may assist future studies in comparing recovery patterns of different LID types. Furthermore, our theoretical framework is likely to be applicable to other groups of organisms given a sufficiently long monitoring of recovery, influenced also by the length of reproductive cycles.


Assuntos
Desastres , Invertebrados , Animais , Esgotos , Hungria , Rios/química , Ecossistema
2.
Sci Rep ; 11(1): 19951, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620925

RESUMO

Pronounced global cooling around the Eocene-Oligocene transition (EOT) was a pivotal event in Earth's climate history, controversially associated with the opening of the Drake Passage. Using a physical laboratory model we revisit the fluid dynamics of this marked reorganization of ocean circulation. Here we show, seemingly contradicting paleoclimate records, that in our experiments opening the pathway yields higher values of mean water surface temperature than the "closed" configuration. This mismatch points to the importance of the role ice albedo feedback plays in the investigated EOT-like transition, a component that is not captured in the laboratory model. Our conclusion is supported by numerical simulations performed in a global climate model (GCM) of intermediate complexity, where both "closed" and "open" configurations were explored, with and without active sea ice dynamics. The GCM results indicate that sea surface temperatures would change in the opposite direction following an opening event in the two sea ice dynamics settings, and the results are therefore consistent both with the laboratory experiment (slight warming after opening) and the paleoclimatic data (pronounced cooling after opening). It follows that in the hypothetical case of an initially ice-free Antarctica the continent could have become even warmer after the opening, a scenario not indicated by paleotemperature reconstructions.

3.
Zookeys ; (501): 89-108, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25987880

RESUMO

A basic knowledge of regional faunas is necessary to follow the changes in macroinvertebrate communities caused by environmental influences and climatic trends in the future. We collected all the available data on water bugs in Hungary using an inventory method, a UTM grid based database was built, and Jackknife richness estimates and species accumulation curves were calculated. Fauna compositions were compared among Central-European states. As a result, an updated and annotated checklist for Hungary is provided, containing 58 species in 21 genera and 12 families. A total 66.8% of the total UTM 10 × 10 km squares in Hungary possess faunistic data for water bugs. The species number in grid cells numbered from 0 to 42, and their diversity patterns showed heterogeneity. The estimated species number of 58 is equal to the actual number of species known from the country. The asymptotic shape of the accumulative species curve predicts that additional sampling efforts will not increase the number of species currently known from Hungary. These results suggest that the number of species in the country was estimated correctly and that the species accumulation curve levels off at an asymptotic value. Thus a considerable increase in species richness is not expected in the future. Even with the species composition changing the chance of species turn-over does exist. Overall, 36.7% of the European water bug species were found in Hungary. The differences in faunal composition between Hungary and its surrounding countries were caused by the rare or unique species, whereas 33 species are common in the faunas of the eight countries. Species richness does show a correlation with latitude, and similar species compositions were observed in the countries along the same latitude. The species list and the UTM-based database are now up-to-date for Hungary, and it will provide a basis for future studies of distributional and biodiversity patterns, biogeography, relative abundance and frequency of occurrences important in community ecology, or the determination of conservation status.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA