Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38702584

RESUMO

PURPOSE: Inhibitor of differentiation 4 (ID4) is a dominant-negative regulator of basic helix-loop-helix (bHLH) transcription factors. The expression of ID4 is dysregulated in various breast cancer subtypes, indicating a potential role for ID4 in subtype-specific breast cancer development. This study aims to elucidate the epigenetic regulation of ID4 within breast cancer subtypes, with a particular focus on DNA methylation and chromatin accessibility. METHODS: Bioinformatic analyses were conducted to assess DNA methylation and chromatin accessibility in ID4 regulatory regions across breast cancer subtypes. Gene Set Enrichment Analysis (GSEA) was conducted to identify related gene sets. Transcription factor binding within ID4 enhancer and promoter regions was explored. In vitro experiments involved ER+ breast cancer cell lines treated with estradiol (E2) and Tamoxifen. RESULTS: Distinct epigenetic profiles of ID4 were observed, revealing increased methylation and reduced chromatin accessibility in luminal subtypes compared to the basal subtype. Gene Set Enrichment Analysis (GSEA) implicated estrogen-related pathways, suggesting a potential link between estrogen signaling and the regulation of ID4 expression. Transcription factor analysis identified ER and FOXA1 as regulators of ID4 enhancer regions. In vitro experiments confirmed the role of ER, demonstrating reduced ID4 expression and increased methylation with estradiol treatment. Conversely, Tamoxifen treatment increased ID4 expression, indicating the potential involvement of ER signaling through ERα in the epigenetic regulation of ID4 in breast cancer cells. CONCLUSION: This study shows the intricate epigenetic regulation of ID4 in breast cancer, highlighting subtype-specific differences in DNA methylation and chromatin accessibility.

2.
Mol Med ; 28(1): 15, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123413

RESUMO

BACKGROUND: During embryogenesis lateral symmetry is broken, giving rise to Left/Right (L/R) breast tissues with distinct identity. L/R-sided breast tumors exhibit consistently-biased incidence, gene expression, and DNA methylation. We postulate that a differential L/R tumor-microenvironment crosstalk generates different tumorigenesis mechanisms. METHODS: We performed in-silico analyses on breast tumors of public datasets, developed xenografted tumors, and conditioned MDA-MB-231 cells with L/R mammary extracts. RESULTS: We found L/R differential DNA methylation involved in embryogenic and neuron-like functions. Focusing on ion-channels, we discovered significant L/R epigenetic and bioelectric differences. Specifically, L-sided cells presented increased methylation of hyperpolarizing ion channel genes and increased Ca2+ concentration and depolarized membrane potential, compared to R-ones. Functional consequences were associated with increased proliferation in left tumors, assessed by KI67 expression and mitotic count. CONCLUSIONS: Our findings reveal considerable L/R asymmetry in cancer processes, and suggest specific L/R epigenetic and bioelectric differences as future targets for cancer therapeutic approaches in the breast and many other paired organs.


Assuntos
Impedância Elétrica , Epigênese Genética , Neoplasias Unilaterais da Mama/genética , Neoplasias Unilaterais da Mama/patologia , Animais , Linhagem Celular Tumoral , Biologia Computacional , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Transcriptoma , Microambiente Tumoral
4.
Oncotarget ; 11(28): 2774-2792, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32733648

RESUMO

HER2 is a well-studied tyrosine kinase (TK) membrane receptor which functions as a therapeutic target in invasive ductal breast carcinomas (IDC). The standard of care for the treatment of HER2-positive breast is the antibody trastuzumab. Despite specific treatment unfortunately, 20% of primary and 70% of metastatic HER2 tumors develop resistance. HER2 belongs to a gene family, with four members (HER1-4) and these members could be involved in resistance to anti-HER2 therapies. In this study we designed a probemix to detect the amplification of the four HER oncogenes in a single reaction. In addition, we developed a protocol based on the combination of MLPA with ddPCR to detect the tumor proportion of co-amplified HERs. On 111 IDC, the HER2 MLPA results were validated by FISH (Adjusted r 2 = 0,91, p < 0,0001), CISH (Adjusted r 2 = 0,938, p < 0,0001) and IHC (Adjusted r 2 = 0,31, p < 0,0001). HER1-4 MLPA results were validated by RT-qPCR assays (Spearman Rank test p < 0,05). Of the 111 samples, 26% presented at least one HER amplified, of which 23% showed co-amplifications with other HERs. The percentage of cells with HER2 co-amplified varied among the tumors (from 2-72,6%). Independent in-silico findings show that the outcome of HER2+ patients is conditioned by the status of HER3 and HER4. Our results encourage further studies to investigate the relationship with patient's response to single or combined treatment. The approach could serve as proof of principle for other tumors in which the HER oncogenes are involved.

5.
Asian Pac J Cancer Prev ; 19(10): 2859-2866, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30362313

RESUMO

Objective: Breast cancer is a heterogeneous disease characterized by an accumulation of genetic and epigenetic alterations that lead tumor cells to acquire characteristics like the capacity for invasion and metastasis. Metastasis remains a major challenge in cancer management and understanding of its molecular basis should result in improved prevention, diagnosis, and treatment of breast cancer patients. The aim of this study was to investigate how promoter DNA methylation regulates PAX6 gene expression and influences breast carcinoma cell migration. Methods: PAX6 promoter methylation was detected by Methyl Specific-Multiplex Ligation Probe Amplification (MS-MLPA). Gene expression was evaluated using qRT-PCR, while the effect of PAX6 on migration was ssessed by wound healing assay. In addition, MMP2 and MMP9 genes were studied using different bioinformatic tools. Results: The PAX6 promoter is methylated in breast cancer cell lines and methylation in this region impacts on its expression. Migration assays revealed that PAX6 overexpression promotes cell migration, while PAX6 inhibition decreases it. More importantly, we found that migration is affected by PAX6 methylation status. Employing bioinformatic analysis, binding sites for PAX6 on the regulatory regions of the MMP2 and MMP9 genes were established, PAX6 overexpression increasing MMP2 and MMP9 expression at the mRNA level. Conclusion: Our study provides novel insights into epigenetic events that regulate PAX6 expression and molecular mechanisms by which PAX6 modifies the migration capacity of breast cancer cells.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Fator de Transcrição PAX6/genética , Regiões Promotoras Genéticas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células MCF-7
6.
Mutat Res ; 560(1): 11-7, 2004 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-15099819

RESUMO

This study was designed to assess whether the chemotherapeutic drug paclitaxel can induce DNA damage in peripheral blood lymphocytes of human healthy donors, and to evaluate if such damage could be repaired. Venous blood was collected by routine venipuncture, the lymphocytes were isolated and cultured and then treated with 100nM, 500nM, 10microM, and 30microM of taxol for 4h. The alkaline comet assay technique was used to quantify the level of DNA damage and the DNA repair in lymphocytes. A significant increase in DNA damage was achieved when the cells were incubated with paclitaxel concentrations of 10microM or above. To test the DNA repair capability, the lymphocytes were allowed to recover for 2, 4, 6, and 24h. The DNA damage was almost completely repaired after 24h of incubation demonstrating a time-dependent repair capability. In conclusion, we demonstrate that paclitaxel induces DNA damage in peripheral blood lymphocytes and that this damage can be repaired.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Dano ao DNA , DNA/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Paclitaxel/toxicidade , Adulto , Álcalis , Células Cultivadas , Ensaio Cometa , Feminino , Humanos , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA