Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 624(7992): 621-629, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38049589

RESUMO

Type 2 diabetes mellitus (T2D), a major cause of worldwide morbidity and mortality, is characterized by dysfunction of insulin-producing pancreatic islet ß cells1,2. T2D genome-wide association studies (GWAS) have identified hundreds of signals in non-coding and ß cell regulatory genomic regions, but deciphering their biological mechanisms remains challenging3-5. Here, to identify early disease-driving events, we performed traditional and multiplexed pancreatic tissue imaging, sorted-islet cell transcriptomics and islet functional analysis of early-stage T2D and control donors. By integrating diverse modalities, we show that early-stage T2D is characterized by ß cell-intrinsic defects that can be proportioned into gene regulatory modules with enrichment in signals of genetic risk. After identifying the ß cell hub gene and transcription factor RFX6 within one such module, we demonstrated multiple layers of genetic risk that converge on an RFX6-mediated network to reduce insulin secretion by ß cells. RFX6 perturbation in primary human islet cells alters ß cell chromatin architecture at regions enriched for T2D GWAS signals, and population-scale genetic analyses causally link genetically predicted reduced RFX6 expression with increased T2D risk. Understanding the molecular mechanisms of complex, systemic diseases necessitates integration of signals from multiple molecules, cells, organs and individuals, and thus we anticipate that this approach will be a useful template to identify and validate key regulatory networks and master hub genes for other diseases or traits using GWAS data.


Assuntos
Diabetes Mellitus Tipo 2 , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Ilhotas Pancreáticas , Humanos , Estudos de Casos e Controles , Separação Celular , Cromatina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Redes Reguladoras de Genes/genética , Estudo de Associação Genômica Ampla , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Reprodutibilidade dos Testes
2.
Am J Physiol Endocrinol Metab ; 324(3): E251-E267, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696598

RESUMO

The autonomic nervous system regulates pancreatic function. Islet capillaries are essential for the extension of axonal projections into islets, and both of these structures are important for appropriate islet hormone secretion. Because beta cells provide important paracrine cues for islet glucagon secretion and neurovascular development, we postulated that beta cell loss in type 1 diabetes (T1D) would lead to a decline in intraislet capillaries and reduction of islet innervation, possibly contributing to abnormal glucagon secretion. To define morphological characteristics of capillaries and nerve fibers in islets and acinar tissue compartments, we analyzed neurovascular assembly across the largest cohort of T1D and normal individuals studied thus far. Because innervation has been studied extensively in rodent models of T1D, we also compared the neurovascular architecture between mouse and human pancreas and assembled transcriptomic profiles of molecules guiding islet angiogenesis and neuronal development. We found striking interspecies differences in islet neurovascular assembly but relatively modest differences at transcriptome level, suggesting that posttranscriptional regulation may be involved in this process. To determine whether islet neurovascular arrangement is altered after beta cell loss in T1D, we compared pancreatic tissues from non-diabetic, recent-onset T1D (<10-yr duration), and longstanding T1D (>10-yr duration) donors. Recent-onset T1D showed greater islet and acinar capillary density compared to non-diabetic and longstanding T1D donors. Both recent-onset and longstanding T1D had greater islet nerve fiber density compared to non-diabetic donors. We did not detect changes in sympathetic axons in either T1D cohort. Additionally, nerve fibers overlapped with extracellular matrix (ECM), supporting its role in the formation and function of axonal processes. These results indicate that pancreatic capillaries and nerve fibers persist in T1D despite beta cell loss, suggesting that alpha cell secretory changes may be decoupled from neurovascular components.NEW & NOTEWORTHY Defining the neurovascular architecture in the pancreas of individuals with type 1 diabetes (T1D) is crucial to understanding the mechanisms of dysregulated glucagon secretion. In the largest T1D cohort of biobanked tissues analyzed to date, we found that pancreatic capillaries and nerve fibers persist in human T1D despite beta cell loss, suggesting that alpha cell secretory changes may be decoupled from neurovascular components. Because innervation has been studied extensively in rodent T1D models, our studies also provide the first rigorous direct comparisons of neurovascular assembly in mouse and human, indicating dramatic interspecies differences.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagon , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Glucagon/metabolismo , Capilares/metabolismo , Células Secretoras de Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fibras Nervosas/metabolismo
3.
Diabetologia ; 63(7): 1418-1423, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32388592

RESUMO

AIMS/HYPOTHESIS: Individuals with longstanding and recent-onset type 1 diabetes have a smaller pancreas. Since beta cells represent a very small portion of the pancreas, the loss of pancreas volume in diabetes is primarily due to the loss of pancreatic exocrine mass. However, the structural changes in the exocrine pancreas in diabetes are not well understood. METHODS: To characterise the pancreatic endocrine and exocrine compartments in diabetes, we studied pancreases from adult donors with type 1 diabetes compared with similarly aged donors without diabetes. Islet cell mass, islet morphometry, exocrine mass, acinar cell size and number and pancreas fibrosis were assessed by immunohistochemical staining. To better understand possible mechanisms of altered pancreas size, we measured pancreas size in three mouse models of insulin deficiency. RESULTS: Pancreases from donors with type 1 diabetes were approximately 45% smaller than those from donors without diabetes (47.4 ± 2.6 vs 85.7 ± 3.7 g), independent of diabetes duration or age of onset. Diabetic donor pancreases had decreased beta cell mass (0.061 ± 0.025 vs 0.94 ± 0.21 g) and reduced total exocrine mass (42.0 ± 4.9 vs 96.1 ± 6.5 g). Diabetic acinar cells were similar in size but fewer in number compared with those in pancreases from non-diabetic donors (63.7 ± 8.1 × 109 vs 121.6 ± 12.2 × 109 cells/pancreas), likely accounting for the difference in pancreas size. Within the type 1 diabetes exocrine tissue, there was a greater degree of fibrosis. The pancreases in three mouse models of insulin deficiency were similar in size to those in control mice. CONCLUSIONS/INTERPRETATION: Pancreases from donors with type 1 diabetes are smaller than normal donor pancreases because exocrine cells are fewer in number rather than smaller in size; these changes occur early in the disease process. Our mouse data suggest that decreased pancreas size in type 1 diabetes is not directly caused by insulin deficiency, but the precise mechanism responsible remains unclear.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Pâncreas Exócrino/metabolismo , Células Acinares/metabolismo , Animais , Feminino , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Pâncreas/metabolismo
4.
Diabetologia ; 62(6): 1036-1047, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30955045

RESUMO

AIMS/HYPOTHESIS: The molecular response and function of pancreatic islet cells during metabolic stress is a complex process. The anatomical location and small size of pancreatic islets coupled with current methodological limitations have prevented the achievement of a complete, coherent picture of the role that lipids and proteins play in cellular processes under normal conditions and in diseased states. Herein, we describe the development of untargeted tissue imaging mass spectrometry (IMS) technologies for the study of in situ protein and, more specifically, lipid distributions in murine and human pancreases. METHODS: We developed matrix-assisted laser desorption/ionisation (MALDI) IMS protocols to study metabolite, lipid and protein distributions in mouse (wild-type and ob/ob mouse models) and human pancreases. IMS allows for the facile discrimination of chemically similar lipid and metabolite isoforms that cannot be distinguished using standard immunohistochemical techniques. Co-registration of MS images with immunofluorescence images acquired from serial tissue sections allowed accurate cross-registration of cell types. By acquiring immunofluorescence images first, this serial section approach guides targeted high spatial resolution IMS analyses (down to 15 µm) of regions of interest and leads to reduced time requirements for data acquisition. RESULTS: MALDI IMS enabled the molecular identification of specific phospholipid and glycolipid isoforms in pancreatic islets with intra-islet spatial resolution. This technology shows that subtle differences in the chemical structure of phospholipids can dramatically affect their distribution patterns and, presumably, cellular function within the islet and exocrine compartments of the pancreas (e.g. 18:1 vs 18:2 fatty acyl groups in phosphatidylcholine lipids). We also observed the localisation of specific GM3 ganglioside lipids [GM3(d34:1), GM3(d36:1), GM3(d38:1) and GM3(d40:1)] within murine islet cells that were correlated with a higher level of GM3 synthase as verified by immunostaining. However, in human pancreas, GM3 gangliosides were equally distributed in both the endocrine and exocrine tissue, with only one GM3 isoform showing islet-specific localisation. CONCLUSIONS/INTERPRETATION: The development of more complete molecular profiles of pancreatic tissue will provide important insight into the molecular state of the pancreas during islet development, normal function, and diseased states. For example, this study demonstrates that these results can provide novel insight into the potential signalling mechanisms involving phospholipids and glycolipids that would be difficult to detect by targeted methods, and can help raise new hypotheses about the types of physiological control exerted on endocrine hormone-producing cells in islets. Importantly, the in situ measurements afforded by IMS do not require a priori knowledge of molecules of interest and are not susceptible to the limitations of immunohistochemistry, providing the opportunity for novel biomarker discovery. Notably, the presence of multiple GM3 isoforms in mouse islets and the differential localisation of lipids in human tissue underscore the important role these molecules play in regulating insulin modulation and suggest species, organ, and cell specificity. This approach demonstrates the importance of both high spatial resolution and high molecular specificity to accurately survey the molecular composition of complex, multi-functional tissues such as the pancreas.


Assuntos
Ilhotas Pancreáticas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Imunofluorescência , Gangliosídeos/análise , Humanos , Imuno-Histoquímica , Camundongos , Pâncreas
5.
Diabetologia ; 61(1): 182-192, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28884198

RESUMO

AIMS/HYPOTHESIS: Tissue-resident macrophages sense the microenvironment and respond by producing signals that act locally to maintain a stable tissue state. It is now known that pancreatic islets contain their own unique resident macrophages, which have been shown to promote proliferation of the insulin-secreting beta cell. However, it is unclear how beta cells communicate with islet-resident macrophages. Here we hypothesised that islet macrophages sense changes in islet activity by detecting signals derived from beta cells. METHODS: To investigate how islet-resident macrophages respond to cues from the microenvironment, we generated mice expressing a genetically encoded Ca2+ indicator in myeloid cells. We produced living pancreatic slices from these mice and used them to monitor macrophage responses to stimulation of acinar, neural and endocrine cells. RESULTS: Islet-resident macrophages expressed functional purinergic receptors, making them exquisite sensors of interstitial ATP levels. Indeed, islet-resident macrophages responded selectively to ATP released locally from beta cells that were physiologically activated with high levels of glucose. Because ATP is co-released with insulin and is exclusively secreted by beta cells, the activation of purinergic receptors on resident macrophages facilitates their awareness of beta cell secretory activity. CONCLUSIONS/INTERPRETATION: Our results indicate that islet macrophages detect ATP as a proxy signal for the activation state of beta cells. Sensing beta cell activity may allow macrophages to adjust the secretion of factors to promote a stable islet composition and size.


Assuntos
Trifosfato de Adenosina/metabolismo , Macrófagos/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Animais , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Camundongos
6.
Development ; 142(21): 3637-48, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26534984

RESUMO

Homozygous Mnx1 mutation causes permanent neonatal diabetes in humans, but via unknown mechanisms. Our systematic and longitudinal analysis of Mnx1 function during murine pancreas organogenesis and into the adult uncovered novel stage-specific roles for Mnx1 in endocrine lineage allocation and ß-cell fate maintenance. Inactivation in the endocrine-progenitor stage shows that Mnx1 promotes ß-cell while suppressing δ-cell differentiation programs, and is crucial for postnatal ß-cell fate maintenance. Inactivating Mnx1 in embryonic ß-cells (Mnx1(Δbeta)) caused ß-to-δ-like cell transdifferentiation, which was delayed until postnatal stages. In the latter context, ß-cells escaping Mnx1 inactivation unexpectedly upregulated Mnx1 expression and underwent an age-independent persistent proliferation. Escaper ß-cells restored, but then eventually surpassed, the normal pancreatic ß-cell mass, leading to islet hyperplasia in aged mice. In vitro analysis of islets isolated from Mnx1(Δbeta) mice showed higher insulin secretory activity and greater insulin mRNA content than in wild-type islets. Mnx1(Δbeta) mice also showed a much faster return to euglycemia after ß-cell ablation, suggesting that the new ß-cells derived from the escaper population are functional. Our findings identify Mnx1 as an important factor in ß-cell differentiation and proliferation, with the potential for targeting to increase the number of endogenous ß-cells for diabetes therapy.


Assuntos
Diabetes Mellitus/patologia , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Transdiferenciação Celular , Senescência Celular , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Hiperplasia/metabolismo , Células Secretoras de Insulina/citologia , Camundongos , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Células Secretoras de Somatostatina/metabolismo , Fatores de Transcrição/genética
7.
Development ; 141(7): 1480-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24574008

RESUMO

Neurovascular alignment is a common anatomical feature of organs, but the mechanisms leading to this arrangement are incompletely understood. Here, we show that vascular endothelial growth factor (VEGF) signaling profoundly affects both vascularization and innervation of the pancreatic islet. In mature islets, nerves are closely associated with capillaries, but the islet vascularization process during embryonic organogenesis significantly precedes islet innervation. Although a simple neuronal meshwork interconnects the developing islet clusters as they begin to form at E14.5, the substantial ingrowth of nerve fibers into islets occurs postnatally, when islet vascularization is already complete. Using genetic mouse models, we demonstrate that VEGF regulates islet innervation indirectly through its effects on intra-islet endothelial cells. Our data indicate that formation of a VEGF-directed, intra-islet vascular plexus is required for development of islet innervation, and that VEGF-induced islet hypervascularization leads to increased nerve fiber ingrowth. Transcriptome analysis of hypervascularized islets revealed an increased expression of extracellular matrix components and axon guidance molecules, with these transcripts being enriched in the islet-derived endothelial cell population. We propose a mechanism for coordinated neurovascular development within pancreatic islets, in which endocrine cell-derived VEGF directs the patterning of intra-islet capillaries during embryogenesis, forming a scaffold for the postnatal ingrowth of essential autonomic nerve fibers.


Assuntos
Vasos Sanguíneos/fisiologia , Comunicação Celular/genética , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/inervação , Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Vasos Sanguíneos/embriologia , Células Cultivadas , Embrião de Mamíferos , Endotélio Vascular/embriologia , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Feminino , Ilhotas Pancreáticas/embriologia , Camundongos , Camundongos Transgênicos , Fator A de Crescimento do Endotélio Vascular/genética
8.
J Biol Chem ; 290(21): 13401-16, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25851902

RESUMO

Glucocorticoids signal through the glucocorticoid receptor (GR) and are administered clinically for a variety of situations, including inflammatory disorders, specific cancers, rheumatoid arthritis, and organ/tissue transplantation. However, glucocorticoid therapy is also associated with additional complications, including steroid-induced diabetes. We hypothesized that modification of the steroid backbone is one strategy to enhance the therapeutic potential of GR activation. Toward this goal, two commercially unavailable, thiobenzothiazole-containing derivatives of hydrocortisone (termed MS4 and MS6) were examined using 832/13 rat insulinoma cells as well as rodent and human islets. We found that MS4 had transrepression properties but lacked transactivation ability, whereas MS6 retained both transactivation and transrepression activities. In addition, MS4 and MS6 both displayed anti-inflammatory activity. Furthermore, MS4 displayed reduced impact on islet ß-cell function in both rodent and human islets. Similar to dexamethasone, MS6 promoted adipocyte development in vitro, whereas MS4 did not. Moreover, neither MS4 nor MS6 activated the Pck1 (Pepck) gene in primary rat hepatocytes. We conclude that modification of the functional groups attached to the D-ring of the hydrocortisone steroid molecule produces compounds with altered structure-function GR agonist activity with decreased impact on insulin secretion and reduced adipogenic potential but with preservation of anti-inflammatory activity.


Assuntos
Anti-Inflamatórios/farmacologia , Benzimidazóis/farmacologia , Benzotiazóis/farmacologia , Hidrocortisona/análogos & derivados , Hidrocortisona/farmacologia , Inflamação/tratamento farmacológico , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/imunologia , Tiazóis/química , Células 3T3-L1 , Animais , Anti-Inflamatórios/síntese química , Apoptose/efeitos dos fármacos , Benzimidazóis/síntese química , Benzotiazóis/síntese química , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Dexametasona/farmacologia , Perfilação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/imunologia , Hepatócitos/metabolismo , Humanos , Hidrocortisona/síntese química , Técnicas Imunoenzimáticas , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Consumo de Oxigênio/efeitos dos fármacos , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Am J Physiol Endocrinol Metab ; 311(5): E859-E868, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27624103

RESUMO

Numerous compounds stimulate rodent ß-cell proliferation; however, translating these findings to human ß-cells remains a challenge. To examine human ß-cell proliferation in response to such compounds, we developed a medium-throughput in vitro method of quantifying adult human ß-cell proliferation markers. This method is based on high-content imaging of dispersed islet cells seeded in 384-well plates and automated cell counting that identifies fluorescently labeled ß-cells with high specificity using both nuclear and cytoplasmic markers. ß-Cells from each donor were assessed for their function and ability to enter the cell cycle by cotransduction with adenoviruses encoding cell cycle regulators cdk6 and cyclin D3. Using this approach, we tested 12 previously identified mitogens, including neurotransmitters, hormones, growth factors, and molecules, involved in adenosine and Tgf-1ß signaling. Each compound was tested in a wide concentration range either in the presence of basal (5 mM) or high (11 mM) glucose. Treatment with the control compound harmine, a Dyrk1a inhibitor, led to a significant increase in Ki-67+ ß-cells, whereas treatment with other compounds had limited to no effect on human ß-cell proliferation. This new scalable approach reduces the time and effort required for sensitive and specific evaluation of human ß-cell proliferation, thus allowing for increased testing of candidate human ß-cell mitogens.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Ativinas/farmacologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Adulto , Automação , Técnicas de Cultura de Células , Avaliação Pré-Clínica de Medicamentos , Eritropoetina/farmacologia , Exenatida , Feminino , GABAérgicos/farmacologia , Harmina/farmacologia , Humanos , Incretinas/farmacologia , Masculino , Pessoa de Meia-Idade , Inibidores da Monoaminoxidase/farmacologia , Miostatina/farmacologia , Nucleosídeos/farmacologia , Peptídeos/farmacologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Prolactina/farmacologia , Regeneração/efeitos dos fármacos , Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Vasodilatadores/farmacologia , Peçonhas/farmacologia , Adulto Jovem , Ácido gama-Aminobutírico/farmacologia
10.
Am J Physiol Endocrinol Metab ; 308(7): E592-602, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25648831

RESUMO

Human islet research is providing new insights into human islet biology and diabetes, using islets isolated at multiple US centers from donors with varying characteristics. This creates challenges for understanding, interpreting, and integrating research findings from the many laboratories that use these islets. In what is, to our knowledge, the first standardized assessment of human islet preparations from multiple isolation centers, we measured insulin secretion from 202 preparations isolated at 15 centers over 11 years and noted five distinct patterns of insulin secretion. Approximately three quarters were appropriately responsive to stimuli, but one quarter were dysfunctional, with unstable basal insulin secretion and/or an impairment in stimulated insulin secretion. Importantly, the patterns of insulin secretion by responsive human islet preparations (stable Baseline and Fold stimulation of insulin secretion) isolated at different centers were similar and improved slightly over the years studied. When all preparations studied were considered, basal and stimulated insulin secretion did not correlate with isolation center, biological differences of the islet donor, or differences in isolation, such as Cold Ischemia Time. Dysfunctional islet preparations could not be predicted from the information provided by the isolation center and had altered expression of genes encoding components of the glucose-sensing pathway, but not of insulin production or cell death. These results indicate that insulin secretion by most preparations from multiple centers is similar but that in vitro responsiveness of human islets cannot be predicted, necessitating preexperimental human islet assessment. These results should be considered when one is designing, interpreting, and integrating experiments using human islets.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Pesquisa , Doadores de Tecidos , Obtenção de Tecidos e Órgãos , Adolescente , Adulto , Idoso , Criança , Feminino , Humanos , Secreção de Insulina , Masculino , Pessoa de Meia-Idade , Manejo de Espécimes , Doadores de Tecidos/estatística & dados numéricos , Doadores de Tecidos/provisão & distribuição , Obtenção de Tecidos e Órgãos/estatística & dados numéricos , Adulto Jovem
12.
Am J Physiol Endocrinol Metab ; 306(12): E1460-7, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24760991

RESUMO

ß-Cell mass is a parameter commonly measured in studies of islet biology and diabetes. However, the rigorous quantification of pancreatic ß-cell mass using conventional histological methods is a time-consuming process. Rapidly evolving virtual slide technology with high-resolution slide scanners and newly developed image analysis tools has the potential to transform ß-cell mass measurement. To test the effectiveness and accuracy of this new approach, we assessed pancreata from normal C57Bl/6J mice and from mouse models of ß-cell ablation (streptozotocin-treated mice) and ß-cell hyperplasia (leptin-deficient mice), using a standardized systematic sampling of pancreatic specimens. Our data indicate that automated analysis of virtual pancreatic slides is highly reliable and yields results consistent with those obtained by conventional morphometric analysis. This new methodology will allow investigators to dramatically reduce the time required for ß-cell mass measurement by automating high-resolution image capture and analysis of entire pancreatic sections.


Assuntos
Diabetes Mellitus Experimental/patologia , Células Secretoras de Insulina/patologia , Modelos Biológicos , Obesidade/patologia , Pâncreas/patologia , Animais , Inteligência Artificial , Automação Laboratorial , Tamanho Celular , Biologia Computacional , Sistemas Inteligentes , Hiperplasia , Processamento de Imagem Assistida por Computador , Células Secretoras de Insulina/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Obesos , Microtomia , Pâncreas/citologia , Reprodutibilidade dos Testes , Software
13.
Am J Physiol Endocrinol Metab ; 307(10): E896-905, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25205821

RESUMO

Inappropriate glucagon secretion contributes to hyperglycemia in inflammatory disease. Previous work implicates the proinflammatory cytokine interleukin-6 (IL-6) in glucagon secretion. IL-6-KO mice have a blunted glucagon response to lipopolysaccharide (LPS) that is restored by intravenous replacement of IL-6. Given that IL-6 has previously been demonstrated to have a transcriptional (i.e., slow) effect on glucagon secretion from islets, we hypothesized that the rapid increase in glucagon following LPS occurred by a faster mechanism, such as by action within the brain. Using chronically catheterized conscious mice, we have demonstrated that central IL-6 stimulates glucagon secretion uniquely in the presence of an accompanying stressor (hypoglycemia or LPS). Contrary to our hypothesis, however, we found that IL-6 amplifies glucagon secretion in two ways; IL-6 not only stimulates glucagon secretion via the brain but also by direct action on islets. Interestingly, IL-6 augments glucagon secretion from both sites only in the presence of an accompanying stressor (such as epinephrine). Given that both adrenergic tone and plasma IL-6 are elevated in multiple inflammatory diseases, the interactions of the IL-6 and catecholaminergic signaling pathways in regulating GCG secretion may contribute to our present understanding of these diseases.


Assuntos
Encéfalo/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Interleucina-6/genética , Animais , Encéfalo/efeitos dos fármacos , Epinefrina/farmacologia , Glucagon/efeitos dos fármacos , Técnica Clamp de Glucose , Hipoglicemia/metabolismo , Interleucina-6/metabolismo , Ilhotas Pancreáticas/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Fisiológico , Simpatomiméticos/farmacologia
14.
Blood ; 120(23): 4653-62, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22966168

RESUMO

Recruitment and retention of leukocytes at a site of blood vessel growth are crucial for proper angiogenesis and subsequent tissue perfusion. Although critical for many aspects of regenerative medicine, the mechanisms of leukocyte recruitment to and actions at sites of angiogenesis are not fully understood. In this study, we investigated the signals attracting leukocytes to avascular transplanted pancreatic islets and leukocyte actions at the engraftment site. Expression of the angiogenic stimulus VEGF-A by mouse pancreatic islets was elevated shortly after syngeneic transplantation to muscle. High levels of leukocytes, predominantly CD11b(+)/Gr-1(+)/CXCR4(hi) neutrophils, were observed at the site of engraftment, whereas VEGF-A-deficient islets recruited only half of the amount of leukocytes when transplanted. Acute VEGF-A exposure of muscle increased leukocyte extravasation but not the levels of SDF-1α. VEGF-A-recruited neutrophils expressed 10 times higher amounts of MMP-9 than neutrophils recruited to an inflammatory stimulus. Revascularization of islets transplanted to MMP-9-deficient mice was impaired because blood vessels initially failed to penetrate grafts, and after 2 weeks vascularity was still disturbed. This study demonstrates that VEGF-A recruits a proangiogenic circulating subset of CD11b(+)/Gr-1(+) neutrophils that are CXCR4(hi) and deliver large amounts of the effector protein MMP-9, required for islet revascularization and functional integration after transplantation.


Assuntos
Transplante das Ilhotas Pancreáticas/fisiologia , Metaloproteinase 9 da Matriz/metabolismo , Neovascularização Fisiológica/fisiologia , Neutrófilos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Antígeno CD11b/metabolismo , Quimiocina CXCL12/metabolismo , Feminino , Hipóxia , Imuno-Histoquímica , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/metabolismo , Masculino , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia de Vídeo , Neovascularização Fisiológica/genética , Infiltração de Neutrófilos , Receptores CXCR4 , Receptores de Quimiocinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
15.
Nat Commun ; 15(1): 3744, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702321

RESUMO

Cellular composition and anatomical organization influence normal and aberrant organ functions. Emerging spatial single-cell proteomic assays such as Image Mass Cytometry (IMC) and Co-Detection by Indexing (CODEX) have facilitated the study of cellular composition and organization by enabling high-throughput measurement of cells and their localization directly in intact tissues. However, annotation of cell types and quantification of their relative localization in tissues remain challenging. To address these unmet needs for atlas-scale datasets like Human Pancreas Analysis Program (HPAP), we develop AnnoSpat (Annotator and Spatial Pattern Finder) that uses neural network and point process algorithms to automatically identify cell types and quantify cell-cell proximity relationships. Our study of data from IMC and CODEX shows the higher performance of AnnoSpat in rapid and accurate annotation of cell types compared to alternative approaches. Moreover, the application of AnnoSpat to type 1 diabetic, non-diabetic autoantibody-positive, and non-diabetic organ donor cohorts recapitulates known islet pathobiology and shows differential dynamics of pancreatic polypeptide (PP) cell abundance and CD8+ T cells infiltration in islets during type 1 diabetes progression.


Assuntos
Algoritmos , Diabetes Mellitus Tipo 1 , Pâncreas , Proteômica , Humanos , Proteômica/métodos , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/citologia , Análise de Célula Única/métodos , Redes Neurais de Computação , Linfócitos T CD8-Positivos/metabolismo , Citometria por Imagem/métodos
16.
Dev Biol ; 367(1): 40-54, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22546694

RESUMO

There is a reciprocal interaction between pancreatic islet cells and vascular endothelial cells (EC) in which EC-derived signals promote islet cell differentiation and islet development while islet cell-derived angiogenic factors promote EC recruitment and extensive islet vascularization. To examine the role of angiogenic factors in the coordinated development of islets and their associated vessels, we used a "tet-on" inducible system (mice expressing rat insulin promoter-reverse tetracycline activator transgene and a tet-operon-angiogenic factor transgene) to increase the ß cell production of vascular endothelial growth factor-A (VEGF-A), angiopoietin-1 (Ang1), or angiopoietin-2 (Ang2) during islet cell differentiation and islet development. In VEGF-A overexpressing embryos, ECs began to accumulate around epithelial tubes residing in the central region of the developing pancreas (associated with endocrine cells) as early as embryonic day 12.5 (E12.5) and increased dramatically by E16.5. While α and ß cells formed islet cell clusters in control embryos at E16.5, the increased EC population perturbed endocrine cell differentiation and islet cell clustering in VEGF-A overexpressing embryos. With continued overexpression of VEGF-A, α and ß cells became scattered, remained adjacent to ductal structures, and never coalesced into islets, resulting in a reduction in ß cell proliferation and ß cell mass at postnatal day 1. A similar impact on islet morphology was observed when VEGF-A was overexpressed in ß cells during the postnatal period. In contrast, increased expression of Ang1 or Ang2 in ß cells in developing or adult islets did not alter islet differentiation, development, or morphology, but altered islet EC ultrastructure. These data indicate that (1) increased EC number does not promote, but actually impairs ß cell proliferation and islet formation; (2) the level of VEGF-A production by islet endocrine cells is critical for islet vascularization during development and postnatally; (3) angiopoietin-Tie2 signaling in endothelial cells does not have a crucial role in the development or maintenance of islet vascularization.


Assuntos
Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiopoietina-1/metabolismo , Angiopoietina-2/metabolismo , Animais , Contagem de Células , Células Endoteliais/metabolismo , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/metabolismo , Camundongos
17.
J Endocrinol ; 258(1)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37114672

RESUMO

In commemoration of 100 years since the discovery of glucagon, we review current knowledge about the human α cell. Alpha cells make up 30-40% of human islet endocrine cells and play a major role in regulating whole-body glucose homeostasis, largely through the direct actions of their main secretory product - glucagon - on peripheral organs. Additionally, glucagon and other secretory products of α cells, namely acetylcholine, glutamate, and glucagon-like peptide-1, have been shown to play an indirect role in the modulation of glucose homeostasis through autocrine and paracrine interactions within the islet. Studies of glucagon's role as a counterregulatory hormone have revealed additional important functions of the α cell, including the regulation of multiple aspects of energy metabolism outside that of glucose. At the molecular level, human α cells are defined by the expression of conserved islet-enriched transcription factors and various enriched signature genes, many of which have currently unknown cellular functions. Despite these common threads, notable heterogeneity exists amongst human α cell gene expression and function. Even greater differences are noted at the inter-species level, underscoring the importance of further study of α cell physiology in the human context. Finally, studies on α cell morphology and function in type 1 and type 2 diabetes, as well as other forms of metabolic stress, reveal a key contribution of α cell dysfunction to dysregulated glucose homeostasis in disease pathogenesis, making targeting the α cell an important focus for improving treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagon , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagon/metabolismo , Ilhotas Pancreáticas/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
18.
bioRxiv ; 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36712052

RESUMO

Cellular composition and anatomical organization influence normal and aberrant organ functions. Emerging spatial single-cell proteomic assays such as Image Mass Cytometry (IMC) and Co-Detection by Indexing (CODEX) have facilitated the study of cellular composition and organization by enabling high-throughput measurement of cells and their localization directly in intact tissues. However, annotation of cell types and quantification of their relative localization in tissues remain challenging. To address these unmet needs, we developed AnnoSpat (Annotator and Spatial Pattern Finder) that uses neural network and point process algorithms to automatically identify cell types and quantify cell-cell proximity relationships. Our study of data from IMC and CODEX show the superior performance of AnnoSpat in rapid and accurate annotation of cell types compared to alternative approaches. Moreover, the application of AnnoSpat to type 1 diabetic, non-diabetic autoantibody-positive, and non-diabetic organ donor cohorts recapitulated known islet pathobiology and showed differential dynamics of pancreatic polypeptide (PP) cell abundance and CD8+ T cells infiltration in islets during type 1 diabetes progression.

19.
Diabetes ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37881846

RESUMO

The endocrine and exocrine compartments of the pancreas are spatially related but functionally distinct. Multiple diseases affect both compartments, including type 1 diabetes (T1D), pancreatitis, cystic fibrosis, and pancreatic cancer. To better understand how the exocrine pancreas changes with age, obesity, and diabetes, we performed systematic analysis of wellpreserved tissue sections from the pancreatic head, body, and tail of organ donors with T1D (n = 20), type 2 diabetes (T2D, n = 25), and donors with no diabetes (ND, n = 74). Among ND donors, we found that acinar-to-ductal metaplasia (ADM), angiopathy, and pancreatic adiposity increased with age, while ADM and adiposity also increased with BMI. Compared to age- and sex-matched ND organs, T1D pancreata had greater acinar atrophy and angiopathy with fewer intralobular adipocytes. T2D pancreata had greater ADM, angiopathy, and total T lymphocytes, but no difference in adipocyte number, compared to ND organs. While total pancreatic fibrosis was increased in both T1D and T2D, the pattern was different with T1D pancreata having greater periductal and perivascular fibrosis, whereas T2D pancreata had greater lobular and parenchymal fibrosis. Thus, the exocrine pancreas undergoes distinct changes as individuals age or develop T1D or T2D.

20.
J Vis Exp ; (201)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37982512

RESUMO

The pancreatic islets of Langerhans, which are small 3D collections of specialized endocrine and supporting cells interspersed throughout the pancreas, have a central role in the control of glucose homeostasis through the secretion of insulin by beta cells, which lowers blood glucose, and glucagon by alpha cells, which raises blood glucose. Intracellular signaling pathways, including those mediated by cAMP, are key for regulated alpha and beta cell hormone secretion. The 3D islet structure, while essential for coordinated islet function, presents experimental challenges for mechanistic studies of the intracellular signaling pathways in primary human islet cells. To overcome these challenges and limitations, this protocol describes an integrated live-cell imaging and microfluidic platform using primary human pseudoislets generated from donors without diabetes that resemble native islets in their morphology, composition, and function. These pseudoislets are size-controlled through the dispersion and reaggregation process of primary human islet cells. In the dispersed state, islet cell gene expression can be manipulated; for example, biosensors such as the genetically encoded cAMP biosensor, cADDis, can be introduced. Once formed, pseudoislets expressing a genetically encoded biosensor, in combination with confocal microscopy and a microperifusion platform, allow for the synchronous assessment of fluorescent biosensor dynamics and alpha and beta cell hormone secretory profiles to provide more insight into cellular processes and function.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Glicemia , Transporte Biológico , Insulina , Corantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA