Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(29): 14661-14670, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31253704

RESUMO

In hypersaline environments, Nanohaloarchaeota (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaeota [DPANN] superphylum) are thought to be free-living microorganisms. We report cultivation of 2 strains of Antarctic Nanohaloarchaeota and show that they require the haloarchaeon Halorubrum lacusprofundi for growth. By performing growth using enrichments and fluorescence-activated cell sorting, we demonstrated successful cultivation of Candidatus Nanohaloarchaeum antarcticus, purification of Ca. Nha. antarcticus away from other species, and growth and verification of Ca. Nha. antarcticus with Hrr. lacusprofundi; these findings are analogous to those required for fulfilling Koch's postulates. We use fluorescent in situ hybridization and transmission electron microscopy to assess cell structures and interactions; metagenomics to characterize enrichment taxa, generate metagenome assembled genomes, and interrogate Antarctic communities; and proteomics to assess metabolic pathways and speculate about the roles of certain proteins. Metagenome analysis indicates the presence of a single species, which is endemic to Antarctic hypersaline systems that support the growth of haloarchaea. The presence of unusually large proteins predicted to function in attachment and invasion of hosts plus the absence of key biosynthetic pathways (e.g., lipids) in metagenome assembled genomes of globally distributed Nanohaloarchaeota indicate that all members of the lineage have evolved as symbionts. Our work expands the range of archaeal symbiotic lifestyles and provides a genetically tractable model system for advancing understanding of the factors controlling microbial symbiotic relationships.


Assuntos
Halorubrum/fisiologia , Metagenoma , Nanoarchaeota/fisiologia , Simbiose/fisiologia , Regiões Antárticas , DNA Arqueal/genética , DNA Arqueal/isolamento & purificação , Citometria de Fluxo , Genoma Arqueal/genética , Halorubrum/ultraestrutura , Metagenômica , Microscopia Eletrônica de Transmissão , Nanoarchaeota/ultraestrutura , Filogenia , Salinidade
2.
Microbiome ; 9(1): 231, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34823595

RESUMO

BACKGROUND: In Antarctica, summer sunlight enables phototrophic microorganisms to drive primary production, thereby "feeding" ecosystems to enable their persistence through the long, dark winter months. In Ace Lake, a stratified marine-derived system in the Vestfold Hills of East Antarctica, a Chlorobium species of green sulphur bacteria (GSB) is the dominant phototroph, although its seasonal abundance changes more than 100-fold. Here, we analysed 413 Gb of Antarctic metagenome data including 59 Chlorobium metagenome-assembled genomes (MAGs) from Ace Lake and nearby stratified marine basins to determine how genome variation and population structure across a 7-year period impacted ecosystem function. RESULTS: A single species, Candidatus Chlorobium antarcticum (most similar to Chlorobium phaeovibrioides DSM265) prevails in all three aquatic systems and harbours very little genomic variation (≥ 99% average nucleotide identity). A notable feature of variation that did exist related to the genomic capacity to biosynthesize cobalamin. The abundance of phylotypes with this capacity changed seasonally ~ 2-fold, consistent with the population balancing the value of a bolstered photosynthetic capacity in summer against an energetic cost in winter. The very high GSB concentration (> 108 cells ml-1 in Ace Lake) and seasonal cycle of cell lysis likely make Ca. Chlorobium antarcticum a major provider of cobalamin to the food web. Analysis of Ca. Chlorobium antarcticum viruses revealed the species to be infected by generalist (rather than specialist) viruses with a broad host range (e.g., infecting Gammaproteobacteria) that were present in diverse Antarctic lakes. The marked seasonal decrease in Ca. Chlorobium antarcticum abundance may restrict specialist viruses from establishing effective lifecycles, whereas generalist viruses may augment their proliferation using other hosts. CONCLUSION: The factors shaping Antarctic microbial communities are gradually being defined. In addition to the cold, the annual variation in sunlight hours dictates which phototrophic species can grow and the extent to which they contribute to ecosystem processes. The Chlorobium population studied was inferred to provide cobalamin, in addition to carbon, nitrogen, hydrogen, and sulphur cycling, as critical ecosystem services. The specific Antarctic environmental factors and major ecosystem benefits afforded by this GSB likely explain why such a coherent population structure has developed in this Chlorobium species. Video abstract.


Assuntos
Chlorobium , Microbiota , Regiões Antárticas , Chlorobium/genética , Ecossistema , Lagos/microbiologia , Metagenoma
3.
Front Microbiol ; 12: 674758, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34140946

RESUMO

Organic Lake in Antarctica is a marine-derived, cold (-13∘C), stratified (oxic-anoxic), hypersaline (>200 gl-1) system with unusual chemistry (very high levels of dimethylsulfide) that supports the growth of phylogenetically and metabolically diverse microorganisms. Symbionts are not well characterized in Antarctica. However, unicellular eukaryotes are often present in Antarctic lakes and theoretically could harbor endosymbionts. Here, we describe Candidatus Organicella extenuata, a member of the Verrucomicrobia with a highly reduced genome, recovered as a metagenome-assembled genome with genetic code 4 (UGA-to-Trp recoding) from Organic Lake. It is closely related to Candidatus Pinguicocccus supinus (163,218 bp, 205 genes), a newly described cytoplasmic endosymbiont of the freshwater ciliate Euplotes vanleeuwenhoeki (Serra et al., 2020). At 158,228 bp (encoding 194 genes), the genome of Ca. Organicella extenuata is among the smallest known bacterial genomes and similar to the genome of Ca. Pinguicoccus supinus (163,218 bp, 205 genes). Ca. Organicella extenuata retains a capacity for replication, transcription, translation, and protein-folding while lacking any capacity for the biosynthesis of amino acids or vitamins. Notably, the endosymbiont retains a capacity for fatty acid synthesis (type II) and iron-sulfur (Fe-S) cluster assembly. Metagenomic analysis of 150 new metagenomes from Organic Lake and more than 70 other Antarctic aquatic locations revealed a strong correlation in abundance between Ca. Organicella extenuata and a novel ciliate of the genus Euplotes. Like Ca. Pinguicoccus supinus, we infer that Ca. Organicella extenuata is an endosymbiont of Euplotes and hypothesize that both Ca. Organicella extenuata and Ca. Pinguicocccus supinus provide fatty acids and Fe-S clusters to their Euplotes host as the foundation of a mutualistic symbiosis. The discovery of Ca. Organicella extenuata as possessing genetic code 4 illustrates that in addition to identifying endosymbionts by sequencing known symbiotic communities and searching metagenome data using reference endosymbiont genomes, the potential exists to identify novel endosymbionts by searching for unusual coding parameters.

4.
Microbiome ; 8(1): 116, 2020 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-32772914

RESUMO

BACKGROUND: Cold environments dominate the Earth's biosphere and microbial activity drives ecosystem processes thereby contributing greatly to global biogeochemical cycles. Polar environments differ to all other cold environments by experiencing 24-h sunlight in summer and no sunlight in winter. The Vestfold Hills in East Antarctica contains hundreds of lakes that have evolved from a marine origin only 3000-7000 years ago. Ace Lake is a meromictic (stratified) lake from this region that has been intensively studied since the 1970s. Here, a total of 120 metagenomes representing a seasonal cycle and four summers spanning a 10-year period were analyzed to determine the effects of the polar light cycle on microbial-driven nutrient cycles. RESULTS: The lake system is characterized by complex sulfur and hydrogen cycling, especially in the anoxic layers, with multiple mechanisms for the breakdown of biopolymers present throughout the water column. The two most abundant taxa are phototrophs (green sulfur bacteria and cyanobacteria) that are highly influenced by the seasonal availability of sunlight. The extent of the Chlorobium biomass thriving at the interface in summer was captured in underwater video footage. The Chlorobium abundance dropped from up to 83% in summer to 6% in winter and 1% in spring, before rebounding to high levels. Predicted Chlorobium viruses and cyanophage were also abundant, but their levels did not negatively correlate with their hosts. CONCLUSION: Over-wintering expeditions in Antarctica are logistically challenging, meaning insight into winter processes has been inferred from limited data. Here, we found that in contrast to chemolithoautotrophic carbon fixation potential of Southern Ocean Thaumarchaeota, this marine-derived lake evolved a reliance on photosynthesis. While viruses associated with phototrophs also have high seasonal abundance, the negative impact of viral infection on host growth appeared to be limited. The microbial community as a whole appears to have developed a capacity to generate biomass and remineralize nutrients, sufficient to sustain itself between two rounds of sunlight-driven summer-activity. In addition, this unique metagenome dataset provides considerable opportunity for future interrogation of eukaryotes and their viruses, abundant uncharacterized taxa (i.e. dark matter), and for testing hypotheses about endemic species in polar aquatic ecosystems. Video Abstract.


Assuntos
Lagos/microbiologia , Lagos/virologia , Microbiota/efeitos da radiação , Fotoperíodo , Estações do Ano , Regiões Antárticas , Organismos Aquáticos/efeitos da radiação , Organismos Aquáticos/virologia , Ecossistema
5.
Microbiome ; 6(1): 113, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925429

RESUMO

BACKGROUND: The genomes of halophilic archaea (haloarchaea) often comprise multiple replicons. Genomic variation in haloarchaea has been linked to viral infection pressure and, in the case of Antarctic communities, can be caused by intergenera gene exchange. To expand understanding of genome variation and biogeography of Antarctic haloarchaea, here we assessed genomic variation between two strains of Halorubrum lacusprofundi that were isolated from Antarctic hypersaline lakes from different regions (Vestfold Hills and Rauer Islands). To assess variation in haloarchaeal populations, including the presence of genomic islands, metagenomes from six hypersaline Antarctic lakes were characterised. RESULTS: The sequence of the largest replicon of each Hrr. lacusprofundi strain (primary replicon) was highly conserved, while each of the strains' two smaller replicons (secondary replicons) were highly variable. Intergenera gene exchange was identified, including the sharing of a type I-B CRISPR system. Evaluation of infectivity of an Antarctic halovirus provided experimental evidence for the differential susceptibility of the strains, bolstering inferences that strain variation is important for modulating interactions with viruses. A relationship was found between genomic structuring and the location of variation within replicons and genomic islands, demonstrating that the way in which haloarchaea accommodate genomic variability relates to replicon structuring. Metagenome read and contig mapping and clustering and scaling analyses demonstrated biogeographical patterning of variation consistent with environment and distance effects. The metagenome data also demonstrated that specific haloarchaeal species dominated the hypersaline systems indicating they are endemic to Antarctica. CONCLUSION: The study describes how genomic variation manifests in Antarctic-lake haloarchaeal communities and provides the basis for future assessments of Antarctic regional and global biogeography of haloarchaea.


Assuntos
Vírus de Archaea/genética , Genoma Arqueal/genética , Halorubrum/genética , Microbiota/genética , Regiões Antárticas , Vírus de Archaea/isolamento & purificação , Sequência de Bases , Variação Genética/genética , Ilhas Genômicas/genética , Geografia , Halorubrum/classificação , Halorubrum/isolamento & purificação , Lagos/microbiologia , Metagenoma/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA