Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

País de afiliação
Intervalo de ano de publicação
1.
Med Mycol ; 61(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37553154

RESUMO

The limited therapeutic options for fungal infections and the increased incidence of fungal strains resistant to antifungal drugs, especially Candida spp., require the development of new antifungal drugs and strategies. Histone deacetylase inhibitors (HDACi), like vorinostat, have been studied in cancer treatment and have antifungal effects, acting alone or synergistically with classical antifungals. Here we investigated the antifungal activity of two novel sustainable HDACi (LDT compounds) based on vorinostat structure. Molecular docking simulation studies reveal that LDT compounds can bind to Class-I HDACs of Candida albicans, C. tropicalis, and Cryptococcus neoformans, which showed similar binding mode to vorinostat. LDT compounds showed moderate activity when tested alone against fungi but act synergistically with antifungal azoles against Candida spp. They reduced biofilm formation by more than 50% in C. albicans (4 µg/mL), with the main action in fungal filamentation. Cytotoxicity of the LDT compounds against RAW264.7 cells was evaluated and LDT536 demonstrated cytotoxicity only at the concentration of 200 µmol/L, while LDT537 showed IC50 values of 29.12 µmol/L. Our data indicated that these sustainable and inexpensive HDACi have potential antifungal and antibiofilm activities, with better results than vorinostat, although further studies are necessary to better understand the mechanism against fungal cells.


Fungal infections are neglected diseases that affect more than a billion people worldwide. Some histone deacetylase inhibitors can act against fungal cells. Our data reveal that HDACi LDT536 and LDT537 have potential antibiofilm and antifungal activities.

2.
Can J Microbiol ; 68(7): 493-499, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35303412

RESUMO

Paraquat (1,10-dimethyl-4,4-bipyridinium dichloride; PQ) is a free-radical producing herbicide that affects cell membranes and can upset the environmental balance of microorganisms present in soil, such as Cryptococcus spp. This study aimed to evaluate the in vitro activity of PQ against Cryptococcus spp. in planktonic and biofilm forms, as well as the protective effect of antioxidant agents against the antifungal effect of PQ and the kinetics of melanin production in response to PQ. Susceptibility to PQ was evaluated by microdilution. Cryptococcus sp. strains exposed to PQ were grown in media with ascorbic acid (AA) and glutathione (GSH). Melanin production was assessed in the presence of l-3,4-dihydroxyphenylalanine (l-DOPA) + PQ. The minimum inhibitory concentration of PQ against Cryptococcus spp. ranged from 8 to 256 µg/mL. Furthermore, PQ reduced biofilm formation. AA and GSH restored the fungal growth of Cryptococcus spp. exposed to PQ. In addition, l-DOPA + PQ delayed melanin production by 24 and 48 h for C. deuterogattii and C. neoformans sensu lato, respectively, suggesting that PQ induces a fitness trade-off in melanin production. Taken together, our data suggest that the antifungal effect of PQ against Cryptococcus spp. possibly exerts selective pressures interfering with biofilm formation and melanin production by these yeasts.


Assuntos
Cryptococcus gattii , Cryptococcus neoformans , Herbicidas , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Cryptococcus gattii/metabolismo , Cryptococcus neoformans/metabolismo , Herbicidas/metabolismo , Herbicidas/farmacologia , Levodopa/metabolismo , Levodopa/farmacologia , Melaninas/metabolismo , Melaninas/farmacologia , Testes de Sensibilidade Microbiana , Paraquat/metabolismo , Paraquat/farmacologia
3.
Biofouling ; 38(3): 286-297, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35450473

RESUMO

This study aimed to evaluate the effect of proteinase K on mature biofilms of dermatophytes, by assays of metabolic activity and biomass. In addition, the proteinase K-terbinafine and proteinase K-griseofulvin interactions against these biofilms were investigated by the checkerboard assay and scanning electron and confocal microscopy. The biofilms exposed to 32 µg ml-1 of proteinase K had lower metabolic activity and biomass, by 39% and 38%, respectively. Drug interactions were synergistic, with proteinase K reducing the minimum inhibitory concentration of antifungals against dermatophyte biofilms at a concentration of 32 µg ml-1 combined with 128-256 µg ml-1 of terbinafine and griseofulvin. Microscopic images showed a reduction in biofilms exposed to proteinase K, proteinase K-terbinafine and proteinase K-griseofulvin combinations. These findings demonstrate that proteinase K has activity against biofilms of dermatophytes, and the interactions of proteinase K with terbinafine and griseofulvin improve the activity of drugs against mature dermatophyte biofilms.


Assuntos
Antifúngicos , Arthrodermataceae , Antifúngicos/farmacologia , Biofilmes , Endopeptidase K/farmacologia , Griseofulvina/farmacologia , Testes de Sensibilidade Microbiana , Terbinafina/farmacologia
4.
Microbiology (Reading) ; 167(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33427606

RESUMO

Chlamydoconidium-producing Trichophyton tonsurans strains isolated in Northeastern Brazil have morphological features different from the classic description of this dermatophyte species. This study investigated the phylogenetic relationship of chlamydoconidium-producing T. tonsurans strains isolated in Northeastern Brazil. Also, the effect of terbinafine and farnesol on mature biofilms of T. tonsurans strains was evaluated. The mass spectra of T. tonsurans strains were investigated by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The ITS and LSU loci regions of rDNA and the partial ß-tubulin gene were sequenced and the phylogenetic tree was analysed. The effects of terbinafine and farnesol on mature T. tonsurans biofilms were evaluated through the analysis of metabolic activity, quantification of biomass and observation by scanning electron microscopy. MALDI-TOF MS spectra of the chlamydoconidium-producing T. tonsurans strains differed from the spectrum of the control strain (ATCC 28942), presenting an intense ion peak at m/z 4155 Da. Phylogenetic tree analysis showed that the chlamydoconidium-producing strains isolated in Northeastern Brazil are allocated to a single cluster, differing from strains isolated from other countries. As for mature T. tonsurans biofilms, farnesol reduced biomass and metabolic activity by 64.4 and 65.9 %, respectively, while terbinafine reduced the biomass by 66.5 % and the metabolic activity by 69 %. Atypical morphological characteristics presented by chlamydoconidium-producing T. tonsurans strains result from phenotypic plasticity, possibly for adaptation to environmental stressors. Also, farnesol had inhibitory activity against T. tonsurans biofilms, demonstrating this substance can be explored for development of promising anti-biofilm drugs against dermatophytes.


Assuntos
Antifúngicos/farmacologia , Arthrodermataceae/classificação , Biofilmes/efeitos dos fármacos , Filogenia , Arthrodermataceae/citologia , Arthrodermataceae/efeitos dos fármacos , Arthrodermataceae/fisiologia , Biofilmes/crescimento & desenvolvimento , Brasil , DNA Fúngico/genética , DNA Ribossômico/genética , Farneseno Álcool/farmacologia , Proteínas Fúngicas/genética , Humanos , Testes de Sensibilidade Microbiana , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Esporos Fúngicos/classificação , Esporos Fúngicos/citologia , Terbinafina/farmacologia , Tubulina (Proteína)/genética
5.
Microb Pathog ; 150: 104670, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33285221

RESUMO

This work aimed to evaluate the ability of Sporothrix species to attach and form biofilm on the surface of cat claws as an ex vivo model. A total of 14 strains (5 Sporothrix brasiliensis, 3 Sporothrix schenckii s. str., 3 Sporothrix globosa and 3 Sporothrix mexicana) were used. The biofilms were incubated for periods of 01, 03, 07, 10 and fifteenth 15 days. Their metabolic activities were evaluated by the XTT reduction assay and the morphology and structure were investigated by scanning electron microscopy (SEM). The analysis of the SEM images revealed that all the species can form biofilms on cat claws. The metabolic activity in the ex vivo biofilms was similar to that found in in vitro biofilms when incubated for the same period. This is the first report of an ex vivo biofilm model involving cat claws. The ability to form biofilms on cat claws can increase the viable period of the fungus and consequently the number of possibly infected animals and people.


Assuntos
Unha-de-Gato , Sporothrix , Esporotricose , Animais , Biofilmes , Esporotricose/veterinária
6.
Med Mycol ; 59(8): 793-801, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-33550417

RESUMO

Invasive fungal infections (IFIs) are important worldwide health problem, affecting the growing population of immunocompromised patients. Although the majority of IFIs are caused by Candida spp., other fungal species have been increasingly recognized as relevant opportunistic pathogens. Trichosporon spp. are members of skin and gut human microbiota. Since 1980's, invasive trichosporonosis has been considered a significant cause of fungemia in patients with hematological malignancies. As prolonged antibiotic therapy is an important risk factor for IFIs, the present study investigated if vancomycin enhances growth and virulence of Trichosporon. Vancomycin was tested against T. inkin (n = 6) and T. asahii (n = 6) clinical strains. Planktonic cells were evaluated for their metabolic activity and virulence against Caenorhabditis elegans. Biofilms were evaluated for metabolic activity, biomass production, amphotericin B tolerance, induction of persister cells, and ultrastructure. Vancomycin stimulated planktonic growth of Trichosporon spp., increased tolerance to AMB, and potentiates virulence against C. elegans. Vancomycin stimulated growth (metabolic activity and biomass) of Trichosporon spp. biofilms during all stages of development. The antibiotic increased the number of persister cells inside Trichosporon biofilms. These cells showed higher tolerance to AMB than persister cells from VAN-free biofilms. Microscopic analysis showed that VAN increased production of extracellular matrix and cells in T. inkin and T. asahii biofilms. These results suggest that antibiotic exposure may have a direct impact on the pathophysiology of opportunistic trichosporonosis in patients at risk. LAY ABSTRACT: This study showed that the vancomycin stimulated Trichosporon growth, induced morphological and physiological changes on their biofilms, and also enhanced their in vivo virulence. Although speculative, the stimulatory effect of vancomycin on fungal cells should be considered in a clinical scenario.


Assuntos
Antibacterianos/farmacologia , Trichosporon/efeitos dos fármacos , Vancomicina/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura , Plâncton/efeitos dos fármacos , Plâncton/crescimento & desenvolvimento , Plâncton/patogenicidade , Trichosporon/crescimento & desenvolvimento , Trichosporon/patogenicidade , Trichosporon/fisiologia , Virulência/efeitos dos fármacos
7.
Microb Ecol ; 82(4): 1080-1083, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33723620

RESUMO

This study aimed to identify Candida spp. from agricultural soils cultivated with azole fungicides and investigate their susceptibility to clinical (fluconazole, itraconazole, voriconazole, and amphotericin B) and agricultural (tetraconazole and tebuconazole) antifungals in planktonic form. Additionally, Candida biofilm-forming ability and biofilm susceptibility to agricultural antifungals and voriconazole were analyzed. Species identification was performed by phenotypic and molecular assays. The susceptibility of planktonic cells was evaluated by the broth microdilution method. The biofilm metabolic activity was evaluated by the XTT reduction assay. The recovered Candida spp. were identified as C. parapsilosis sensu stricto (n = 14), C. albicans (n = 5), C. tropicalis (n = 2), C. fermentati (n = 1), and C. metapsilosis (n = 2). Minimum inhibitory concentration ranges for clinical and agricultural antifungals were ≤ 0.03-4 µg/mL and 1-128 µg/mL, respectively. Two and one C. albicans strains were considered non-wild type for voriconazole and fluconazole, respectively. All strains were biofilm producers. The minimum biofilm inhibitory concentration ranges for tetraconazole and tebuconazole were 128-> 1024 µg/mL, while for voriconazole was 512-> 1024 µg/mL. In summary, this study shows that non-wild type and azole-resilient biofilm-producing Candida species colonize agricultural soils cultivated with azole fungicides.


Assuntos
Candida , Fungicidas Industriais , Antifúngicos/farmacologia , Azóis/farmacologia , Biofilmes , Candida/genética , Candida albicans , Fungicidas Industriais/farmacologia , Testes de Sensibilidade Microbiana , Solo
8.
Biofouling ; 37(8): 809-817, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34634964

RESUMO

This study aimed to evaluate the in vitro effect of aloe emodin, barbaloin and chrysophanol on growing and mature biofilms of Cryptococcus neoformans sensu stricto. The compounds were added at the moment of inducing biofilm growth or after growth for 72 h to evaluate their effects on growing and mature biofilms, respectively. Then, biofilm biomass was evaluated by crystal violet staining and metabolic activity by the XTT reduction assay. Morphological alterations were also evaluated by laser scanning confocal microscopy. Aloe emodin and barbaloin affected growing biofilms and disrupted mature biofilms, reducing metabolic activity by > 60% and biomass by > 70%. Chrysophanol only inhibited mature biofilms, but to a lesser extent. In conclusion, anthraquinones, especially aloe emodin and barbaloin, show a relevant effect against growing and mature biofilms of C. neoformans sensu stricto.


Assuntos
Aloe , Cryptococcus neoformans , Emodina , Antraquinonas/farmacologia , Biofilmes , Emodina/farmacologia
9.
Med Mycol ; 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32926150

RESUMO

The emergence of tolerant Cryptococcus neoformans strains to antifungals has been described. It has directed researchers to screen for new antimicrobial compounds. In this context, several plant-derived compounds, such as anthraquinones (aloe emodin, barbaloin, and chrysophanol), have been investigated for their antimicrobial properties. This study aimed to evaluate the in vitro effect of aloe emodin, barbaloin and chrysophanol on C. neoformans in vitro growth. In addition, the interaction between these anthraquinones and amphotericin B and itraconazole was evaluated. Initially, the minimum inhibitory concentrations (MIC) of these compounds were determined against 17 strains of C. neoformans by the broth microdilution method and then pharmacological interaction assays were performed with 15 strains by the checkerboard method. Aloe emodin, barbaloin, and chrysophanol showed minimum inhibitory concentrations of 236.82-473.65 µM (64-128 µg/mL), 153-306 µM (64-128 µg/ml) and ≥1007 µM (≥256 µg/ml), respectively. Furthermore, aloe emodin (11/15), barbaloin (13/15), and chrysophanol (12/15) showed pharmacological synergism (FICI < 0.5) with amphotericin B at subinhibitory concentrations (MIC/4). The itraconazole-aloe emodin interaction was additive (1/15) (0.5 < FICI < 1.0). The itraconazole-barbaloin interaction were synergistic (2/15) and additive (5/15); whereas itraconazole-chrysophanol interactions were additive (2/15). Anthraquinones, especially aloe emodin and barbaloin, present in vitro antifungal activity against C. neoformans and potentiate the antifungal activity of amphotericin B.

10.
Med Mycol ; 58(7): 896-905, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31950176

RESUMO

This study initially aimed at investigating the occurrence of azole resistance among Candida spp. from animals and analyzing the involvement of efflux pumps in the resistance phenomenon. Then, the dynamics of antifungal resistance was assessed, by comparing the antifungal epidemiological cutoff values (ECVs) against C. albicans and C. tropicalis from humans and animals. Fifty azole-resistant isolates (24 C. albicans, 24 C. tropicalis; 2 C. parapsilosis sensu lato) were submitted to the efflux pump inhibition assay with promethazine and significant MIC reductions were observed for fluconazole (2 to 250-fold) and itraconazole (16 to 4000-fold). Then, the antifungal ECVs against C. albicans and C. tropicalis from human and animal isolates were compared. Fluconazole, itraconazole and voriconazole ECVs against human isolates were lower than those against animal isolates. Based on the antifungal ECVs against human isolates, only 33.73%, 50.39% and 63.53% of C. albicans and 52.23%, 61.85% and 55.17% of C. tropicalis from animals were classified as wild-type for fluconazole, itraconazole and voriconazole, respectively. Therefore, efflux-mediated mechanisms are involved in azole resistance among Candida spp. from animals and this phenomenon seems to emerge in animal-associated niches, pointing to the existence of environmental drivers of resistance and highlighting the importance of the One Health approach to control it.


Assuntos
Candida albicans/efeitos dos fármacos , Candida parapsilosis/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Candidíase/tratamento farmacológico , Farmacorresistência Fúngica/efeitos dos fármacos , Fluconazol/uso terapêutico , Itraconazol/uso terapêutico , Voriconazol/uso terapêutico , Animais , Antifúngicos/uso terapêutico , Candidíase/veterinária , Feminino , Humanos , Masculino
11.
Med Mycol ; 58(7): 906-912, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32016364

RESUMO

Cryptococcus neoformans/Cryptococcus gattii are fungal pathogens that affect the central nervous system, mainly in immunocompromised individuals. Due to the limited pharmacological arsenal available for the treatment of cryptococcosis associated with cases of antifungal resistance of Cryptococcus spp. reported in some studies, the search for new compounds with antifungal potential becomes relevant. Thus, the objective of this study was to evaluate the inhibitory effect of phenothiazines (promethazine and chlorpromazine) on C. neoformans/C. gattii planktonic cells and biofilms. In vitro planktonic susceptibility testing was performed using the broth microdilution assay. The effect of phenothiazines was evaluated against biofilm formation and mature Cryptococcus biofilms. Biofilm morphology and ultrastructure were also evaluated by scanning electron microscopy. Promethazine and chlorpromazine showed antifungal activity against planktonic cells, with minimum inhibitory concentrations of 8-32 µg/ml and 4-16 µg/ml, respectively. As for biofilm formation, phenothiazines reduced biomass by 60% and metabolic activity by 90% at 64 µg/ml; while in mature biofilms, reductions of 85% and 90% in biomass and metabolic activity, respectively, were observed at 1024 µg/ml. Promethazine and chlorpromazine were also able to disrupt and fragment biofilms. In conclusion, promethazine and chlorpromazine have antifungal activity against planktonic cells and biofilms of Cryptococcus spp. These data show the potential of promethazine and chlorpromazine as antibiofilm drugs.


Assuntos
Biofilmes/efeitos dos fármacos , Clorpromazina/uso terapêutico , Criptococose/tratamento farmacológico , Cryptococcus gattii/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Plâncton/efeitos dos fármacos , Prometazina/uso terapêutico , Antifúngicos/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana
12.
Med Mycol ; 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32838409

RESUMO

The present study evaluated the antifungal activity of the chelators deferiprone (DFP) and ethylenediaminetetraacetic acid (EDTA) and their effect on biofilm formation of the S. schenckii complex. Eighteen strains of Sporothrix spp. (seven S. brasiliensis, three S. globosa, three S. mexicana and five Sporothrix schenckii sensu stricto) were used. Minimum inhibitory concentration (MIC) values for EDTA and DFP against filamentous forms of Sporothrix spp. ranged from 32 to 128 µg/ml. For antifungal drugs, MIC values ranged from 0.25 to 4 µg/ml for amphotericin B, from 0.25 to 4 µg/ml for itraconazole, and from 0.03 to 0.25 µg/ml for terbinafine. The chelators caused inhibition of Sporothrix spp. in yeast form at concentrations ranging from 16 to 64 µg/ml (for EDTA) and 8 to 32 µg/ml (for DFP). For antifungal drugs, MIC values observed against the yeast varied from 0.03 to 0.5 µg/ml for AMB, 0.03 to 1 µg/ml for ITC, and 0.03 to 0.13 µg/ml for TRB. Both DFP and EDTA presented synergistic interaction with antifungals against Sporothrix spp. in both filamentous and yeast form. Biofilms formed in the presence of the chelators (512 µg/ml) showed a reduction of 47% in biomass and 45% in metabolic activity. Our data reveal that DFP and EDTA reduced the growth of planktonic cells of Sporothrix spp., had synergistic interaction with antifungal drugs against this pathogen, and reduced biofilm formation of Sporothrix spp. LAY SUMMARY: Our data reveal that iron chelators deferiprone and ethylenediaminetetraacetic acid reduced the growth of planktonic cells of Sporothrix spp. as well as had synergistic interaction with antifungal drugs against this pathogen and reduced biofilm formation of Sporothrix spp.

13.
Can J Microbiol ; 66(6): 377-388, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32319304

RESUMO

Candida tropicalis is a prominent non-Candida albicans Candida species involved in cases of candidemia, mainly causing infections in patients in intensive care units and (or) those presenting neutropenia. In recent years, several studies have reported an increase in the recovery rates of azole-resistant C. tropicalis isolates. Understanding C. tropicalis resistance is of great importance, since resistant strains are implicated in persistent or recurrent and breakthrough infections. In this review, we address the main mechanisms underlying C. tropicalis resistance to the major antifungal classes used to treat candidiasis. The main genetic basis involved in C. tropicalis antifungal resistance is discussed. A better understanding of the epidemiology of resistant strains and the mechanisms involved in C. tropicalis resistance can help improve diagnosis and assessment of the antifungal susceptibility of this Candida species to improve clinical management.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida tropicalis/genética , Candidíase/microbiologia , Farmacorresistência Fúngica/genética , Candida tropicalis/efeitos dos fármacos , Candidíase/diagnóstico , Candidíase/tratamento farmacológico , Humanos
14.
Biofouling ; 36(5): 528-536, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32546021

RESUMO

This study aimed to evaluate the effect of diclofenac on minimum inhibitory concentrations of antifungals against planktonic cells and biofilms of Candida tropicalis. Susceptibility testing of planktonic cells was evaluated using the broth microdilution assay and checkerboard method. Biofilm formation by C. tropicalis in the presence of diclofenac, alone or in combination with antifungals, was also evaluated, and scanning electron microscope (SEM) and confocal microscope (CLSM) analyses were performed. Diclofenac showed an MIC of 1024 µg ml-1 against planktonic cells. The MICs of fluconazole and voriconazole against azole-resistant isolates were reduced 8- to 32-fold and 16- to 256-fold, respectively, when in combination with diclofenac. When in combination with fluconazole or voriconazole, diclofenac reduced the antifungal concentration necessary to inhibit C. tropicalis biofilm formation. In conclusion, diclofenac presents synergism with fluconazole and voriconazole against resistant C. tropicalis strains and improves the activity of these azole drugs against biofilm formation.


Assuntos
Antifúngicos/farmacologia , Azóis , Biofilmes , Candida tropicalis , Diclofenaco/farmacologia , Sinergismo Farmacológico , Fluconazol , Testes de Sensibilidade Microbiana , Plâncton
15.
Biofouling ; 36(8): 909-921, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33059473

RESUMO

This study investigated the effect of the quorum sensing molecules (QSMs) farnesol, 2-phenylehtanol, tyrosol and tryptophol against planktonic cells, filamentation and biofilms of Sporothrix spp. The antifungal activity of QSMs was evaluated by broth microdilution. QSMs showed MICs in the ranges of 0.01-1 µM (farnesol), 1-8 mM (2-phenylehtanol and tyrosol), and >16 mM (tryptophol). Filamentous biofilm formation was inhibited by farnesol and 2-phenylehtanol and stimulated by tyrosol. Yeast biofilm formation was inhibited by 2-phenylehtanol and tyrosol. Tryptophol did not affect Sporothrix biofilm formation. QSMs showed MICs against mature biofilms of 8-32 µM (farnesol), 8-32 mM (2-phenylehtanol) and 64-128 mM (tyrosol). In conclusion, farnesol, 2-phenylethanol and tyrosol have antifungal activity against planktonic and sessile cells and modulate filamentation and biofilm formation in Sporothrix spp.


Assuntos
Percepção de Quorum , Sporothrix , Antifúngicos/farmacologia , Biofilmes , Farneseno Álcool/farmacologia , Plâncton
16.
Biofouling ; 36(7): 783-791, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32842796

RESUMO

This study describes an ex vivo model that creates an environment for dermatophyte biofilm growth, with features that resemble those of in vivo conditions, designing a new panorama for the study of antifungal susceptibility. Regarding planktonic susceptibility, MIC ranges were 0.125-1 µg ml-1 for griseofulvin and 0.000097-0.25 µg ml-1 for itraconazole and terbinafine. sMIC50 ranges were 2->512 µg ml-1 for griseofulvin and 0.25->64 µg ml-1 for itraconazole and terbinafine. CLSM images demonstrated a reduction in the amount of cells within the biofilm, but hyphae and conidia were still observed and biofilm biomass was maintained. SEM analysis demonstrated a retraction in the biofilm matrix, but fungal structures and water channels were preserved. These results show that ex vivo biofilms are more tolerant to antifungal drugs than in vitro biofilms, suggesting that environmental and nutritional conditions created by this ex vivo model favor biofilm growth and robustness, and hence drug tolerance.


Assuntos
Arthrodermataceae , Biofilmes , Preparações Farmacêuticas , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana
17.
Biofouling ; 36(5): 610-620, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32619353

RESUMO

This study proposes a microcosm biofilm (MiB) model for the study of vulvovaginal candidiasis (VVC). Different conditions that mimic the vaginal environment were tested for MiB formation. The best growth conditions were obtained with samples incubated in vaginal fluid simulator medium pH 4.5 at 35 °C under a microaerophilic atmosphere. MiBs were evaluated for growth kinetics, fluconazole susceptibility and morphology. Samples containing high numbers of bacteria were analyzed for metagenomics. At 48 h, MiBs presented a higher cell density (CFU ml-1), a higher biomass and tolerance to fluconazole than their corresponding monospecies biofilms. Morphological analysis of MiBs revealed blastoconidia preferentially adhered to epithelial cells. Abundant Lactobacillus spp. were detected in two clinical samples; their MiBs showed a lower biomass and a higher fluconazole susceptibility. The proposed model proved to be a useful tool for the study of the complex microbial relationship in the vaginal environment, and may help to find new strategies for VVC control.


Assuntos
Antifúngicos/uso terapêutico , Biofilmes , Candidíase Vulvovaginal/tratamento farmacológico , Candida albicans , Feminino , Fluconazol , Humanos , Testes de Sensibilidade Microbiana
18.
Microb Pathog ; 130: 219-225, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30878621

RESUMO

Trichosporon spp. have been increasingly recognized as an important pathogen of invasive and disseminated infections in immunocompromised patients. These species are prone to form biofilms in medical devices such as catheters and prosthesis, which are associated with antifungal resistance and therapeutic failure. Therefore, new antifungals with a broader anti-biofilm activity need to be discovered. In the present study we evaluate the inhibitory potential of sodium butyrate (NaBut) - a histone deacetylase inhibitor that can alter chromatin conformation - against planktonic and sessile cells of T. asahii and T. inkin. Minimum inhibitory concentration (MIC) of NaBut against planktonic cells was evaluated by microdilution and morphological changes were analyzed by optical microscopy on malt agar supplemented with NaBut. Biofilms were evaluated during adhesion, development and after maturation for metabolic activity and biomass, as well as regarding ultrastructure by scanning electron microscopy and confocal laser scanning microscopy. NaBut inhibited the growth of planktonic cells by 50% at 60 mM or 120 mM (p < 0.05) and also reduced filamentation of Trichosporon spp. NaBut reduced adhesion of Trichosporon cells by 45% (10xMIC) on average (p < 0.05). During biofilm development, NatBut (10xMIC) reduced metabolic activity and biomass up to 63% and 81%, respectively (p < 0.05). Mature biofilms were affected by NaBut (10xMIC), showing reduction of metabolic activity and biomass of approximately 48% and 77%, respectively (p < 0.05). Ultrastructure analysis showed that NaBut (MIC and 10xMIC) was able to disassemble mature biofilms. The present study describes the antifungal and anti-biofilm potential of NaBut against these opportunist emerging fungi.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Ácido Butírico/farmacologia , Trichosporon/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia , Microscopia Confocal , Microscopia Eletrônica de Varredura , Trichosporon/citologia , Trichosporon/crescimento & desenvolvimento
19.
Med Mycol ; 57(8): 1038-1045, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649480

RESUMO

Trichosporon species have been considered important agents of opportunistic systemic infections, mainly among immunocompromised patients. Infections by Trichosporon spp. are generally associated with biofilm formation in invasive medical devices. These communities are resistant to therapeutic antifungals, and therefore the search for anti-biofilm molecules is necessary. This study evaluated the inhibitory effect of farnesol against planktonic and sessile cells of clinical Trichosporon asahii (n = 3) andTrichosporon inkin (n = 7) strains. Biofilms were evaluated during adhesion, development stages and after maturation for metabolic activity, biomass and protease activity, as well as regarding morphology and ultrastructure by optical microscopy, confocal laser scanning microscopy, and scanning electron microscopy. Farnesol inhibited Trichosporon planktonic growth by 80% at concentrations ranging from 600 to 1200 µM for T. asahii and from 75 to 600 µM for T. inkin. Farnesol was able to reduce cell adhesion by 80% at 300 µM for T. asahii and T. inkin at 600 µM, while biofilm development of both species was inhibited by 80% at concentration of 150 µM, altering their structure. After biofilm maturation, farnesol decreased T. asahii biofilm formation by 50% at 600 µM concentration and T. inkin formation at 300 µM. Farnesol inhibited gradual filamentation in a concentration range between 600 and 1200 µM. Farnesol caused reduction of filament structures of Trichosporon spp. at every stage of biofilm development analyzed. These data show the potential of farnesol as an anti-biofilm molecule.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Farneseno Álcool/farmacologia , Trichosporon/efeitos dos fármacos , Trichosporon/crescimento & desenvolvimento , Adesão Celular/efeitos dos fármacos , Humanos , Metabolismo/efeitos dos fármacos , Peptídeo Hidrolases/análise , Trichosporon/isolamento & purificação , Trichosporon/metabolismo , Tricosporonose/microbiologia
20.
Med Mycol ; 57(6): 764-772, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462271

RESUMO

This study aimed to evaluate the yeast biofilm growth kinetics and ultrastructure of Sporothrix schenckii complex and assess their mature biofilm susceptibility in filamentous and yeast forms to potassium iodide (KI) and miltefosine (MIL). Yeast biofilms were evaluated by crystal violet staining, XTT reduction assay and microscopic techniques. Susceptibility of planktonic and sessile cells was analyzed by broth microdilution. S. schenckii complex in yeast form produced biofilms, with an optimum maturation at 96 h, showing multilayered blastoconidia embedded in extracellular matrix. KI and MIL minimum inhibitory concentration (MIC) ranges against planktonic cells were 62,500-250,000 µg/ml and 0.125-4 µg/ml, respectively. KI and MIL reduced biofilm metabolic activity by 75.4% and 67.7% for filamentous form and 55.1% and 51.6% for yeast form, respectively. This study demonstrated that S. schenckii complex forms biofilms in vitro, and potassium iodide and miltefosine inhibit Sporothrix spp. biofilms in both filamentous and yeast forms.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Fosforilcolina/análogos & derivados , Iodeto de Potássio/farmacologia , Sporothrix/efeitos dos fármacos , Fungos/efeitos dos fármacos , Cinética , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Fosforilcolina/farmacologia , Sporothrix/ultraestrutura , Esporotricose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA