Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gene Ther ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732618

RESUMO

Respiratory syncytial virus (RSV) causes acute lower respiratory tract infections, with potential lower respiratory tract infections, which can be particularly problematic in infants and the elderly. There are no approved vaccines for RSV. The current standard of care for high-risk individuals is monthly administration of palivizumab, a humanized murine monoclonal antibody (mAb) targeting the RSV fusion protein. Adeno-associated virus (AAV)-mediated expression of mAbs has previously led to sustained expression of therapeutic concentrations of mAbs in several animal models, representing an alternative to repetitive passive administration. Intramuscular (IM) administration of AAV6.2FF expressing RSV antibodies, palivizumab or hRSV90, resulted in high concentrations of human (h)IgG1 mAbs in the serum and at various mucosal surfaces, while intranasal administration limited hIgG expression to the respiratory tract. IM administration of AAV6.2FF-hRSV90 or AAV6.2FF-palivizumab in a murine model provided sterilizing immunity against challenge with RSV A2. Evidence of maternal passive transfer of vectorized hRSV90 was detected in both murine and ovine models, with circulating mAbs providing sterilizing immunity in mouse progeny. Finally, addition of a "kill switch" comprised of LoxP sites flanking the mAb genes resulted in diminished serum hIgG after AAV-DJ-mediated delivery of Cre recombinase to the same muscle group that was originally transduced with the AAV-mAb vector. The ability of this AAV-mAb system to mediate robust, sustained mAb expression for maternal transfer to progeny in murine and ovine models emphasizes the potential of this platform for use as an alternative prophylactic vaccine for protection against neonatal infections, particularly in high-risk infants.

2.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768726

RESUMO

Dendritic cell (DC) vaccines are a type of immunotherapy that relies on the communication of DCs with other aspects of the immune system. DCs are potent antigen-presenting cells involved in the activation of innate immune responses and education of adaptive immunity, making them ideal targets for immunotherapies. Innate lymphoid cells (ILCs) are relatively newly identified in the field of immunology and have important roles in health and disease. The studies described here explored the communications between type 3 ILCs (ILC3s) and DCs using a murine model of DC-based vaccination. Local and systemic changes in ILC3 populations following the administration of a DC vaccine were observed, and upon challenge with B16F10 melanoma cells, changes in ILC3 populations in the lungs were observed. The interactions between DCs and ILC3s should be further explored to determine the potential that their communications could have in health, disease, and the development of immunotherapies.


Assuntos
Linfócitos , Vacinas , Animais , Camundongos , Imunidade Inata , Células Dendríticas , Imunidade Adaptativa
3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674412

RESUMO

Neutrophils have conflicting roles in the context of cancers, where they have been associated with contributing to both anti-tumor and pro-tumor responses. Their functional heterogenicity is plastic and can be manipulated by environmental stimuli, which has fueled an area of research investigating therapeutic strategies targeting neutrophils. Dendritic cell (DC)-based cancer vaccination is an immunotherapy that has exhibited clinical promise but has shown limited clinical efficacy. Enhancing our understanding of the communications occurring during DC cancer vaccination can uncover opportunities for enhancing the DC vaccine platform. There have been observed communications between neutrophils and DCs during natural immune responses. However, their crosstalk has been poorly studied in the context of DC vaccination. Here, we review the dual functionality of neutrophils in the context of cancers, describe the crosstalk between neutrophils and DCs during immune responses, and discuss their implications in DC cancer vaccination. This discussion will focus on how neutrophil extracellular traps can influence immune responses in the tumor microenvironment and what roles they may play in promoting or hindering DC vaccine-induced anti-tumor efficacy.


Assuntos
Vacinas Anticâncer , Armadilhas Extracelulares , Neoplasias Hematológicas , Neoplasias , Sarcoma , Humanos , Neutrófilos , Neoplasias/patologia , Células Dendríticas , Vacinação , Microambiente Tumoral
4.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37762443

RESUMO

Mat cells (MCs) are located in the skin and mucous membranes at points where the body meets the environment. When activated, MCs release inflammatory cytokines, which help the immune system to fight viruses. MCs produce, and have receptors for interferons (IFNs), which belong to a family of cytokines recognized for their antiviral properties. Previously, we reported that MCs produced proinflammatory cytokines in response to a recombinant vesicular stomatitis virus (rVSVΔm51) and that IFNAR signaling was required to down-modulate these responses. Here, we have demonstrated that UV-irradiated rVSVΔm51 did not cause any inflammatory cytokines in either in vitro cultured mouse IFNAR-intact (IFNAR+/+), or in IFNAR-knockout (IFNAR-/-) MCs. However, the non-irradiated virus was able to replicate more effectively in IFNAR-/- MCs and produced a higher level of inflammatory cytokines compared with the IFNAR+/+ MCs. Interestingly, MCs lacking IFNAR expression displayed reduced levels of reactive oxygen species (ROS) compared with IFNAR+/+ MCs. Additionally, upon the viral infection, these IFNAR-/- MCs were found to coexist with many dying cells within the cell population. Based on our findings, IFNAR-intact MCs exhibit a lower rate of rVSVΔm51 infectivity and lower levels of cytokines while demonstrating higher levels of ROS. This suggests that MCs with intact IFNAR signaling may survive viral infections by producing cell-protective ROS mechanisms and are less likely to die than IFNAR-/- cells.


Assuntos
Citocinas , Viroses , Animais , Camundongos , Morte Celular , Fatores Imunológicos , Mastócitos , Espécies Reativas de Oxigênio , Viroses/genética
5.
Gene Ther ; 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050451

RESUMO

Vectored monoclonal antibody (mAb) expression mediated by adeno-associated virus (AAV) gene delivery leads to sustained therapeutic mAb expression and protection against a wide range of infectious diseases in both small and large animal models, including nonhuman primates. Using our rationally engineered AAV6 triple mutant capsid, termed AAV6.2FF, we demonstrate rapid and robust expression of two potent human antibodies against Marburg virus, MR78 and MR191, following intramuscular (IM) administration. IM injection of mice with 1 × 1011 vector genomes (vg) of AAV6.2FF-MR78 and AAV6.2FF-MR191 resulted in serum concentrations of approximately 141 µg/mL and 195 µg/mL of human IgG, respectively, within the first four weeks. Mice receiving 1 × 1011 vg (high) and 1 × 1010 vg (medium) doses of AAV6.2FF-MR191 were completely protected against lethal Marburg virus challenge. No sex-based differences in serum human IgG concentrations were observed; however, administering the AAV-mAb over multiple injection sites significantly increased serum human IgG concentrations. IM administration of three two-week-old lambs with 5 × 1012 vg/kg of AAV6.2FF-MR191 resulted in serum human IgG expression that was sustained for more than 460 days, concomitant with low levels of anti-capsid and anti-drug antibodies. AAV-mAb expression is a viable method for prolonging the therapeutic effect of recombinant mAbs and represents a potential alternative "vaccine" strategy for those with compromised immune systems or in possible outbreak response scenarios.

6.
Gynecol Oncol ; 164(1): 154-169, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34799137

RESUMO

OBJECTIVES: Tumor vasculature is structurally abnormal, with anatomical deformities, reduced pericyte coverage and low tissue perfusion. As a result of this vascular dysfunction, tumors are often hypoxic, which is associated with an aggressive tumor phenotype, and reduced delivery of therapeutic compounds to the tumor. We have previously shown that a peptide containing the thrombospondin-1 type I repeats (3TSR) specifically targets tumor vessels and induces vascular normalization in a mouse model of epithelial ovarian cancer (EOC). However, due to its small size, 3TSR is rapidly cleared from circulation. We now introduce a novel construct with the 3TSR peptide fused to the C-terminus of each of the two heavy chains of the Fc region of human IgG1 (Fc3TSR). We hypothesize that Fc3TSR will have greater anti-tumor activity in vitro and in vivo compared to the native compound. METHODS: Fc3TSR was evaluated in vitro using proliferation and apoptosis assays to investigate differences in efficacy compared to native 3TSR. In light of the multivalency of Fc3TSR, we also investigate whether it induces greater clustering of its functional receptor, CD36. We also compare the compounds in vivo using an orthotopic, syngeneic mouse model of advanced stage EOC. The impact of the two compounds on changes to tumor vasculature morphology was also investigated. RESULTS: Fc3TSR significantly decreased the viability and proliferative potential of EOC cells and endothelial cells in vitro compared to native 3TSR. High-resolution imaging followed by image correlation spectroscopy demonstrated enhanced clustering of the CD36 receptor in cells treated with Fc3TSR. This was associated with enhanced downstream signaling and greater in vitro and in vivo cellular responses. Fc3TSR induced greater vascular normalization and disease regression compared to native 3TSR in an orthotopic, syngeneic mouse model of advanced stage ovarian cancer. CONCLUSION: The development of Fc3TSR which is greater in size, stable in circulation and enhances receptor activation compared to 3TSR, facilitates its translational potential as a therapy in the treatment of metastatic advanced stage ovarian cancer.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Carcinoma Epitelial do Ovário/tratamento farmacológico , Imunoglobulina G/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Trombospondina 1/uso terapêutico , Inibidores da Angiogênese/farmacocinética , Inibidores da Angiogênese/farmacologia , Animais , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica , Neoplasias Ovarianas/patologia , Trombospondina 1/farmacocinética , Trombospondina 1/farmacologia
7.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946935

RESUMO

Interferons (IFNs) are induced by viruses and are the main regulators of the host antiviral response. They balance tissue tolerance and immune resistance against viral challenges. Like all cells in the human body, neutrophils possess the receptors for IFNs and contribute to antiviral host defense. To combat viruses, neutrophils utilize various mechanisms, such as viral sensing, neutrophil extracellular trap formation, and antigen presentation. These mechanisms have also been linked to tissue damage during viral infection and inflammation. In this review, we presented evidence that a complex cross-regulatory talk between IFNs and neutrophils initiates appropriate antiviral immune responses and regulates them to minimize tissue damage. We also explored recent exciting research elucidating the interactions between IFNs, neutrophils, and severe acute respiratory syndrome-coronavirus-2, as an example of neutrophil and IFN cross-regulatory talk. Dissecting the IFN-neutrophil paradigm is needed for well-balanced antiviral therapeutics and development of novel treatments against many major epidemic or pandemic viral infections, including the ongoing pandemic of the coronavirus disease that emerged in 2019.


Assuntos
COVID-19/imunologia , Interferon Tipo I/imunologia , Neutrófilos/imunologia , Viroses/imunologia , Animais , Antivirais/imunologia , Armadilhas Extracelulares/imunologia , Humanos , SARS-CoV-2/imunologia , Transdução de Sinais , Vírus/imunologia
8.
J Immunol ; 200(2): 450-458, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29311387

RESUMO

Oncolytic viruses (OVs) are multimodal cancer therapeutics, with one of their dominant mechanisms being in situ vaccination. There is a growing consensus that optimal cancer therapies should generate robust tumor-specific immune responses. Immunogenic cell death (ICD) is a paradigm of cellular demise culminating in the spatiotemporal release of danger-associated molecular patterns that induce potent anticancer immunity. Alongside traditional ICD inducers like anthracycline chemotherapeutics and radiation, OVs have emerged as novel members of this class of therapeutics. OVs replicate in cancers and release tumor Ags, which are perceived as dangerous because of simultaneous expression of pathogen-associated molecular patterns that activate APCs. Therefore, OVs provide the target Ags and danger signals required to induce adaptive immune responses. This review discusses why OVs are attractive candidates for generating ICD, biological barriers limiting their success in the clinic, and groundbreaking strategies to potentiate ICD and antitumor immunity with rationally designed OV-based combination therapies.


Assuntos
Morte Celular/imunologia , Sistema Imunitário/imunologia , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/imunologia , Alarminas/genética , Alarminas/metabolismo , Animais , Terapia Combinada/métodos , Terapia Genética/métodos , Humanos , Sistema Imunitário/metabolismo , Imunoterapia/métodos , Neoplasias/genética , Neoplasias/metabolismo , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética
9.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261178

RESUMO

Mast cells (MCs) are critical for initiating inflammatory responses to pathogens including viruses. Type I interferons (IFNs) that exert their antiviral functions by interacting with the type I IFN receptor (IFNAR) play a central role in host cellular responses to viruses. Given that virus-induced excessive toxic inflammatory responses are associated with aberrant IFNAR signaling and considering MCs are an early source of inflammatory cytokines during viral infections, we sought to determine whether IFNAR signaling plays a role in antiviral cytokine responses of MCs. IFNAR-intact, IFNAR-blocked, and IFNAR-knockout (IFNAR-/-) bone-marrow-derived MCs (BMMCs) were treated in vitro with a recombinant vesicular stomatitis virus (rVSVΔm51) to assess cytokine production by these cells. All groups of MCs produced the cytokines interleukin-6 and tumor necrosis factor-α in response to rVSVΔm51. However, production of the cytokines was lowest in IFNAR-intact cells as compared with IFNAR-/- or IFNAR-blocked cells at 20 h post-stimulation. Surprisingly, rVSVΔm51 was capable of infecting BMMCs, but functional IFNAR signaling was able to protect these cells from virus-induced death. This study showed that BMMCs produced pro-inflammatory cytokines in response to rVSVΔm51 and that IFNAR signaling was required to down-modulate these responses and protect the cells from dying from viral infection.


Assuntos
Células da Medula Óssea/patologia , Citocinas/biossíntese , Citoproteção , Mastócitos/virologia , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais , Vesiculovirus/fisiologia , Animais , Morte Celular , Regulação para Baixo , Interleucina-6/metabolismo , Cinética , Camundongos Knockout , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
10.
Int J Mol Sci ; 21(17)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882969

RESUMO

Neutrophils are innate leukocytes that mount a rapid response to invading pathogens and sites of inflammation. Although neutrophils were traditionally considered responders to bacterial infections, recent advances have demonstrated that they are interconnected with both viral infections and cancers. One promising treatment strategy for cancers is to administer an oncolytic virus to activate the immune system and directly lyse cancerous cells. A detailed characterization of how the innate immune system responds to a viral-based therapy is paramount in identifying its systemic effects. This study analyzed how administering the rhabdovirus vesicular stomatitis virus (VSV) intravenously at 1 × 109 PFU acutely influenced neutrophil populations. Bone marrow, blood, lungs, and spleen were acquired three- and 24-h after administration of VSV for analysis of neutrophils by flow cytometry. Infection with VSV caused neutrophils to rapidly egress from the bone marrow and accumulate in the lungs. A dramatic increase in immature neutrophils was observed in the lungs, as was an increase in the antigen presentation potential of these cells within the spleen. Furthermore, the potential for neutrophils to acquire viral transgene-encoded proteins was monitored using a variant of VSV that expressed enhanced green fluorescent protein (GFP). If an in vitro population of splenocytes were exposed to αCD3 and αCD28, a substantial proportion of the neutrophils would become GFP-positive. This suggested that the neutrophils could either acquire more virus-encoded antigens from infected splenocytes or were being directly infected. Five different dosing regimens were tested in mice, and it was determined that a single dose of VSV or two doses of VSV administered at a 24-h interval, resulted in a substantial proportion of neutrophils in the bone marrow becoming GFP-positive. This correlated with a decrease in the number of splenic neutrophils. Two doses administered at intervals longer than 24-h did not have these effects, suggesting that neutrophils became resistant to antigen uptake or direct infection with VSV beyond 24-h of activation. These findings implicated neutrophils as major contributors to oncolytic rhabdoviral therapies. They also provide several clear future directions for research and suggest that neutrophils should be carefully monitored during the development of all oncolytic virus-based treatment regimens.


Assuntos
Apresentação de Antígeno/imunologia , Neutrófilos/imunologia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Estomatite Vesicular/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Proteínas não Estruturais Virais/metabolismo , Animais , Feminino , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estomatite Vesicular/terapia , Estomatite Vesicular/virologia , Proteínas não Estruturais Virais/imunologia
11.
J Immunol ; 196(11): 4587-95, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27183620

RESUMO

Effector T cells (TEFF) are a barrier to booster vaccination because they can rapidly kill Ag-bearing APCs before memory T cells are engaged. We report in this study that i.v. delivery of rhabdoviral vectors leads to direct infection of follicular B cells in the spleen, where the earliest evidence of secondary T cell responses was observed. This allows booster immunizations to rapidly expand CD8(+) central memory T cells (TCM) during the acute phase of the primary response that is dominated by TEFF Interestingly, although the ablation of B cells before boosting with rhabdoviral vectors diminishes the expansion of memory T cells, B cells do not present Ags directly. Instead, depletion of CD11c(+) dendritic cells abrogates secondary T cell expansion, suggesting that virus-infected follicular B cells may function as an Ag source for local DCs to subsequently capture and present the Ag. Because TCM are located within B cell follicles in the spleen whereas TEFF cannot traffic through follicular regions, Ag production and presentation by follicular APCs represent a unique mechanism to secure engagement of TCM during an ongoing effector response. Our data offer insights into novel strategies for rapid expansion of CD8(+) T cells using prime-boost vaccines by targeting privileged sites for Ag presentation.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas Foliculares/imunologia , Baço/citologia , Baço/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Vacinas Virais/imunologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Immunology ; 152(2): 175-184, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28621843

RESUMO

Altered metabolism is a hallmark of cancers, including shifting oxidative phosphorylation to glycolysis and up-regulating glutaminolysis to divert carbon sources into biosynthetic pathways that promote proliferation and survival. Therefore, metabolic inhibitors represent promising anti-cancer drugs. However, T cells must rapidly divide and survive in harsh microenvironments to mediate anti-cancer effects. Metabolic profiles of cancer cells and activated T lymphocytes are similar, raising the risk of metabolic inhibitors impairing the immune system. Immune checkpoint blockade provides an example of how metabolism can be differentially impacted to impair cancer cells but support T cells. Implications for research with metabolic inhibitors are discussed.


Assuntos
Reprogramação Celular , Metabolismo Energético , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Animais , Antineoplásicos/uso terapêutico , Proliferação de Células , Reprogramação Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glicólise , Humanos , Concentração de Íons de Hidrogênio , Ativação Linfocitária , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Fosforilação Oxidativa , Fenótipo , Transdução de Sinais , Evasão Tumoral
13.
Blood ; 121(13): 2432-9, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23325836

RESUMO

Rapid boosting of memory CD8(+) T cells (TM) is essential in cancer immunotherapy and the control of certain infectious diseases. However, effector T cells (TE) are a barrier to booster vaccination because they can rapidly kill antigen-bearing antigen-presenting cells (APCs) before TM are engaged. We demonstrate that viral-vectored vaccines delivered by B cells elicit robust TM expansion in the presence of TE, enabling booster immunizations to bypass TE-mediated negative feedback regulation. Our data indicate that viral vector-loaded B cells home to the follicular regions in secondary lymphoid organs, which are anatomically separated from TE and in close proximity to TM. The B cells, however, do not serve as APCs in this area. Rather, classic CD11c(+) dendritic cells serve to stimulate the secondary CD8(+) T-cell response. Our data reveal that B cells represent a novel and readily accessible delivery system that can effectively engage secondary CD8(+) T-cell activation for prime-boost strategies.


Assuntos
Adenoviridae , Linfócitos B/transplante , Linfócitos T CD8-Positivos/imunologia , Vetores Genéticos/administração & dosagem , Memória Imunológica , Imunoterapia Adotiva/métodos , Aceleração , Adenoviridae/genética , Animais , Linfócitos B/metabolismo , Células Cultivadas , Técnicas de Transferência de Genes , Imunização Secundária/métodos , Memória Imunológica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vacinação/métodos
14.
J Immunol ; 190(9): 4795-804, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23554310

RESUMO

Mucosal inflammation in conditions ranging from infective acute enteritis or colitis to inflammatory bowel disease is accompanied by alteration in serotonin (5-hydroxytryptamine [5-HT]) content in the gut. Recently, we have identified an important role of 5-HT in the pathogenesis of experimental colitis. 5-HT type 7 (5-HT7) receptor is one of the most recently identified members of the 5-HT receptor family, and dendritic cells express this receptor. In this study, we investigated the effect of blocking 5-HT7 receptor signaling in experimental colitis with a view to develop an improved therapeutic strategy in intestinal inflammatory disorders. Colitis was induced with dextran sulfate sodium (DSS) or dinitrobenzene sulfonic acid (DNBS) in mice treated with selective 5-HT7 receptor antagonist SB-269970, as well as in mice lacking 5-HT7 receptor (5-HT7(-/-)) and irradiated wild-type mice reconstituted with bone marrow cells harvested from 5-HT7(-/-) mice. Inhibition of 5-HT7 receptor signaling with SB-269970 ameliorated both acute and chronic colitis induced by DSS. Treatment with SB-269970 resulted in lower clinical disease, histological damage, and proinflammatory cytokine levels compared with vehicle-treated mice post-DSS. Colitis severity was significantly lower in 5-HT7(-/-) mice and in mice reconstituted with bone marrow cells from 5-HT7(-/-) mice compared with control mice after DSS colitis. 5-HT7(-/-) mice also had significantly reduced DNBS-induced colitis. These observations provide us with novel information on the critical role of the 5-HT7 receptor in immune response and inflammation in the gut, and highlight the potential benefit of targeting this receptor to alleviate the severity of intestinal inflammatory disorders such as inflammatory bowel disease.


Assuntos
Inflamação/imunologia , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Receptores de Serotonina/imunologia , Receptores de Serotonina/metabolismo , Animais , Benzenossulfonatos/farmacologia , Colite/induzido quimicamente , Colite/imunologia , Colite/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Intestinos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , NF-kappa B/metabolismo
15.
Mol Ther ; 22(2): 420-429, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24322333

RESUMO

The rhabdovirus Maraba has recently been characterized as a potent oncolytic virus. In the present study, we engineered an attenuated Maraba strain, defined as MG1, to express a melanoma-associated tumor antigen. Its ability to mount an antitumor immunity was evaluated in tumor-free and melanoma tumor-bearing mice. Alone, the MG1 vaccine appeared insufficient to prime detectable adaptive immunity against the tumor antigen. However, when used as a boosting vector in a heterologous prime-boost regimen, MG1 vaccine rapidly generated strong antigen-specific T-cell immune responses. Once applied for treating syngeneic murine melanoma tumors, our oncolytic prime-boost vaccination protocol involving Maraba MG1 dramatically extended median survival and allowed complete remission in more than 20% of the animals treated. This work describes Maraba virus MG1 as a potent vaccine vector for cancer immunotherapy displaying both oncolytic activity and a remarkable ability to boost adaptive antitumor immunity.


Assuntos
Vetores Genéticos/genética , Vírus Oncolíticos/genética , Rhabdoviridae/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Efeito Citopatogênico Viral , Feminino , Expressão Gênica , Vetores Genéticos/imunologia , Imunização Secundária/métodos , Oxirredutases Intramoleculares/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Melanoma Experimental , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/mortalidade , Neoplasias/patologia , Neoplasias/terapia , Vírus Oncolíticos/imunologia , Rhabdoviridae/imunologia , Resultado do Tratamento , Vesiculovirus/genética , Vesiculovirus/imunologia , Tropismo Viral
16.
Mol Ther ; 21(4): 887-94, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23295947

RESUMO

Histone deacetylase inhibitors (HDACi) can modulate innate antiviral responses and render tumors more susceptible to oncolytic viruses (OVs); however, their effects on adaptive immunity in this context are largely unknown. Our present study reveals an unexpected property of the HDACi MS-275 that enhances viral vector-induced lymphopenia leading to selective depletion of bystander lymphocytes and regulatory T cells while allowing expansion of antigen-specific secondary responses. Coadministration of vaccine plus drug during the boosting phase focuses the immune response on the tumor by suppressing the primary immune response against the vaccine vector and enhancing the secondary response against the tumor antigen. Furthermore, improvement of T cell functionality was evident suggesting that MS-275 can orchestrate a complex array of effects that synergize immunotherapy and viral oncolysis. Surprisingly, while MS-275 dramatically enhanced efficacy, it suppressed autoimmune pathology, profoundly improving the therapeutic index.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Imunoterapia/métodos , Neoplasias/terapia , Animais , Autoimunidade/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Melanoma/tratamento farmacológico , Melanoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico
17.
Cells ; 13(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474426

RESUMO

The skin is a dynamic organ with a complex immune network critical for maintaining balance and defending against various pathogens. Different types of cells in the skin, such as mast cells (MCs) and group 2 innate lymphoid cells (ILC2s), contribute to immune regulation and play essential roles in the early immune response to various triggers, including allergens. It is beneficial to dissect cell-to-cell interactions in the skin to elucidate the mechanisms underlying skin immunity. The current manuscript concentrates explicitly on the communication pathways between MCs and ILC2s in the skin, highlighting their ability to regulate immune responses, inflammation, and tissue repair. Furthermore, it discusses how the interactions between MCs and ILC2s play a crucial role in various skin conditions, such as autoimmune diseases, dermatological disorders, and allergic reactions. Understanding the complex interactions between MCs and ILC2s in different skin conditions is crucial to developing targeted treatments for related disorders. The discovery of shared pathways could pave the way for novel therapeutic interventions to restore immunological balance in diseased skin tissues.


Assuntos
Hipersensibilidade , Imunidade Inata , Humanos , Linfócitos , Mastócitos , Pele
18.
Front Microbiol ; 15: 1325558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328418

RESUMO

Introduction: Tumor microenvironments are immunosuppressive due to progressive accumulation of mutations in cancer cells that can drive expression of a range of inhibitory ligands and cytokines, and recruitment of immunomodulatory cells, including myeloid-derived suppressor cells (MDSC), tumor-associated macrophages, and regulatory T cells (Tregs). Methods: To reverse this immunosuppression, we engineered mesogenic Newcastle disease virus (NDV) to express immunological checkpoint inhibitors anti-cytotoxic T lymphocyte antigen-4 and soluble programmed death protein-1. Results: Intratumoral administration of recombinant NDV (rNDV) to mice bearing intradermal B16-F10 melanomas or subcutaneous CT26LacZ colon carcinomas led to significant changes in the tumor-infiltrating lymphocyte profiles. Vectorizing immunological checkpoint inhibitors in NDV increased activation of intratumoral natural killer cells and cytotoxic T cells and decreased Tregs and MDSCs, suggesting induction of a pro-inflammatory state with greater infiltration of activated CD8+ T cells. These notable changes translated to higher ratios of activated effector/suppressor tumor-infiltrating lymphocytes in both cancer models, which is a promising prognostic marker. Whereas all rNDV-treated groups showed evidence of tumor regression and increased survival in the CT26LacZ and B16-F10, only treatment with NDV expressing immunological checkpoint blockades led to complete responses compared to tumors treated with NDV only. Discussion: These data demonstrated that NDV expressing immunological checkpoint inhibitors could reverse the immunosuppressive state of tumor microenvironments and enhance tumor-specific T cell responses.

19.
Mol Ther ; 20(6): 1148-57, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22273579

RESUMO

Replicating viruses for the treatment of cancer have a number of advantages over traditional therapeutic modalities. They are highly targeted, self-amplifying, and have the added potential to act as both gene-therapy delivery vehicles and oncolytic agents. Parapoxvirus ovis or Orf virus (ORFV) is the prototypic species of the Parapoxvirus genus, causing a benign disease in its natural ungulate host. ORFV possesses a number of unique properties that make it an ideal viral backbone for the development of a cancer therapeutic: it is safe in humans, has the ability to cause repeat infections even in the presence of antibody, and it induces a potent T(h)-1-dominated immune response. Here, we show that live replicating ORFV induces an antitumor immune response in multiple syngeneic mouse models of cancer that is mediated largely by the potent activation of both cytokine-secreting, and tumoricidal natural killer (NK) cells. We have also highlighted the clinical potential of the virus by demonstration of human cancer cell oncolysis including efficacy in an A549 xenograft model of cancer.


Assuntos
Vetores Genéticos/administração & dosagem , Neoplasias/imunologia , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/imunologia , Vírus do Orf/imunologia , Animais , Linhagem Celular Tumoral , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Terapia Genética , Vetores Genéticos/efeitos adversos , Humanos , Imunidade Inata , Células Matadoras Naturais/imunologia , Pulmão/imunologia , Pulmão/metabolismo , Neoplasias Pulmonares/secundário , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/genética , Vírus Oncolíticos/genética , Vírus do Orf/genética , Baço/imunologia , Baço/metabolismo , Carga Tumoral , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mol Ther ; 20(9): 1791-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22760544

RESUMO

Treatment of permissive tumors with the oncolytic virus (OV) VSV-Δ51 leads to a robust antitumor T-cell response, which contributes to efficacy; however, many tumors are not permissive to in vivo treatment with VSV-Δ51. In an attempt to channel the immune stimulatory properties of VSV-Δ51 and broaden the scope of tumors that can be treated by an OV, we have developed a potent oncolytic vaccine platform, consisting of tumor cells infected with VSV-Δ51. We demonstrate that prophylactic immunization with this infected cell vaccine (ICV) protected mice from subsequent tumor challenge, and expression of granulocyte-monocyte colony stimulating factor (GM-CSF) by the virus (VSVgm-ICV) increased efficacy. Immunization with VSVgm-ICV in the VSV-resistant B16-F10 model induced maturation of dendritic and natural killer (NK) cell populations. The challenge tumor is rapidly infiltrated by a large number of interferon γ (IFNγ)-producing T and NK cells. Finally, we demonstrate that this approach is robust enough to control the growth of established tumors. This strategy is broadly applicable because of VSV's extremely broad tropism, allowing nearly all cell types to be infected at high multiplicities of infection in vitro, where the virus replication kinetics outpace the cellular IFN response. It is also personalized to the unique tumor antigen(s) displayed by the cancer cell.


Assuntos
Vacinas Anticâncer/imunologia , Melanoma Experimental/prevenção & controle , Melanoma Experimental/terapia , Neoplasias Cutâneas/prevenção & controle , Neoplasias Cutâneas/terapia , Vesiculovirus/imunologia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/administração & dosagem , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Terapia Genética/métodos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Imunização , Interferon gama/biossíntese , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Neoplasias Cutâneas/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Vero , Vesiculovirus/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA