Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 22(4): 1309-1321, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36888912

RESUMO

O-ß-linked N-acetylglucosaminylation (O-GlcNAcylation) modulates tau phosphorylation and aggregation: the pharmacological increase of tau O-GlcNAcylation upon treatment with inhibitors of O-GlcNAc hydrolase (OGA) constitutes a potential strategy to tackle neurodegenerative diseases. Analysis of tau O-GlcNAcylation could potentially be used as a pharmacodynamic biomarker both in preclinical and clinical studies. The goal of the current study was to confirm tau O-GlcNAcylation at S400 as a pharmacodynamic readout of OGA inhibition in P301S transgenic mice overexpressing human tau and treated with the OGA inhibitor Thiamet G and to explore if additional O-GlcNAcylation sites on tau could be identified. As a first step, an immunoprecipitation-liquid chromatography-mass spectrometry (IP-LC-MS) methodology was developed to monitor changes in O-GlcNAcylation around S400 of tau in mouse brain homogenate (BH) extracts. Second, additional O-GlcNAc sites were identified in in-house produced recombinant O-GlcNAcylated human tau at relatively high concentrations, thereby facilitating collection of informative LC-MS data for identification of low-concentration O-GlcNAc-tryptic tau peptides in human transgenic mouse BH extracts. This strategy enabled, for the first time, identification of three low abundant N-terminal and mid-domain O-GlcNAc sites of tau (at S208, S191, and S184 or S185) in human transgenic mouse BH. Data are openly available at data.mendeley.com (doi: 10.17632/jp57yk9469.1; doi: 10.17632/8n5j45dnd8.1; doi: 10.17632/h5vdrx4n3d.1).


Assuntos
beta-N-Acetil-Hexosaminidases , Proteínas tau , Animais , Humanos , Camundongos , Acetilglucosamina/farmacologia , beta-N-Acetil-Hexosaminidases/genética , Camundongos Transgênicos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Fosforilação , Proteínas tau/química , Espectrometria de Massas em Tandem
2.
Glia ; 66(3): 492-504, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29134678

RESUMO

Chronic inflammation represents a central component in the pathogenesis of Alzheimer's disease (AD). Recent work suggests that breaking immune tolerance by Programmed cell Death-1 (PD1) checkpoint inhibition produces an IFN-γ-dependent systemic immune response, with infiltration of the brain by peripheral myeloid cells and neuropathological as well as functional improvements even in mice with advanced amyloid pathology (Baruch et al., (): Nature Medicine, 22:135-137). Immune checkpoint inhibition was therefore suggested as potential treatment for neurodegenerative disorders when activation of the immune system is appropriate. Because a xenogeneic rat antibody (mAb) was used in the study, whether the effect was specific to PD1 target engagement was uncertain. In the present study we examined whether PD1 immunotherapy can lower amyloid-ß pathology in a range of different amyloid transgenic models performed at three pharmaceutical companies with the exact same anti-PD1 isotype and two mouse chimeric variants. Although PD1 immunotherapy stimulated systemic activation of the peripheral immune system, monocyte-derived macrophage infiltration into the brain was not detected, and progression of brain amyloid pathology was not altered. Similar negative results of the effect of PD1 immunotherapy on amyloid brain pathology were obtained in two additional models in two separate institutions. These results show that inhibition of PD1 checkpoint signaling by itself is not sufficient to reduce amyloid pathology and that additional factors might have contributed to previously published results (Baruch et al., (): Nature Medicine, 22:135-137). Until such factors are elucidated, animal model data do not support further evaluation of PD1 checkpoint inhibition as a therapeutic modality for Alzheimer's disease.


Assuntos
Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Anticorpos/administração & dosagem , Encéfalo/imunologia , Imunoterapia , Receptor de Morte Celular Programada 1/imunologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Anticorpos/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Interferon gama/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo , RNA Mensageiro/metabolismo , Distribuição Aleatória , Baço/imunologia
3.
FASEB J ; 23(8): 2595-604, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19279139

RESUMO

Alzheimer's disease and other tauopathies are characterized by the presence of intracellular neurofibrillary tangles composed of hyperphosphorylated, insoluble tau. General anesthesia has been shown to be associated with increased risk of Alzheimer's disease, and we have previously demonstrated that anesthesia induces hypothermia, which leads to overt tau hyperphosphorylation in the brain of mice regardless of the anesthetic used. To investigate whether anesthesia enhances the long-term risk of developing pathological forms of tau, we exposed a mouse model with tauopathy to anesthesia and monitored the outcome at two time points-during anesthesia, or 1 wk after exposure. We found that exposure to isoflurane at clinically relevant doses led to increased levels of phospho-tau, increased insoluble, aggregated forms of tau, and detachment of tau from microtubules. Furthermore, levels of phospho-tau distributed in the neuropil, as well as in cell bodies increased. Interestingly, the level of insoluble tau was increased 1 wk following anesthesia, suggesting that anesthesia precipitates changes in the brain that provoke the later development of tauopathy. Overall, our results suggest that anesthesia-induced hypothermia could lead to an acceleration of tau pathology in vivo that could have significant clinical implications for patients with early stage, or overt neurofibrillary tangle pathology.


Assuntos
Anestesia por Inalação/efeitos adversos , Emaranhados Neurofibrilares/patologia , Tauopatias/etiologia , Doença de Alzheimer/etiologia , Anestésicos Inalatórios/toxicidade , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Isoflurano/toxicidade , Masculino , Camundongos , Camundongos Mutantes , Microtúbulos/metabolismo , Microtúbulos/patologia , Destreza Motora , Emaranhados Neurofibrilares/metabolismo , Fosforilação , Medula Espinal/metabolismo , Medula Espinal/patologia , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo
4.
J Med Chem ; 63(22): 14017-14044, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33197187

RESUMO

O-GlcNAcylation is a post-translational modification of tau understood to lower the speed and yield of its aggregation, a pathological hallmark of Alzheimer's disease (AD). O-GlcNAcase (OGA) is the only enzyme that removes O-linked N-acetyl-d-glucosamine (O-GlcNAc) from target proteins. Therefore, inhibition of OGA represents a potential approach for the treatment of AD by preserving the O-GlcNAcylated tau protein. Herein, we report the multifactorial optimization of high-throughput screening hit 8 to a potent, metabolically stable, and orally bioavailable diazaspirononane OGA inhibitor (+)-56. The human OGA X-ray crystal structure has been recently solved, but bacterial hydrolases are still widely used as structural homologues. For the first time, we reveal how a nonsaccharide series of inhibitors binds bacterial OGA and discuss the suitability of two different bacterial orthologues as surrogates for human OGA. These breakthroughs enabled structure-activity relationships to be understood and provided context and boundaries for the optimization of druglike properties.


Assuntos
Compostos Aza/farmacologia , Inibidores Enzimáticos/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , beta-N-Acetil-Hexosaminidases/metabolismo , Animais , Compostos Aza/química , Catálise , Inibidores Enzimáticos/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Molecular , Mutagênese , Relação Estrutura-Atividade
5.
J Neurosci ; 28(48): 12798-807, 2008 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19036972

RESUMO

In Alzheimer's disease, tau is hyperphosphorylated, which is thought to detach it from microtubules (MTs), induce MT destabilization, and promote aggregation. Using a previously described in vivo model, we investigated whether hyperphosphorylation impacts tau function in wild-type and transgenic mice. We found that after anesthesia-induced hypothermia, MT-free tau was hyperphosphorylated, which impaired its ability to bind MTs and promote MT assembly. MT-bound tau was more resistant to hyperphosphorylation compared with free tau and tau did not dissociate from MTs in wild-type mice. However, 3-repeat tau detached from MT in the transgenic mice. Surprisingly, dissociation of tau from MTs did not lead to overt depolymerization of tubulin, and there was no collapse, or disturbance of axonal MT networks. These results indicate that, in vivo, a subpopulation of tau bound to MTs does not easily dissociate under conditions that extensively phosphorylate tau. Tau remaining on the MTs under these conditions is sufficient to maintain MT network integrity.


Assuntos
Anestésicos/farmacologia , Axônios/metabolismo , Microtúbulos/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Axônios/efeitos dos fármacos , Axônios/ultraestrutura , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Encéfalo/ultraestrutura , Modelos Animais de Doenças , Feminino , Hipotermia Induzida , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Repetições de Trinucleotídeos/genética , Proteínas tau/efeitos dos fármacos , Proteínas tau/genética
6.
Neurobiol Dis ; 31(1): 46-57, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18504134

RESUMO

In the last decade, multiple lines of transgenic APP overexpressing mice have been created that recapitulate certain aspects of Alzheimer's disease (AD). However, none of the previously reported transgenic APP overexpressing rat models developed AD-like beta-amyloid (Abeta) deposits, or age-related learning and memory deficits. In the present study, we have characterized a transgenic rat model overexpressing transgenes with three, familial AD mutations (two in APP and one in PS1) that were developed by Flood et al. [Flood, D.G., et al., Abeta deposition in a transgenic rat model of Alzheimer's disease. Society for Neuroscience 2003, Washington, DC, 2003]. From the age of 9 months, these rats develop Abeta deposits in both diffuse and compact forms, with the latter being closely associated with activated microglia and reactive astrocytes. Impaired long-term potentiation (LTP) was revealed by electrophysiological recordings performed on hippocampal slices from rats at 7 months of age, which is 2 months before the appearance of amyloid plaques. The deficit in LTP was accompanied by impaired spatial learning and memory in the Morris water maze, which became more pronounced in transgenic rats of 13 months of age. For Tg rats of both ages, there was a trend for cognitive impairment to correlate with total Abeta42 levels in the hippocampus. The rat model therefore recapitulates AD-like amyloid pathology and cognitive impairment. The advantage of the rat model over the available mouse models is that rats provide better opportunities for advanced studies, such as serial CSF sampling, electrophysiology, neuroimaging, cell-based transplant manipulations, and complex behavioral testing.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Transtornos Cognitivos/etiologia , Plasticidade Neuronal/fisiologia , Placa Amiloide/patologia , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Potenciais Pós-Sinápticos Excitadores , Immunoblotting , Imuno-Histoquímica , Masculino , Aprendizagem em Labirinto , Mutação , Técnicas de Cultura de Órgãos , Placa Amiloide/metabolismo , Presenilinas/genética , Presenilinas/metabolismo , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
7.
Expert Rev Proteomics ; 5(2): 207-24, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18466052

RESUMO

Microtubule-associated Tau proteins belong to a family of factors that polymerize tubulin dimers and stabilize microtubules. Tau is strongly expressed in neurons, localized in the axon and is essential for neuronal plasticity and network. From the very beginning of Tau discovery, proteomics methods have been essential to the knowledge of Tau biochemistry and biology. In this review, we have summarized the main contributions of several proteomic methods in the understanding of Tau, including expression, post-translational modifications and structure, in both physiological and pathophysiological aspects. Finally, recent advances in proteomics technology are essential to develop further therapeutic targets and early predictive and discriminative diagnostic assays for Alzheimer's disease and related disorders.


Assuntos
Doença de Alzheimer/etiologia , Doenças do Sistema Nervoso/etiologia , Proteínas tau/genética , Doença de Alzheimer/diagnóstico , Humanos , Doenças do Sistema Nervoso/diagnóstico , Isoformas de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas tau/química , Proteínas tau/fisiologia
8.
J Alzheimers Dis ; 14(4): 431-6, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18688094

RESUMO

Alzheimer's disease brains are characterized by extracellular aggregates of the amyloid-beta peptide and intracellular neurofibrillary tangles, composed of aggregated hyperphosphorylated tau protein. The role of aggregated tau in neurodegeneration is still controversial, as evidence point to either a toxic or protective role in the disease. Here, we will first examine tau aggregation and its putative roles in Alzheimer's disease. We will then review the findings concerning different species of tau and their potential toxicity.


Assuntos
Fármacos Neuroprotetores/farmacologia , Proteínas tau/farmacologia , Proteínas tau/toxicidade , Doença de Alzheimer/patologia , Animais , Humanos , Fosforilação , Proteínas tau/química
9.
Stem Cell Reports ; 11(2): 363-379, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30057263

RESUMO

Tauopathies such as frontotemporal dementia (FTD) remain incurable to date, partially due to the lack of translational in vitro disease models. The MAPT gene, encoding the microtubule-associated protein tau, has been shown to play an important role in FTD pathogenesis. Therefore, we used zinc finger nucleases to introduce two MAPT mutations into healthy donor induced pluripotent stem cells (iPSCs). The IVS10+16 mutation increases the expression of 4R tau, while the P301S mutation is pro-aggregant. Whole-transcriptome analysis of MAPT IVS10+16 neurons reveals neuronal subtype differences, reduced neural progenitor proliferation potential, and aberrant WNT/SHH signaling. Notably, these neurodevelopmental phenotypes could be recapitulated in neurons from patients carrying the MAPT IVS10+16 mutation. Moreover, the additional pro-aggregant P301S mutation revealed additional phenotypes, such as an increased calcium burst frequency, reduced lysosomal acidity, tau oligomerization, and neurodegeneration. This series of iPSCs could serve as a platform to unravel a potential link between pathogenic 4R tau and FTD.

10.
Methods Mol Biol ; 1523: 297-305, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27975258

RESUMO

Tau is a microtubule associated protein (MAP) that is expressed in neurons of the central nervous system. Tau proteins are deregulated in a group of pathologies, including Alzheimer's disease, commonly called tauopathies. Therefore intensive research has been conducted to understand both the regulation of Tau and its involvement in neuronal cellular pathways. Since its originally described interactor tubulin, Tau has been described to interact with several other proteins, including tyrosine kinases (Src, Fyn, Lck) and Phospholipase C-γ. In this chapter, we describe the use of proximity ligation assay as a versatile method to study the endogenous interaction of Tau with these different neuronal partners and use the recently identified Tau interactor Bin1 as case study.


Assuntos
Bioensaio/métodos , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Células Cultivadas , Neurônios/metabolismo , Fosfolipase C gama/metabolismo , Ligação Proteica , Proteínas Tirosina Quinases/metabolismo , Ratos , Tauopatias/metabolismo , Quinases da Família src/metabolismo
11.
Neurobiol Aging ; 36(8): 2414-28, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26058840

RESUMO

There is developing interest in the potential association between anesthesia and the onset and progression of Alzheimer's disease. Several anesthetics have, thus, been demonstrated to induce tau hyperphosphorylation, an effect mostly mediated by anesthesia-induced hypothermia. Here, we tested the hypothesis that acute normothermic administration of dexmedetomidine (Dex), an intravenous sedative used in intensive care units, would result in tau hyperphosphorylation in vivo and in vitro. When administered to nontransgenic mice, Dex-induced tau hyperphosphorylation persisting up to 6 hours in the hippocampus for the AT8 epitope. Pretreatment with atipamezole, a highly specific α2-adrenergic receptor antagonist, blocked Dex-induced tau hyperphosphorylation. Furthermore, Dex dose-dependently increased tau phosphorylation at AT8 in SH-SY5Y cells, impaired mice spatial memory in the Barnes maze and promoted tau hyperphosphorylation and aggregation in transgenic hTau mice. These findings suggest that Dex: (1) increases tau phosphorylation, in vivo and in vitro, in the absence of anesthetic-induced hypothermia and through α2-adrenergic receptor activation, (2) promotes tau aggregation in a mouse model of tauopathy, and (3) impacts spatial reference memory.


Assuntos
Dexmedetomidina/efeitos adversos , Hipnóticos e Sedativos/efeitos adversos , Proteínas tau/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Células Cultivadas , Dexmedetomidina/administração & dosagem , Dexmedetomidina/antagonistas & inibidores , Relação Dose-Resposta a Droga , Hipocampo/metabolismo , Humanos , Hipnóticos e Sedativos/administração & dosagem , Hipotermia Induzida , Técnicas In Vitro , Infusões Intravenosas , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Agregação Patológica de Proteínas/induzido quimicamente , Memória Espacial/efeitos dos fármacos
12.
Acta Neuropathol Commun ; 3: 58, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26395440

RESUMO

INTRODUCTION: The application of high-throughput genomic approaches has revealed 24 novel risk loci for Alzheimer's disease (AD). We recently reported that the bridging integrator 1 (BIN1) risk gene is linked to Tau pathology. RESULTS: We used glutathione S-transferase pull-down assays and nuclear magnetic resonance (NMR) experiments to demonstrate that BIN1 and Tau proteins interact directly and then map the interaction between BIN1's SH3 domain and Tau's proline-rich domain (PRD) . Our NMR data showed that Tau phosphorylation at Thr231 weakens the SH3-PRD interaction. Using primary neurons, we found that BIN1-Tau complexes partly co-localize with the actin cytoskeleton; however, these complexes were not observed with Thr231-phosphorylated Tau species. CONCLUSION: Our results show that (i) BIN1 and Tau bind through an SH3-PRD interaction and (ii) the interaction is downregulated by phosphorylation of Tau Thr231 (and potentially other residues). Our study sheds new light on regulation of the BIN1/Tau interaction and opens up new avenues for exploring its complex's role in the pathogenesis of AD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Prolina/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Domínios de Homologia de src/fisiologia , Proteínas tau/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Células Cultivadas , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação/fisiologia , Conformação Proteica , Ratos , Transfecção , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteínas tau/química , Proteínas tau/genética
13.
Front Cell Neurosci ; 8: 22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24574966

RESUMO

The neuropathological hallmarks of Alzheimer's disease (AD) include senile plaques of ß-amyloid (Aß) peptides (a cleavage product of the Amyloid Precursor Protein, or APP) and neurofibrillary tangles (NFT) of hyperphosphorylated Tau protein assembled in paired helical filaments (PHF). NFT pathology is important since it correlates with the degree of cognitive impairment in AD. Only a small proportion of AD is due to genetic variants, whereas the large majority of cases (~99%) is late onset and sporadic in origin. The cause of sporadic AD is likely to be multifactorial, with external factors interacting with biological or genetic susceptibilities to accelerate the manifestation of the disease. Insulin dysfunction, manifested by diabetes mellitus (DM) might be such factor, as there is extensive data from epidemiological studies suggesting that DM is associated with an increased relative risk for AD. Type 1 diabetes (T1DM) and type 2 diabetes (T2DM) are known to affect multiple cognitive functions in patients. In this context, understanding the effects of diabetes on Tau pathogenesis is important since Tau pathology show a strong relationship to dementia in AD, and to memory loss in normal aging and mild cognitive impairment. Here, we reviewed preclinical studies that link insulin dysfunction to Tau protein pathogenesis, one of the major pathological hallmarks of AD. We found more than 30 studies reporting Tau phosphorylation in a mouse or rat model of insulin dysfunction. We also payed attention to potential sources of artifacts, such as hypothermia and anesthesia, that were demonstrated to results in Tau hyperphosphorylation and could major confounding experimental factors. We found that very few studies reported the temperature of the animals, and only a handful did not use anesthesia. Overall, most published studies showed that insulin dysfunction can promote Tau hyperphosphorylation and pathology, both directly and indirectly, through hypothermia.

14.
PLoS One ; 9(5): e94251, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24788298

RESUMO

Aggregates of hyperphosphorylated tau protein are found in a group of diseases called tauopathies, which includes Alzheimer's disease. The causes and consequences of tau hyperphosphorylation are routinely investigated in laboratory animals. Mice are the models of choice as they are easily amenable to transgenic technology; consequently, their tau phosphorylation levels are frequently monitored by Western blotting using a panel of monoclonal/polyclonal anti-tau antibodies. Given that mouse secondary antibodies can recognize endogenous mouse immunoglobulins (Igs) and the possible lack of specificity with some polyclonal antibodies, non-specific signals are commonly observed. Here, we characterized the profiles of commonly used anti-tau antibodies in four different mouse models: non-transgenic mice, tau knock-out (TKO) mice, 3xTg-AD mice, and hypothermic mice, the latter a positive control for tau hyperphosphorylation. We identified 3 tau monoclonal antibody categories: type 1, characterized by high non-specificity (AT8, AT180, MC1, MC6, TG-3), type 2, demonstrating low non-specificity (AT270, CP13, CP27, Tau12, TG5), and type 3, with no non-specific signal (DA9, PHF-1, Tau1, Tau46). For polyclonal anti-tau antibodies, some displayed non-specificity (pS262, pS409) while others did not (pS199, pT205, pS396, pS404, pS422, A0024). With monoclonal antibodies, most of the interfering signal was due to endogenous Igs and could be eliminated by different techniques: i) using secondary antibodies designed to bind only non-denatured Igs, ii) preparation of a heat-stable fraction, iii) clearing Igs from the homogenates, and iv) using secondary antibodies that only bind the light chain of Igs. All of these techniques removed the non-specific signal; however, the first and the last methods were easier and more reliable. Overall, our study demonstrates a high risk of artefactual signal when performing Western blotting with routinely used anti-tau antibodies, and proposes several solutions to avoid non-specific results. We strongly recommend the use of negative (i.e., TKO) and positive (i.e., hypothermic) controls in all experiments.


Assuntos
Doença de Alzheimer , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Modelos Animais de Doenças , Proteínas tau/imunologia , Sequência de Aminoácidos , Animais , Artefatos , Técnicas de Inativação de Genes , Humanos , Cadeias Leves de Imunoglobulina/imunologia , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , Fosforilação , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-23535147

RESUMO

Alzheimer's disease (AD) is the most common form of dementia and remains a growing worldwide health problem. As life expectancy continues to increase, the number of AD patients presenting for surgery and anesthesia will steadily rise. The etiology of sporadic AD is thought to be multifactorial, with environmental, biological and genetic factors interacting together to influence AD pathogenesis. Recent reports suggest that general anesthetics may be such a factor and may contribute to the development and exacerbation of this neurodegenerative disorder. Intra-neuronal neurofibrillary tangles (NFT), composed of hyperphosphorylated and aggregated tau protein are one of the main neuropathological hallmarks of AD. Tau pathology is important in AD as it correlates very well with cognitive dysfunction. Lately, several studies have begun to elucidate the mechanisms by which anesthetic exposure might affect the phosphorylation, aggregation and function of this microtubule-associated protein. Here, we specifically review the literature detailing the impact of anesthetic administration on aberrant tau hyperphosphorylation as well as the subsequent development of neurofibrillary pathology and degeneration.


Assuntos
Anestesia/efeitos adversos , Tauopatias/etiologia , Humanos
17.
Diabetes ; 62(2): 609-17, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22961084

RESUMO

The histopathological hallmarks of Alzheimer disease (AD) include intraneuronal neurofibrillary tangles composed of abnormally hyperphosphorylated τ protein. Insulin dysfunction might influence AD pathology, as population-based and cohort studies have detected higher AD incidence rates in diabetic patients. But how diabetes affects τ pathology is not fully understood. In this study, we investigated the impact of insulin dysfunction on τ phosphorylation in a genetic model of spontaneous type 1 diabetes: the nonobese diabetic (NOD) mouse. Brains of young and adult female NOD mice were examined, but young NOD mice did not display τ hyperphosphorylation. τ phosphorylation at τ-1 and pS422 epitopes was slightly increased in nondiabetic adult NOD mice. At the onset of diabetes, τ was hyperphosphorylated at the τ-1, AT8, CP13, pS262, and pS422. A subpopulation of diabetic NOD mice became hypothermic, and τ hyperphosphorylation further extended to paired helical filament-1 and TG3 epitopes. Furthermore, elevated τ phosphorylation correlated with an inhibition of protein phosphatase 2A (PP2A) activity. Our data indicate that insulin dysfunction in NOD mice leads to AD-like τ hyperphosphorylation in the brain, with molecular mechanisms likely involving a deregulation of PP2A. This model may be a useful tool to address further mechanistic association between insulin dysfunction and AD pathology.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Química Encefálica , Modelos Animais de Doenças , Feminino , Hipotermia , Camundongos , Camundongos Endogâmicos NOD , Emaranhados Neurofibrilares/metabolismo , Fosforilação , Isoformas de Proteínas/metabolismo
18.
Sci Rep ; 3: 1388, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24045785

RESUMO

Several anesthetics have been reported to suppress the transcription of a number of genes, including Arc, also known as Arg3.1, an immediate early gene that plays a significant role in memory consolidation. The purpose of this study was to explore the mechanism of anesthesia-mediated depression in Arc gene and protein expression. Here, we demonstrate that isoflurane or propofol anesthesia decreases hippocampal Arc protein expression in rats and mice. Surprisingly, this change was secondary to anesthesia-induced hypothermia. Furthermore, we confirm in vivo and in vitro that hypothermia per se is directly responsible for decreased Arc protein levels. This effect was the result of the decline of Arc mRNA basal levels following inhibition of ERK/MAPK by hypothermia. Overall, our results suggest that anesthesia-induced hypothermia leads to ERK inhibition, which in turns decreases Arc levels. These data give new mechanistic insights on the regulation of immediate early genes by anesthesia and hypothermia.


Assuntos
Anestesia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Hipotermia Induzida , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Anestésicos Inalatórios/farmacologia , Animais , Linhagem Celular , Quinase do Fator 2 de Elongação/metabolismo , Ativação Enzimática/efeitos dos fármacos , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Isoflurano/farmacologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Ratos , Transdução de Sinais , Transcrição Gênica
19.
Neurobiol Aging ; 34(3): 757-69, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22926167

RESUMO

A prerequisite to dephosphorylation at Ser-Pro or Thr-Pro motifs is the isomerization of the imidic peptide bond preceding the proline. The peptidyl-prolyl cis/trans isomerase named Pin1 catalyzes this mechanism. Through isomerization, Pin1 regulates the function of a growing number of targets including the microtubule-associated tau protein and is supposed to be deregulated Alzheimer's disease (AD). Using proteomics, we showed that Pin1 is posttranslationally modified on more than 5 residues, comprising phosphorylation, N-acetylation, and oxidation. Although Pin1 expression remained constant, Pin1 posttranslational two-dimensional pattern was modified by tau overexpression in a tau-inducible neuroblastoma cell line, in our THY-Tau22 mouse model of tauopathy as well as in AD. Interestingly, in all of these systems, Pin1 modifications were very similar. In AD brain tissue when compared with control, Pin1 is hyperphosphorylated at serine 16 and found in the most insoluble hyperphosphorylated tau fraction of AD brain tissue. Furthermore, in all tau pathology conditions, acetylation of Pin1 may also contribute to the differences observed. In conclusion, Pin1 displays several posttranslational modifications, which are specific in tauopathies and may be useful as biomarker.


Assuntos
Encéfalo/metabolismo , Peptidilprolil Isomerase/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Tauopatias/metabolismo , Proteínas tau/metabolismo , Acetilação , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Peptidilprolil Isomerase de Interação com NIMA , Oxirredução , Fosforilação/fisiologia , Prolina/metabolismo , Proteoma , Serina/metabolismo
20.
Methods Mol Biol ; 849: 473-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22528110

RESUMO

Tau is a highly soluble microtubule-associated protein (MAP) that is abundant in the central nervous system and expressed mainly in neuronal axons. Intracellular aggregates of insoluble tau protein are present in a group of neurodegenerative diseases called tauopathies, which include Alzheimer's disease. Numerous transgenic mouse models of tauopathies have been produced in the last decade, and analysis of insoluble tau in these animals has provided a powerful tool to understand the development of tau pathology. In this short chapter, we aim at reviewing the two main isolation methods, sarkosyl and formic acid extraction (and their variations), used for the biochemical isolation of insoluble tau in transgenic mouse models of tauopathy, and discuss their advantages and drawbacks.


Assuntos
Fracionamento Químico/métodos , Modelos Animais de Doenças , Tauopatias , Proteínas tau/química , Proteínas tau/isolamento & purificação , Animais , Camundongos , Camundongos Transgênicos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA