Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nature ; 583(7814): E15, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32541969

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
J Biol Chem ; 300(1): 105530, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072048

RESUMO

Fibroblast to myofibroblast transdifferentiation mediates numerous fibrotic disorders, such as idiopathic pulmonary fibrosis (IPF). We have previously demonstrated that non-muscle myosin II (NMII) is activated in response to fibrotic lung extracellular matrix, thereby mediating myofibroblast transdifferentiation. NMII-A is known to interact with the calcium-binding protein S100A4, but the mechanism by which S100A4 regulates fibrotic disorders is unclear. In this study, we show that fibroblast S100A4 is a calcium-dependent, mechanoeffector protein that is uniquely sensitive to pathophysiologic-range lung stiffness (8-25 kPa) and thereby mediates myofibroblast transdifferentiation. Re-expression of endogenous fibroblast S100A4 rescues the myofibroblastic phenotype in S100A4 KO fibroblasts. Analysis of NMII-A/actin dynamics reveals that S100A4 mediates the unraveling and redistribution of peripheral actomyosin to a central location, resulting in a contractile myofibroblast. Furthermore, S100A4 loss protects against murine in vivo pulmonary fibrosis, and S100A4 expression is dysregulated in IPF. Our data reveal a novel mechanosensor/effector role for endogenous fibroblast S100A4 in inducing cytoskeletal redistribution in fibrotic disorders such as IPF.


Assuntos
Fibrose Pulmonar Idiopática , Mecanotransdução Celular , Miofibroblastos , Proteína A4 de Ligação a Cálcio da Família S100 , Animais , Camundongos , Transdiferenciação Celular , Fibrose , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Proteína A4 de Ligação a Cálcio da Família S100/genética , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo
3.
Nature ; 562(7725): E3, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29980769

RESUMO

Change history: In the HTML version of this Letter, Extended Data Fig. 4 incorrectly corresponded to Fig. 4 (the PDF version of the figure was correct). This has been corrected online.

4.
Nature ; 558(7711): 610-614, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925952

RESUMO

Viral infections continue to represent major challenges to public health, and an enhanced mechanistic understanding of the processes that contribute to viral life cycles is necessary for the development of new therapeutic strategies 1 . Viperin, a member of the radical S-adenosyl-L-methionine (SAM) superfamily of enzymes, is an interferon-inducible protein implicated in the inhibition of replication of a broad range of RNA and DNA viruses, including dengue virus, West Nile virus, hepatitis C virus, influenza A virus, rabies virus 2 and HIV3,4. Viperin has been suggested to elicit these broad antiviral activities through interactions with a large number of functionally unrelated host and viral proteins3,4. Here we demonstrate that viperin catalyses the conversion of cytidine triphosphate (CTP) to 3'-deoxy-3',4'-didehydro-CTP (ddhCTP), a previously undescribed biologically relevant molecule, via a SAM-dependent radical mechanism. We show that mammalian cells expressing viperin and macrophages stimulated with IFNα produce substantial quantities of ddhCTP. We also establish that ddhCTP acts as a chain terminator for the RNA-dependent RNA polymerases from multiple members of the Flavivirus genus, and show that ddhCTP directly inhibits replication of Zika virus in vivo. These findings suggest a partially unifying mechanism for the broad antiviral effects of viperin that is based on the intrinsic enzymatic properties of the protein and involves the generation of a naturally occurring replication-chain terminator encoded by mammalian genomes.


Assuntos
Antivirais/metabolismo , Citidina Trifosfato/metabolismo , Genoma Humano/genética , Proteínas/genética , Proteínas/metabolismo , Terminação da Transcrição Genética , Animais , Antivirais/química , Chlorocebus aethiops , Citidina Trifosfato/biossíntese , Citidina Trifosfato/química , Células HEK293 , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Ribonucleotídeos , Especificidade por Substrato , Células Vero , Zika virus/enzimologia , Zika virus/metabolismo
5.
Biochem J ; 480(5): 335-362, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36920093

RESUMO

Macropinocytosis is defined as an actin-dependent but coat- and dynamin-independent endocytic uptake process, which generates large intracellular vesicles (macropinosomes) containing a non-selective sampling of extracellular fluid. Macropinocytosis provides an important mechanism of immune surveillance by dendritic cells and macrophages, but also serves as an essential nutrient uptake pathway for unicellular organisms and tumor cells. This review examines the cell biological mechanisms that drive macropinocytosis, as well as the complex signaling pathways - GTPases, lipid and protein kinases and phosphatases, and actin regulatory proteins - that regulate macropinosome formation, internalization, and disposition.


Assuntos
Actinas , Pinocitose , Endocitose , Transdução de Sinais , Macrófagos
6.
J Cell Sci ; 132(16)2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31409694

RESUMO

Macropinocytosis is an actin-dependent but clathrin-independent endocytic process by which cells nonselectively take up large aliquots of extracellular material. Macropinocytosis is used for immune surveillance by dendritic cells, as a route of infection by viruses and protozoa, and as a nutrient uptake pathway in tumor cells. In this study, we explore the role of class I phosphoinositide 3-kinases (PI3Ks) during ligand-stimulated macropinocytosis. We find that macropinocytosis in response to receptor tyrosine kinase activation is strikingly dependent on a single class I PI3K isoform, namely PI3Kß (containing the p110ß catalytic subunit encoded by PIK3CB). Loss of PI3Kß expression or activity blocks macropinocytosis at early steps, before the formation of circular dorsal ruffles, but also plays a role in later steps, downstream from Rac1 activation. PI3Kß is also required for the elevated levels of constitutive macropinocytosis found in tumor cells that are defective for the PTEN tumor suppressor. Our data shed new light on PI3K signaling during macropinocytosis, and suggest new therapeutic uses for pharmacological inhibitors of PI3Kß.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pinocitose , Transdução de Sinais , Animais , Classe I de Fosfatidilinositol 3-Quinases/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Células NIH 3T3 , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Células PC-3 , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
7.
J Biol Chem ; 294(12): 4621-4633, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30659094

RESUMO

Phosphoinositide 3-kinase ß (PI3Kß) is regulated by receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), and small GTPases such as Rac1 and Rab5. Our lab previously identified two residues (Gln596 and Ile597) in the helical domain of the catalytic subunit (p110ß) of PI3Kß whose mutation disrupts binding to Rab5. To better define the Rab5-p110ß interface, we performed alanine-scanning mutagenesis and analyzed Rab5 binding with an in vitro pulldown assay with GST-Rab5GTP Of the 35 p110ß helical domain mutants assayed, 11 disrupted binding to Rab5 without affecting Rac1 binding, basal lipid kinase activity, or Gßγ-stimulated kinase activity. These mutants defined the Rab5-binding interface within p110ß as consisting of two perpendicular α-helices in the helical domain that are adjacent to the initially identified Gln596 and Ile597 residues. Analysis of the Rab5-PI3Kß interaction by hydrogen-deuterium exchange MS identified p110ß peptides that overlap with these helices; no interactions were detected between Rab5 and other regions of p110ß or p85α. Similarly, the binding of Rab5 to isolated p85α could not be detected, and mutations in the Ras-binding domain (RBD) of p110ß had no effect on Rab5 binding. Whereas soluble Rab5 did not affect PI3Kß activity in vitro, the interaction of these two proteins was critical for chemotaxis, invasion, and gelatin degradation by breast cancer cells. Our results define a single, discrete Rab5-binding site in the p110ß helical domain, which may be useful for generating inhibitors to better define the physiological role of Rab5-PI3Kß coupling in vivo.


Assuntos
Neoplasias da Mama/patologia , Invasividade Neoplásica , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Sítios de Ligação , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Quimiotaxia , Gelatina/metabolismo , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Mutação , Fosfatidilinositol 3-Quinase/genética , Ligação Proteica
8.
Exp Cell Res ; 370(2): 273-282, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29953877

RESUMO

Nonmuscle myosin-IIA (NMHC-IIA) heavy chain phosphorylation has gained recognition as an important feature of myosin-II regulation. In previous work, we showed that phosphorylation on S1943 promotes myosin-IIA filament disassembly in vitro and enhances EGF-stimulated lamellipod extension of breast tumor cells. However, the contribution of NMHC-IIA S1943 phosphorylation to the modulation of invasive cellular behavior and metastasis has not been examined. Stable expression of phosphomimetic (S1943E) or non-phosphorylatable (S1943A) NMHC-IIA in breast cancer cells revealed that S1943 phosphorylation enhances invadopodia function, and is critical for matrix degradation in vitro and experimental metastasis in vivo. These studies demonstrate a novel link between NMHC-IIA S1943 phosphorylation, the regulation of extracellular matrix degradation and tumor cell invasion and metastasis.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Metástase Neoplásica/patologia , Miosina não Muscular Tipo IIA/metabolismo , Podossomos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , Cadeias Pesadas de Miosina/metabolismo , Fosforilação , Podossomos/genética
9.
Biochem J ; 474(23): 3903-3914, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29046393

RESUMO

Phosphoinositide 3-kinases (PI 3-kinases) are regulated by a diverse range of upstream activators, including receptor tyrosine kinases (RTKs), G-protein-coupled receptors (GPCRs), and small GTPases from the Ras, Rho and Rab families. For the Class IA PI 3-kinase PI3Kß, two mechanisms for GPCR-mediated regulation have been described: direct binding of Gßγ subunits to the C2-helical domain linker of p110ß, and Dock180/Elmo1-mediated activation of Rac1, which binds to the Ras-Binding Domain of p110ß. We now show that the integration of these dual pathways is unexpectedly complex. In breast cancer cells, expression of constitutively activated Rac1 (CA-Rac1) along with either GPCR stimulation or expression of Gßγ led to an additive PI3Kß-dependent activation of Akt. Whereas CA-Rac1-mediated activation of Akt was blocked in cells expressing a mutated PI3Kß that cannot bind Gßγ, Gßγ and GPCR-mediated activation of Akt was preserved when Rac1 binding to PI3Kß was blocked. Surprisingly, PI3Kß-dependent CA-Rac1 signaling to Akt was still seen in cells expressing a mutant p110ß that cannot bind Rac1. Instead of directly binding to PI3Kß, CA-Rac1 acts by enhancing Gßγ coupling to PI3Kß, as CA-Rac1-mediated Akt activation was blocked by inhibitors of Gßγ. Cells expressing CA-Rac1 exhibited a robust induction of macropinocytosis, and inhibitors of macropinocytosis blocked the activation of Akt by CA-Rac1 or lysophosphatidic acid. Our data suggest that Rac1 can potentiate the activation of PI3Kß by GPCRs through an indirect mechanism, by driving the formation of macropinosomes that serve as signaling platforms for Gßγ coupling to PI3Kß.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Pinocitose/fisiologia , Transdução de Sinais/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Ativação Enzimática/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Células HEK293 , Humanos , Lisofosfolipídeos/genética , Lisofosfolipídeos/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética
10.
J Biol Chem ; 290(51): 30390-405, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26475863

RESUMO

Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that are activated by growth factor and G-protein-coupled receptors and propagate intracellular signals for growth, survival, proliferation, and metabolism. p85α, a modular protein consisting of five domains, binds and inhibits the enzymatic activity of class IA PI3K catalytic subunits. Here, we describe the structural states of the p85α dimer, based on data from in vivo and in vitro solution characterization. Our in vitro assembly and structural analyses have been enabled by the creation of cysteine-free p85α that is functionally equivalent to native p85α. Analytical ultracentrifugation studies showed that p85α undergoes rapidly reversible monomer-dimer assembly that is highly exothermic in nature. In addition to the documented SH3-PR1 dimerization interaction, we identified a second intermolecular interaction mediated by cSH2 domains at the C-terminal end of the polypeptide. We have demonstrated in vivo concentration-dependent dimerization of p85α using fluorescence fluctuation spectroscopy. Finally, we have defined solution conditions under which the protein is predominantly monomeric or dimeric, providing the basis for small angle x-ray scattering and chemical cross-linking structural analysis of the discrete dimer. These experimental data have been used for the integrative structure determination of the p85α dimer. Our study provides new insight into the structure and assembly of the p85α homodimer and suggests that this protein is a highly dynamic molecule whose conformational flexibility allows it to transiently associate with multiple binding proteins.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/química , Multimerização Proteica , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Humanos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
11.
Proc Natl Acad Sci U S A ; 110(47): 18862-7, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24190998

RESUMO

Phosphoinositide 3-kinase gamma (PI3Kγ) has profound roles downstream of G-protein-coupled receptors in inflammation, cardiac function, and tumor progression. To gain insight into how the enzyme's activity is shaped by association with its p101 adaptor subunit, lipid membranes, and Gßγ heterodimers, we mapped these regulatory interactions using hydrogen-deuterium exchange mass spectrometry. We identify residues in both the p110γ and p101 subunits that contribute critical interactions with Gßγ heterodimers, leading to PI3Kγ activation. Mutating Gßγ-interaction sites of either p110γ or p101 ablates G-protein-coupled receptor-mediated signaling to p110γ/p101 in cells and severely affects chemotaxis and cell transformation induced by PI3Kγ overexpression. Hydrogen-deuterium exchange mass spectrometry shows that association with the p101 regulatory subunit causes substantial protection of the RBD-C2 linker as well as the helical domain of p110γ. Lipid interaction massively exposes that same helical site, which is then stabilized by Gßγ. Membrane-elicited conformational change of the helical domain could help prepare the enzyme for Gßγ binding. Our studies and others identify the helical domain of the class I PI3Ks as a hub for diverse regulatory interactions that include the p101, p87 (also known as p84), and p85 adaptor subunits; Rab5 and Gßγ heterodimers; and the ß-adrenergic receptor kinase.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/química , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Modelos Moleculares , Fosfatidilinositol 3-Quinases/metabolismo , Conformação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Animais , Quimiotaxia , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Medição da Troca de Deutério , Ativação Enzimática , Células HEK293 , Humanos , Espectrometria de Massas , Camundongos , Microscopia Confocal , Células NIH 3T3 , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais/genética , Proteínas ras/metabolismo
12.
Proc Natl Acad Sci U S A ; 108(44): 17991-6, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22025714

RESUMO

Despite functional significance of nonmuscle myosin II in cell migration and invasion, its role in epithelial-mesenchymal transition (EMT) or TGF-ß signaling is unknown. Analysis of normal mammary gland expression revealed that myosin IIC is expressed in luminal cells, whereas myosin IIB expression is up-regulated in myoepithelial cells that have more mesenchymal characteristics. Furthermore, TGF-ß induction of EMT in nontransformed murine mammary gland epithelial cells results in an isoform switch from myosin IIC to myosin IIB and increased phosphorylation of myosin heavy chain (MHC) IIA on target sites known to regulate filament dynamics (S1916, S1943). These expression and phosphorylation changes are downstream of heterogeneous nuclear ribonucleoprotein-E1 (E1), an effector of TGF-ß signaling. E1 knockdown drives cells into a migratory, invasive mesenchymal state and concomitantly up-regulates MHC IIB expression and MHC IIA phosphorylation. Abrogation of myosin IIB expression in the E1 knockdown cells has no effect on 2D migration but significantly reduced transmigration and macrophage-stimulated collagen invasion. These studies indicate that transition between myosin IIC/myosin IIB expression is a critical feature of EMT that contributes to increases in invasive behavior.


Assuntos
Transição Epitelial-Mesenquimal , Miosina Tipo II/metabolismo , Isoformas de Proteínas/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Animais , Linhagem Celular , Camundongos , Fosforilação
13.
J Cell Sci ; 124(Pt 13): 2120-31, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21670198

RESUMO

We have shown previously that distinct Mena isoforms are expressed in invasive and migratory tumor cells in vivo and that the invasion isoform (Mena(INV)) potentiates carcinoma cell metastasis in murine models of breast cancer. However, the specific step of metastatic progression affected by this isoform and the effects on metastasis of the Mena11a isoform, expressed in primary tumor cells, are largely unknown. Here, we provide evidence that elevated Mena(INV) increases coordinated streaming motility, and enhances transendothelial migration and intravasation of tumor cells. We demonstrate that promotion of these early stages of metastasis by Mena(INV) is dependent on a macrophage-tumor cell paracrine loop. Our studies also show that increased Mena11a expression correlates with decreased expression of colony-stimulating factor 1 and a dramatically decreased ability to participate in paracrine-mediated invasion and intravasation. Our results illustrate the importance of paracrine-mediated cell streaming and intravasation on tumor cell dissemination, and demonstrate that the relative abundance of Mena(INV) and Mena11a helps to regulate these key stages of metastatic progression in breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Proteínas do Citoesqueleto/metabolismo , Migração Transendotelial e Transepitelial , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Fator Estimulador de Colônias de Macrófagos/biossíntese , Macrófagos/metabolismo , Camundongos , Camundongos SCID , Proteínas dos Microfilamentos , Invasividade Neoplásica , Metástase Neoplásica , Isoformas de Proteínas/metabolismo , Ratos
14.
BMC Struct Biol ; 13: 31, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24252706

RESUMO

BACKGROUND: S100A4, a member of the S100 family of Ca2+-binding proteins, modulates the motility of both non-transformed and cancer cells by regulating the localization and stability of cellular protrusions. Biochemical studies have demonstrated that S100A4 binds to the C-terminal end of the myosin-IIA heavy chain coiled-coil and disassembles myosin-IIA filaments; however, the mechanism by which S100A4 mediates myosin-IIA depolymerization is not well understood. RESULTS: We determined the X-ray crystal structure of the S100A4Δ8C/MIIA(1908-1923) peptide complex, which showed an asymmetric binding mode for the myosin-IIA peptide across the S100A4 dimer interface. This asymmetric binding mode was confirmed in NMR studies using a spin-labeled myosin-IIA peptide. In addition, our NMR data indicate that S100A4Δ8C binds the MIIA(1908-1923) peptide in an orientation very similar to that observed for wild-type S100A4. Studies of complex formation using a longer, dimeric myosin-IIA construct demonstrated that S100A4 binding dissociates the two myosin-IIA polypeptide chains to form a complex composed of one S100A4 dimer and a single myosin-IIA polypeptide chain. This interaction is mediated, in part, by the instability of the region of the myosin-IIA coiled-coil encompassing the S100A4 binding site. CONCLUSION: The structure of the S100A4/MIIA(1908-1923) peptide complex has revealed the overall architecture of this assembly and the detailed atomic interactions that mediate S100A4 binding to the myosin-IIA heavy chain. These structural studies support the idea that residues 1908-1923 of the myosin-IIA chain heavy represent a core sequence for the S100A4/myosin-IIA complex. In addition, biophysical studies suggest that structural fluctuations within the myosin-IIA coiled-coil may facilitate S100A4 docking onto a single myosin-IIA polypeptide chain.


Assuntos
Miosina não Muscular Tipo IIA/química , Miosina não Muscular Tipo IIA/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Sítios de Ligação , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Miosinas/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteína A4 de Ligação a Cálcio da Família S100
15.
Proc Natl Acad Sci U S A ; 107(19): 8605-10, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20421509

RESUMO

S100A4, a member of the S100 family of Ca(2+)-binding proteins, regulates carcinoma cell motility via interactions with myosin-IIA. Numerous studies indicate that S100A4 is not simply a marker for metastatic disease, but rather has a direct role in metastatic progression. These observations suggest that S100A4 is an excellent target for therapeutic intervention. Using a unique biosensor-based assay, trifluoperazine (TFP) was identified as an inhibitor that disrupts the S100A4/myosin-IIA interaction. To examine the interaction of S100A4 with TFP, we determined the 2.3 A crystal structure of human Ca(2+)-S100A4 bound to TFP. Two TFP molecules bind within the hydrophobic target binding pocket of Ca(2+)-S100A4 with no significant conformational changes observed in the protein upon complex formation. NMR chemical shift perturbations are consistent with the crystal structure and demonstrate that TFP binds to the target binding cleft of S100A4 in solution. Remarkably, TFP binding results in the assembly of five Ca(2+)-S100A4/TFP dimers into a tightly packed pentameric ring. Within each pentamer most of the contacts between S100A4 dimers occurs through the TFP moieties. The Ca(2+)-S100A4/prochlorperazine (PCP) complex exhibits a similar pentameric assembly. Equilibrium sedimentation and cross-linking studies demonstrate the cooperative formation of a similarly sized S100A4/TFP oligomer in solution. Assays examining the ability of TFP to block S100A4-mediated disassembly of myosin-IIA filaments demonstrate that significant inhibition of S100A4 function occurs only at TFP concentrations that promote S100A4 oligomerization. Together these studies support a unique mode of inhibition in which phenothiazines disrupt the S100A4/myosin-IIA interaction by sequestering S100A4 via small molecule-induced oligomerization.


Assuntos
Proclorperazina/farmacologia , Multimerização Proteica/efeitos dos fármacos , Proteínas S100/antagonistas & inibidores , Proteínas S100/química , Trifluoperazina/farmacologia , Cálcio/química , Cálcio/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Miosina não Muscular Tipo IIA/metabolismo , Proclorperazina/química , Proclorperazina/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/metabolismo , Trifluoperazina/química , Trifluoperazina/metabolismo
16.
FEBS Lett ; 596(4): 417-426, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34990021

RESUMO

PI3Kß is required for invadopodia-mediated matrix degradation by breast cancer cells. Invadopodia maturation requires GPCR activation of PI3Kß and its coupling to SHIP2 to produce PI(3,4)P2 . We now test whether selectivity for PI3Kß is preserved under conditions of mutational increases in PI3K activity. In breast cancer cells where PI3Kß is inhibited, short-chain diC8-PIP3 rescues gelatin degradation in a SHIP2-dependent manner; rescue by diC8-PI(3,4)P2 is SHIP2-independent. Surprisingly, the expression of either activated PI3Kß or PI3Kα mutants rescued the effects of PI3Kß inhibition. In both cases, gelatin degradation was SHIP2-dependent. These data confirm the requirement for PIP3 conversion to PI(3,4)P2 for invadopodia function and suggest that selectivity for distinct PI3K isotypes may be obviated by mutational activation of the PI3K pathway.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Matriz Extracelular/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Podossomos/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Diglicerídeos/química , Matriz Extracelular/ultraestrutura , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/metabolismo , Mutação , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Podossomos/ultraestrutura , Transdução de Sinais
17.
Biochemistry ; 50(33): 7218-27, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21749055

RESUMO

Overexpression of S100A4, a member of the S100 family of Ca(2+)-binding proteins, is associated with a number of human pathologies, including fibrosis, inflammatory disorders, and metastatic disease. The identification of small molecules that disrupt S100A4/target interactions provides a mechanism for inhibiting S100A4-mediated cellular activities and their associated pathologies. Using an anisotropy assay that monitors the Ca(2+)-dependent binding of myosin-IIA to S100A4, NSC 95397 was identified as an inhibitor that disrupts the S100A4/myosin-IIA interaction and inhibits S100A4-mediated depolymerization of myosin-IIA filaments. Mass spectrometry demonstrated that NSC 95397 forms covalent adducts with Cys81 and Cys86, which are located in the canonical target binding cleft. Mutagenesis studies showed that covalent modification of just Cys81 is sufficient to inhibit S100A4 function with respect to myosin-IIA binding and depolymerization. Remarkably, substitution of Cys81 with serine or alanine significantly impaired the ability of S100A4 to promote myosin-IIA filament disassembly. As reversible covalent cysteine modifications have been observed for several S100 proteins, we propose that modification of Cys81 may provide an additional regulatory mechanism for mediating the binding of S100A4 to myosin-IIA.


Assuntos
Cisteína/metabolismo , Naftoquinonas/farmacologia , Miosina não Muscular Tipo IIA/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas S100/metabolismo , Cromatografia Líquida , Cisteína/genética , Citoesqueleto , Humanos , Miosina não Muscular Tipo IIA/antagonistas & inibidores , Miosina não Muscular Tipo IIA/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes/genética , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/antagonistas & inibidores , Proteínas S100/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fosfatases cdc25/antagonistas & inibidores
18.
Biochemistry ; 50(32): 6920-32, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21721535

RESUMO

S100A4, a member of the Ca(2+)-activated S100 protein family, regulates the motility and invasiveness of cancer cells. Moreover, high S100A4 expression levels correlate with poor patient survival in several cancers. Although biochemical, biophysical, and structural data indicate that S100A4 is a noncovalent dimer, it is unknown if two functional S100A4 monomers are required for the productive recognition of protein targets and the promotion of cell invasion. To address this question, we created covalently linked S100A4 dimers using a glycine rich flexible linker. The single-chain S100A4 (sc-S100A4) proteins exhibited wild-type affinities for calcium and nonmuscle myosin-IIA, retained the ability to regulate nonmuscle myosin-IIA assembly, and promoted tumor cell invasion when expressed in S100A4-deficient colon carcinoma cells. Mutation of the two calcium-binding EF-hands in one monomer, while leaving the other monomer intact, caused a 30-60-fold reduction in binding affinity for nonmuscle myosin-IIA concomitant with a weakened ability to regulate the monomer-polymer equilibrium of nonmuscle myosin-IIA. Moreover, sc-S100A4 proteins with one monomer deficient in calcium responsiveness did not support S100A4-mediated colon carcinoma cell invasion. Cross-linking and titration data indicate that the S100A4 dimer binds a single myosin-IIA target peptide. These data are consistent with a model in which a single peptide forms interactions in the vicinity of the canonical target binding cleft of each monomer in such a manner that both target binding sites are required for the efficient interaction with myosin-IIA.


Assuntos
Miosina não Muscular Tipo IIA/metabolismo , Proteínas S100/fisiologia , Sequência de Aminoácidos , Western Blotting , Linhagem Celular Tumoral , Cromatografia em Gel , Dicroísmo Circular , Dimerização , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Invasividade Neoplásica , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/química , Proteínas S100/metabolismo
19.
J Cell Physiol ; 226(12): 3132-46, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21302311

RESUMO

Sepsis-induced vascular leakage is a major underlying cause of the respiratory dysfunction seen in severe sepsis. Here, we studied the role of MLC phosphorylation in LPS-induced endothelial hyperpermeability and assessed how the changes in phospho-MLC distribution affect LPS-induced barrier dysfunction. We demonstrated that the changes in human lung microvascular endothelial permeability are preceded by the increase in intracellular calcium level, and increase in MYPT and MLC phosphorylation. Using the siRNA approach, we showed that both LPS-induced barrier dysfunction and MLC phosphorylation are attenuated by the depletion of the smooth muscle isoform of MLC kinase (MLCK) and Rho kinase 2 (ROCK2). Surprisingly, pharmacological inhibition of both ROCK1 and 2 with Y-27632 exacerbated LPS-induced drop in transendothelial resistance, although significantly decreasing MLC phosphorylation level. We next studied the involvement of protein kinase A (PKA)-dependent pathways in LPS-induced barrier dysfunction. We showed that LPS decreased the level of PKA-dependent phosphorylation in endothelial cells; and the pretreatment with forskolin or PKA activator bnz-cAMP counteracted this effect. Forskolin and bnz-cAMP also attenuated LPS-induced increase in MLC phosphorylation level. As we have shown earlier (Bogatcheva et al., 2009), forskolin and bnz-cAMP provide protection from LPS-induced barrier dysfunction. We compared the effects of bnz-cAMP and Y-27632 on phospho-MLC distribution and observed that while bnz-cAMP increased the association of the phospho-MLC signal with the cortical structures, Y-27632 decreased this association. These data indicate that an overall decrease in MLC phosphorylation could be either beneficial or detrimental to endothelial barrier, depending on the intracellular locale of major phospho-MLC changes.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Endotoxinas/farmacologia , Pulmão/irrigação sanguínea , Microvasos/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Amidas/farmacologia , Cálcio/metabolismo , Células Cultivadas , Colforsina/farmacologia , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Dextranos/metabolismo , Impedância Elétrica , Células Endoteliais/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Microvasos/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico , Piridinas/farmacologia , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
20.
J Cell Biol ; 173(3): 395-404, 2006 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-16651380

RESUMO

Understanding the mechanisms controlling cancer cell invasion and metastasis constitutes a fundamental step in setting new strategies for diagnosis, prognosis, and therapy of metastatic cancers. LIM kinase1 (LIMK1) is a member of a novel class of serine-threonine protein kinases. Cofilin, a LIMK1 substrate, is essential for the regulation of actin polymerization and depolymerization during cell migration. Previous studies have made opposite conclusions as to the role of LIMK1 in tumor cell motility and metastasis, claiming either an increase or decrease in cell motility and metastasis as a result of LIMK1 over expression (Zebda, N., O. Bernard, M. Bailly, S. Welti, D.S. Lawrence, and J.S. Condeelis. 2000. J. Cell Biol. 151:1119-1128; Davila, M., A.R. Frost, W.E. Grizzle, and R. Chakrabarti. 2003. J. Biol. Chem. 278:36868-36875; Yoshioka, K., V. Foletta, O. Bernard, and K. Itoh. 2003. Proc. Natl. Acad. Sci. USA. 100:7247-7252; Nishita, M., C. Tomizawa, M. Yamamoto, Y. Horita, K. Ohashi, and K. Mizuno. 2005. J. Cell Biol. 171:349-359). We resolve this paradox by showing that the effects of LIMK1 expression on migration, intravasation, and metastasis of cancer cells can be most simply explained by its regulation of the output of the cofilin pathway. LIMK1-mediated decreases or increases in the activity of the cofilin pathway are shown to cause proportional decreases or increases in motility, intravasation, and metastasis of tumor cells.


Assuntos
Cofilina 1/metabolismo , Neoplasias Mamárias Experimentais/genética , Proteínas Quinases/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Extensões da Superfície Celular/genética , Extensões da Superfície Celular/fisiologia , Quimiotaxia/genética , Quimiotaxia/fisiologia , Fator de Crescimento Epidérmico/farmacologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Quinases Lim , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Mutação , Invasividade Neoplásica , Metástase Neoplásica , Fosforilação , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Endogâmicos F344 , Análise de Sobrevida , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA